Contribution ID: 96

Machine Learning rediscovers flow in simulated data of heavy ion collisions

Thursday, 20 December 2018 17:15 (15 minutes)

We apply principal component analysis (PCA) to simulated data of relativistic heavy-ion collisions. Unlike traditional Fourier methods, we apply PCA directly to single particle distribution. Interesting patterns are identified by PCA as eigenmodes, from which we define new flow observables v'_n compared to traditional ones v_n . The eigenmodes are very much like traditional Fourier bases, but are slightly different. Further research shows that v'_n are mutually more independent than v_n . We then relate v'_n to initial eccentricity ε_n , finding v'_n do have more linearity with ε_n than v_n with ε_n . This might be a signature that relativistic hydrodynamics is not as non-linear as we originally thought. With new bases chosen by PCA, the correlations between different harmonics drop significantly.

Type

Parallel talk

Sessions (parallel only)

Heavy Ions

Primary author: Mr LIU, Ziming (Peking University)

Co-authors: Prof. SONG, Huichao (Peking University); ZHAO, Wenbin (school of physics Peking University)

Presenter: Mr LIU, Ziming (Peking University)

Session Classification: Heavy Ion Physics

Track Classification: Heavy Ions