Observation of VBF Higgs with the ATLAS Detector

Yaquan Fang (方亚泉) on behalf of the ATLAS Collaboration Institute of High Energy Physics, Beijing 20-22 November, 2018 The 4th CLHCP workshop at Central China Normal University, Wuhan

Introduction

- After the Higgs discovery, it is important to study the Higgs property according to its production, decays, coupling, spin
- > VBF provides us an opportunity to understand:
 - ➤ Higgs production mode
 - Electro-weak production
 - Search for new physics

T. Han, D.L. Rainwater, D. Zeppenfeld et al.

• Two forward highly boosted jets.

• High invariant mass of the di-jet (M_{jj}) and rapidity gap between the two jets ($\Delta \eta_{jj}$)

Event signature of VBF Higgs

- The jet activities are suppressed between two VBF jets.
 - Central jet veto
- Multivariate analyses (MVA) to improve the sensitivities.

Higgs Decay

Central jet veto initially suggested in PRD 42 3052 (1990) VBF tagged jets

Wisconsin Pheno. Group:

Example: discriminating variables used in ATLAS for $H \rightarrow \gamma \gamma$ analysis

• 6 variables below used to separate signal from background

Variables	Definition	Separation power
m_{jj}	Invariant mass of dijet	0.256
$\Delta \eta_{jj}$	Pseudo-rapidity separation of dijet	0.130
$\Delta \Phi_{\gamma\gamma,jj}$	Azimuthal angle between diphoton and dijet system	0.199
p_{Tt}	Diphoton p_T projected perpendicular to the diphoton thrust axis	0.235
$\Delta R_{\gamma,j}^{min}$	Minimum ΔR between one of the two leading photons and the corresponding leading jets	0.185
$\eta^{Zeppenfeld}$	$ \eta_{\gamma\gamma} - 0.5 * (\eta_{j1} + \eta_{j2}) $	0.126

- Separation power: $\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_s(y) \hat{y}_b(y))^2}{\hat{y}_s(y) + \hat{y}_b(y)} dy$ > two forward jet $\rightarrow \text{large } \Delta \eta_{ii}^2 \int \frac{(\hat{y}_s(y) - \hat{y}_b(y))^2}{\hat{y}_s(y) + \hat{y}_b(y)} dy$
 - > high p_T and large $\Delta \eta_{ii}$ jets \rightarrow large m_{ii}
 - \succ central diphoton and forward dijet \rightarrow large $\Delta R^{min}_{v,i}$, low η^{Zepp}

> two photons balancing high p_T jets \rightarrow high p_{Tt}

Distributions of the discriminating variables

MVA method: Training/optimization

- [120,130] GeV $m_{\gamma\gamma}$ window for data is blinded for training and optimization.
- Signal : VBF 125 GeV.
- Background :
 - $\gamma\gamma$: SHERPA Monte-Carlo .
 - γjet+jets : data with at least one not isolated photon (reviso).
 - The fraction of the two components above are obtained from data-driven method.
 - Overall contribution is normalized to the data.
- For the optimization, both sideband fit from data and MC+revIso are tested
- Divide events into 1-2 categories according to BDT scores; The improvement is above 10-20% w.r.t cut based one.

ATLAS RUN2 VBF $H \rightarrow \gamma \gamma$ results (36.1 fb⁻¹)

- 4.9σ observed with 2.6σ expected
 from single experiment.
- The signal strength is ~2xSM, which is still consistent with SM prediction within uncertainties.
 Published at Phys. Rev. D 98, 052005 (2018)

RUN2 VBF $H \rightarrow \gamma \gamma$ results (79.8 fb⁻¹)

ATLAS-CONF-2018-028

The signal strength is well consistent with SM prediction within uncertainties

- > ATLAS VBF $H \rightarrow ZZ^*$ is around 2.5xSM prediction which is still consistent with SM prediction considering the large statistical uncertainty
- > Statistical uncertainty is the dominant one (can contribute 90% of total uncertainty).

 \succ For the VBF H $\rightarrow \tau \tau$, the observed signal strength is slightly higher than the SM prediction.

$VBFH \rightarrow bb$

- VBF $H \rightarrow bb$ analysis is divided into two categories (tagging or non-tagging photon)
- The tagging of one photon is efficient to suppress QCD background.

CERN-EP-2018-140

 \succ The observed signal strength for VBF H \rightarrow bb is ~3xSM, which is still consistent with SM within the error bar.

W

H

ATLAS VBF $H \rightarrow WW^*$

	20,				Source	$\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*} \ [\%]$	$\Delta \sigma_{\rm VBF} \cdot \mathcal{B}_{H \to WW^*} \ [\%]$			
q	2.0	— 68% CL	ΔΤΙΔ	1	Data statistics	10	46			
۰* [p	ŀ	95% CL	$\sqrt{2}$ = 12 TeV 26 1 fb ⁻¹	-	CR statistics	7	9			
	1.5		v s = 13 TeV, 30.1 ID	- 1	MC statistics	6	21			
\mathbf{M}	ļ			1	Theoretical uncertainties	10	19			
1	ŀ	. + SM			ggF signal	5	13			
θ Ξ	1.0	_		-	VBF signal	<1	4			
•	t			1	WW	6	12			
/BF	ŀ				$\operatorname{Top-quark}$	5	5			
б	0.5	-			Experimental uncertainties	8	9			
	t			1	b-tagging	4	6			
	ŀ				Modelling of pile-up	5	2			
(0.0	- -		-	Jet	2	2			
	t			1	Lepton	3	<1			
	ŀ			-	Misidentified leptons	6	9			
—(0.5[_ <u></u>		ـــــا	Luminosity	3	3			
	_	5 0	5 10 15 20	25	TOTAL	18	57			
			σ _{ggF} · ℬ _{H→WW} ∗	[pb]						
	Submitted to PLB (arxiv:1808.09054) $\mu_{ggF} = 1.10^{+0.10}_{-0.09} (stat.)^{+0.13}_{-0.11} (theo syst.)^{+0.14}_{-0.13} (exp syst.) = 1.10^{+0.21}_{-0.20}$									
			μ	VBF =	$= 0.62^{+0.29}_{-0.27} (\text{stat.})^{+0.12}_{-0.13}$	$\frac{2}{3}$ (theo syst.) ± 0.15	$5(\exp \text{ syst.}) = 0.62^{+0.3}_{-0.3}$			

VBF is around 0.6xSM prediction which is still consistent with SM prediction considering the large statistical uncertainty.

Combination of different channels

ATLAS-CONF-2018-031

Process	Value		Ur	certainty	SM pred.	Significance		
$(y_H < 2.5)$	[pb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[pb]	obs. (exp.)
ggF	47.8	± 4.0	(± 3.1)	$^{+2.7}_{-2.2}$	± 0.9	± 1.3	44.7 ± 2.2	-
VBF	4.25	$^{+0.77}_{-0.74}$	(± 0.63)	$^{+0.39}_{-0.35}$	$^{+0.25}_{-0.21}$	$^{+0.14}_{-0.11}$	3.515 ± 0.075	6.5 (5.3)
WH	1.89	$^{+0.63}_{-0.58}$	$\binom{+0.45}{-0.42}$	$^{+0.29}_{-0.28}$	$^{+0.25}_{-0.16}$	$^{+0.23}_{-0.22}$	1.204 ± 0.024	
ZH	0.59	$^{+0.33}_{-0.32}$	$\binom{+0.27}{-0.25}$	± 0.14	$^{+0.08}_{-0.02}$	± 0.11)	$0.794\substack{+0.033\\-0.027}$	$\left. \right\} 4.1 (3.7)$
$t\bar{t}H+tH$	0.71	± 0.15	(± 0.10)	± 0.07	$^{+0.05}_{-0.04}$	$^{+0.08}_{-0.07}$	$0.586\substack{+0.034\\-0.050}$	5.8(5.3)

Combining H→γγ, ZZ*,WW*, one can achieve 6.5σ
 (5.3σ) observed (expected) for VBF Higgs.
 The dominant contribution is from H→γγ.
 The result is well consistent with SM prediction.

Conclusion

- VBF Higgs production has a unique event signature and can be studied with MVA method.
- Results from the channels ($H \rightarrow ZZ^*, WW^*, \tau\tau, bb$) have been shown with 36.1-79.8 fb⁻¹ data:
 - The combined result achieves 6.5σ/5.3σ (observed/expected), which is the first observation of VBF Higgs from single experiment.
 - $H \rightarrow \gamma \gamma$ makes a leading contribution.
- The analyses with full RUN2 data are ongoing.

backup slides

correlation to $m_{\rm H}$

• the used variables should not be correlated to $m_{\nu\nu}$

CMS VBF H->γγ strategy

Events produced via the VBF mechanism features two jets in the final state separated by a large rapidity gap. A multivariate discriminant is trained to tag the VBF jets kinematics, considering as background the production process of ggH + jets, and is given as input to an additional "combined" multivariate classifier along with the score of the photon identification MVA, the diphoton BDT score, and the ratio $p_{T\gamma\gamma}/m_{\gamma\gamma}$. Figure 7 (left) shows the transformed score of the combined multivariate classifier for data in the mass side-band region 105-115 GeV and 135-145 GeV, along with the predicted VBF and ggH distributions. The classifier score has been transformed such that the signal events from the VBF production mode has a uniform, flat, distribution. A validation of the score of the combined multivariate classifier obtained in $Z \rightarrow e^+e^- + jets$ events, where the electrons are reconstructed as photons and at least two jets satisfy the requirements listed below to enter the VBF category, is shown in Fig. 7 (right) for data and simulation.

Selections:

- one jet with p_T > 40 GeV and one with p_T > 30 GeV, both with |η| < 4.7 and width a tight requirement on the pileup jet identification;
- the invariant mass of the two jets m_{jj} > 250 GeV;
- the combined multivariate discriminant greater than 0.43.
- leading photon p_T > m_{γγ}/3, sub-leading photon p_T > m_{γγ}/4;
- photon ID BDT score greater than -0.2, in order to provide additional rejection against background events whose kinematics yield a high diphoton BDT score despite one reconstructed photon with a relatively low ID score;

- ➢ BDT training :
 - VBF Higgs vs ggH+jets
 - Divided into 3 cats.

Validated with Z->ee events

100

B component subtracted

m_{γγ} (GeV)

ttH Leptonic

ZH Leptonic

WH Leptonic

VH Hadronic

VH MET

VH LeptonicLoose

8 expected events

5 expected events

6 expected events

2.8 expected events

9.7 expected events

4.2 expected even 20 30 40 50

10

Observed (expected) Significance = $1.1\sigma/1.9\sigma$

90

CMS VBF H->ZZ

signal fraction

		Event category						
	Untagged	VBF-1j	VBF-2j	VH-hadr.	VH-lept.	$ m VH$ - $E_{ m T}^{ m miss}$	$t\bar{t}H$	Inclusive
$q\overline{q} \to ZZ$	19.18	2.00	0.25	0.30	0.27	0.01	0.01	22.01
$\mathrm{gg} \to \mathrm{ZZ}$	1.67	0.31	0.05	0.02	0.04	0.01	< 0.0	2.09
Z+X	10.79	0.88	0.78	0.31	0.17	0.30	0.27	13.52
Sum of backgrounds	31.64	3.18	1.08	0.63	0.49	0.32	0.28	37.62
uncertainties	$^{+4.30}_{-3.42}$	$^{+0.37}_{-0.32}$	$^{+0.29}_{-0.21}$	$^{+0.13}_{-0.09}$	$^{+0.07}_{-0.07}$	$^{+0.14}_{-0.11}$	$^{+0.09}_{-0.07}$	$^{+5.19}_{-4.18}$
$\mathrm{gg} \to \mathrm{H}$	38.78	8.31	2.04	1.41	0.08	0.02	0.10	50.74
VBF	1.08	1.14	2.09	0.09	0.02	< 0.01	0.02	4.44
WH	0.43	0.14	0.05	0.30	0.21	0.03	0.02	1.18
\mathbf{ZH}	0.41	0.11	0.04	0.24	0.04	0.07	0.02	0.93
$t\bar{t}H$	0.08	< 0.01	0.02	0.03	0.02	< 0.01	0.35	0.50
Signal	40.77	9.69	4.24	2.08	0.38	0.11	0.51	57.79
uncertainties	$+3.69 \\ -3.62$	$^{+1.13}_{-1.17}$	$^{+0.55}_{-0.55}$	+0.23 -0.23	$^{+0.03}_{-0.03}$	$^{+0.01}_{-0.02}$	$+0.06 \\ -0.06$	$^{+4.89}_{-4.80}$
Total expected	72.41	12.88	5.32	2.71	0.86	0.43	0.79	95.41
uncertainties	$^{+7.35}_{-6.27}$	$^{+1.25}_{-1.21}$	$^{+0.78}_{-0.65}$	$^{+0.34}_{-0.28}$	$^{+0.10}_{-0.09}$	$^{+0.15}_{-0.12}$	$^{+0.14}_{-0.12}$	$^{+9.86}_{-8.32}$
Observed	73	13	4	2	1	1	0	94

Table 2. The numbers of expected background and signal events and the number of observed candidate events after the full selection, for each event category, for the mass range $118 < m_{4\ell} < 130 \text{ GeV}$. The yields are given for the different production modes. The signal and ZZ backgrounds yields are estimated from simulation, while the Z+X yield is estimated from data.