Measurements of Higgs boson properties in the diphoton decay channel at $\sqrt{s} = 13$ TeV



Junquan Tao (IHEP/CAS, Beijing)

on behalf of the CMS collaboration

4th China LHC Physics workshop (CLHCP2018)

19-22 December 2018, Central China Normal University (Wuhan)

Outline

> SM Higgs production and $H \rightarrow \gamma \gamma$ decay

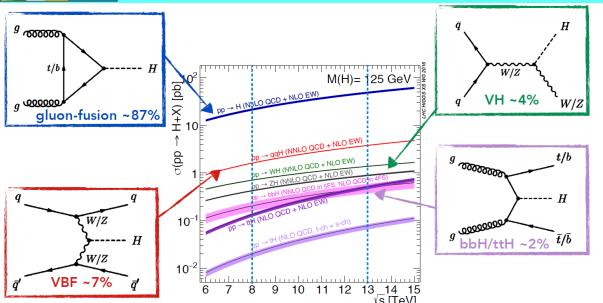
> Measurements with 2016 dataset

Mass, signal strength and couplings: <u>JHEP 11 (2018) 185</u> (Published on November 29, 2018)

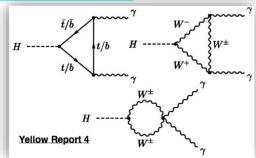
Fiducial cross section measurement : HIG-17-015 (PAS-PUB)

 \succ ttH $\rightarrow \gamma \gamma$ measurement with 2017 dataset and combination with 2016 dataset:

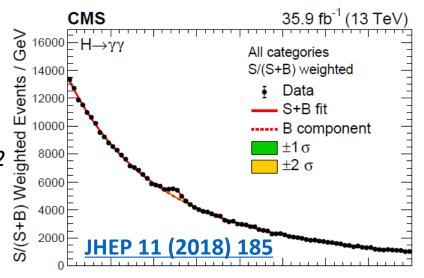
HIG-18-018


New:

Summary



Higgs production and decay into γγ



H→γγ: loop-induced decay, sensitive to BSM - new physics might contribute to the loop

- Small branching fraction (~0.2%) but excellent mass resolution (1-2%)
 - Clean final state with two highly energetic and isolated photons
 - ✓ Final state can be fully reconstructed with high resolution.

- Significant increase in production cross section from 8 TeV (Run1 2012) to 13 TeV (Run2)
 - \checkmark $\sigma_{13\text{TeV}}/\sigma_{8\text{TeV}}$ of Higgs: ggH ~2.3, VBF ~2.4, VH ~2.0 and ttH ~3.9
 - √ background increased by a factor of ~2
- \rightarrow H \rightarrow γγ gives access to all the production modes

- Large backgrounds
 - ✓ Continuum $\gamma\gamma$ (irreducible)
 - ✓ Fakes from γ j and jj (reducible)
- Search for a narrow peak on a falling background in mass distribution

Analysis strategy

Analysis flow

Data & MC

Trigger

Photon reconstruction and energy calibration

Preselection

Vertex identification and probability estimation

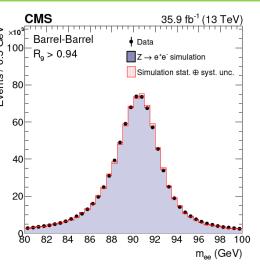
Photon identification

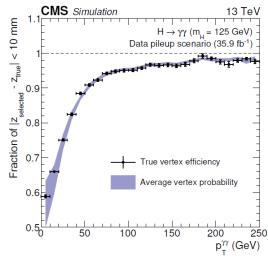
Diphoton BDT

Selections of event categories : exclusive-/untagged

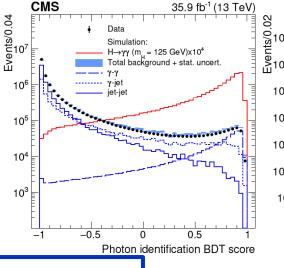
Signal/bkg modeling

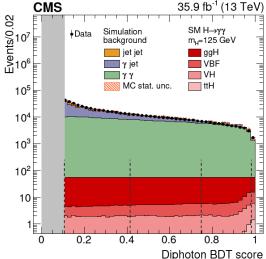
Statistical analysis with "combine"


Results


Photon Energy scale and resolution validated with Z→ee

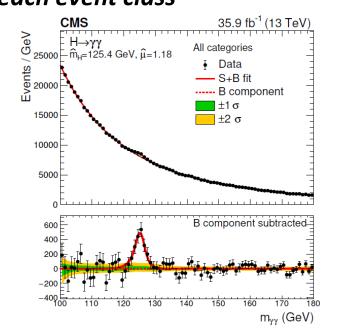
BDT for vertex identification: validated on Z→μμ and γ+j

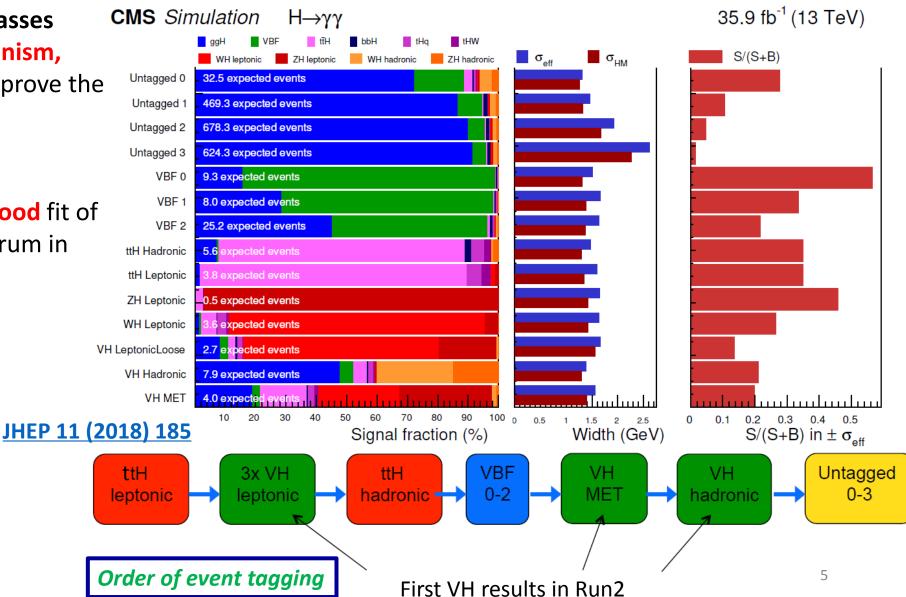



Diphoton BDT to discriminate signal and bkg

JHEP 11 (2018) 185

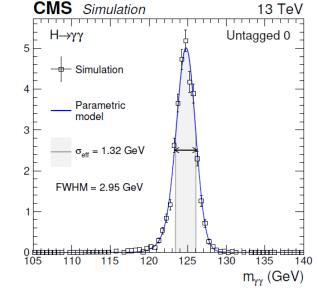
Common tools for different $H \rightarrow \gamma \gamma$ measurements

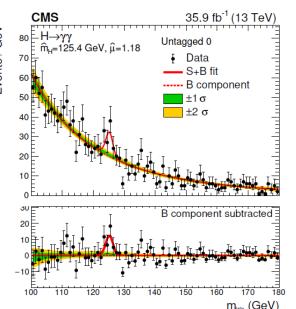


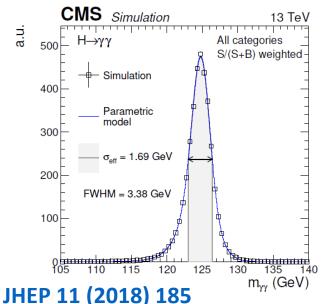

Event categorization

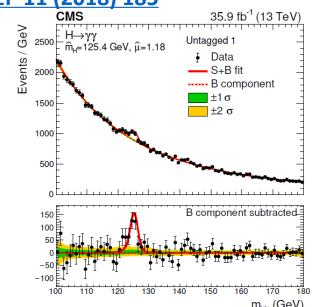
➤ Events categorized into 14 classes according to production mechanism, mass resolution and S/B, to improve the analysis sensitivity

➤ Extraction of signal through a simultaneous maximum-likelihood fit of di-photon invariant mass spectrum in each event class

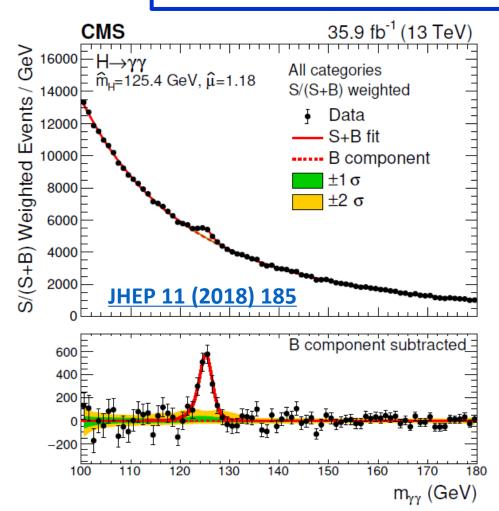


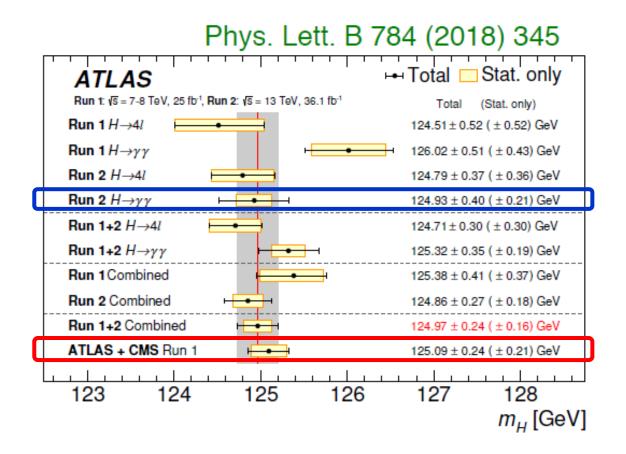



Signal and background parameterizations



- Fully parametric **signal** model from MC simulation
 - ✓ sum of **n-Guassian** functions (n<=5)
 - ✓ physical nuisances allowed to float
- Background model data driven
 - ✓ For each event category, use different functional forms (sums of exponentials, sums of power law terms, Laurent series and polynomials)
 - ✓ Background functional forms treated as discrete nuisance parameter in final minimization: "envelope" method or discrete profiling method [2015 JINST 10 P04015]

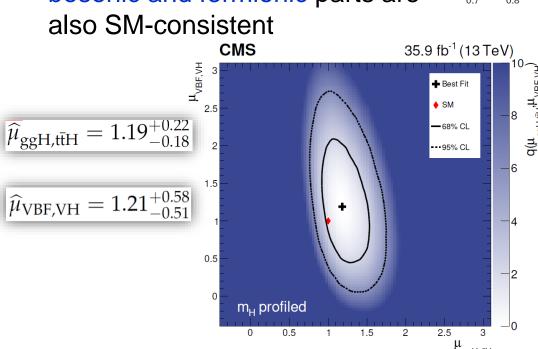


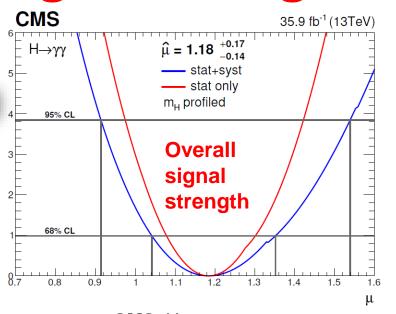


Mass

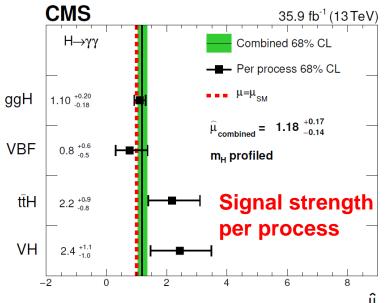
125.4 \pm 0.3 GeV = 125.4 \pm 0.2(stat.) \pm 0.2(syst.) GeV

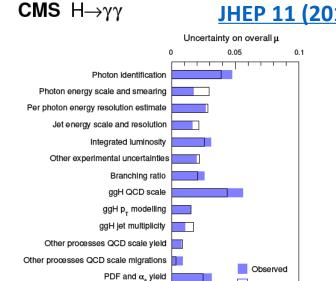
All categories (weighted by their sensitivity)

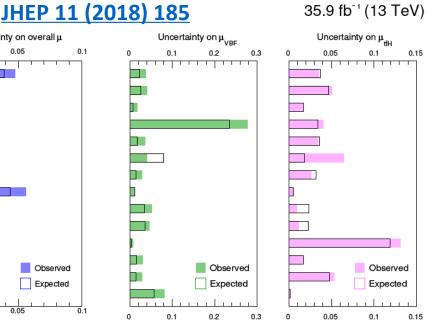

Signal strength



> Overall signal strength


$$\widehat{\mu} = 1.18^{+0.17}_{-0.14} = 1.18^{+0.12}_{-0.11} \text{ (stat)}^{+0.09}_{-0.07} \text{ (syst)}^{+0.07}_{-0.06} \text{ (theo)}$$

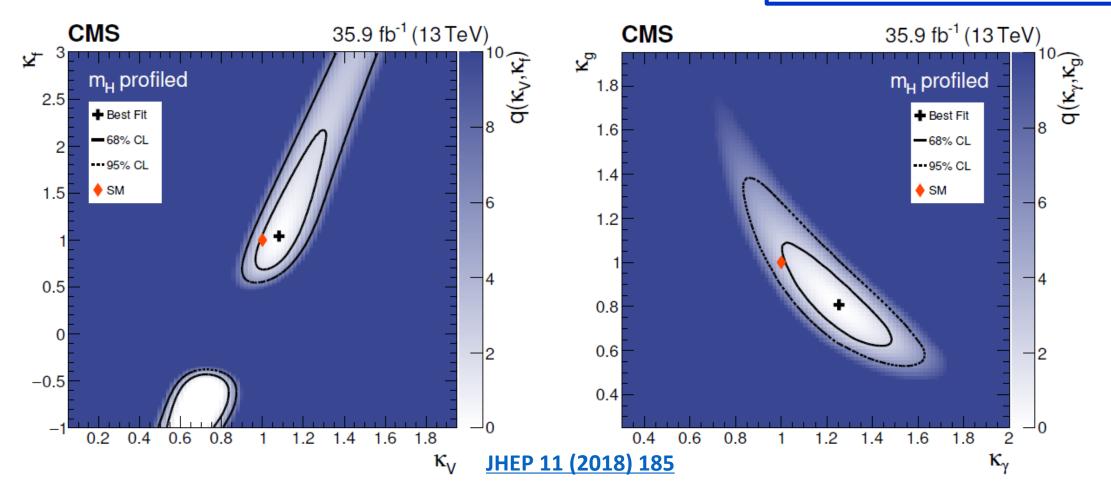

- Production mechanism signal **strengths** are SM-consistent
- Signal strengths measured in bosonic and fermionic parts are



Underlying event and parton shower

Expected

Coupling constants



Measurements of coupling modifiers to vector bosons and fermions (k_v, k_f) and to photons and

gluons (k_{γ}, k_{g})

$$\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{\rm SM} \frac{\kappa_f^2 \Gamma_f^{\rm SM}}{\kappa_H^2 \Gamma_H^{\rm SM}}$$

Compatible with SM

Cross section

Higgs Simplified Template Cross Section (STXS):

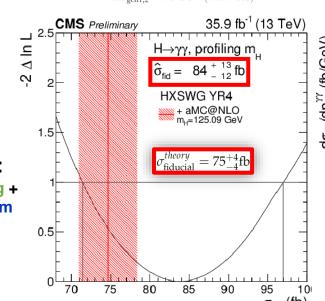
Maximize the measurement precision and the sensitivity to BSM contributions
Cross section split by production mode

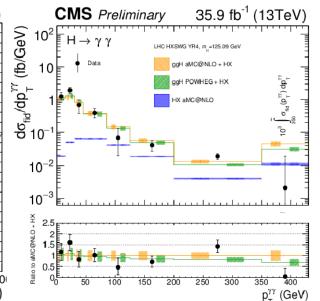
Cross section divided in exclusive regions of phase space (bins)

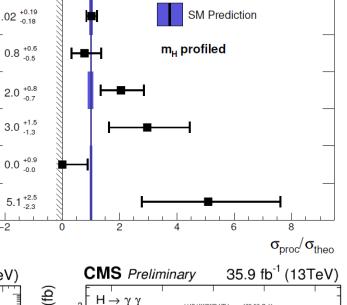
Fiducial cross section:

fiducial volume to **minimize model dependency**

3 untagged event categories based on expected **mass** resolution


Differential fiducial cross sections for pT(γγ) and N(jets): MADGRAPH aMC@NLO, ggH powheg + other modes (VBF+VH+ttH, "HX") from MADGRAPH aMC@NLO


 $p_{T1}/m_{\gamma\gamma} < 1/3, p_{T2}/m_{\gamma\gamma} < 1/4$


 $|\eta_{1,2}| < 2.5$

 $Iso_{gen1,2} < 10 \text{ GeV} (\Delta R = 0.3)$

CMS PAS HIG-17-015

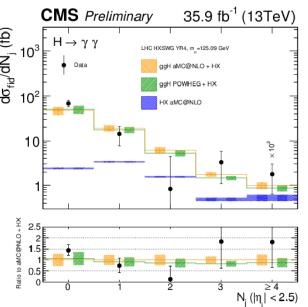
Per process 68% Cl

JHEP 11 (2018) 185

CMS

ggH

VBF


tŧΗ

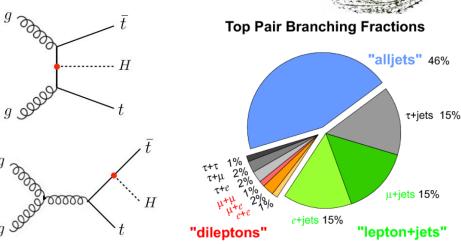
WH leptonic

ZH leptonic

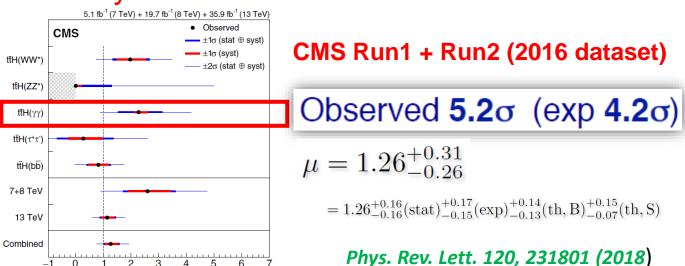
VH hadronic

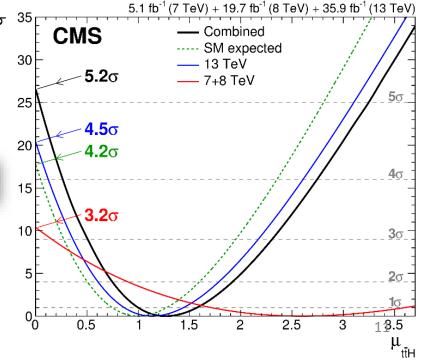
 $H \rightarrow \gamma \gamma$

ttH observation


> Largest coupling to the top quark

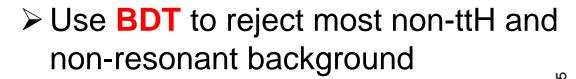
Very challenging


Complicated experimental signature


Low cross section : σ_{ttH} = 507 fb (NLO QCD + NLO EW, 13TeV)

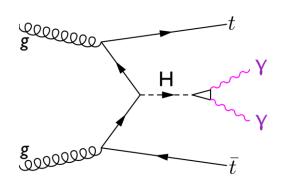
Compare with SM cross section : σ_{tt} = 831,800 fb (NNLO QCD)

➤ First direct observation of the production mode with various decay channels combined:

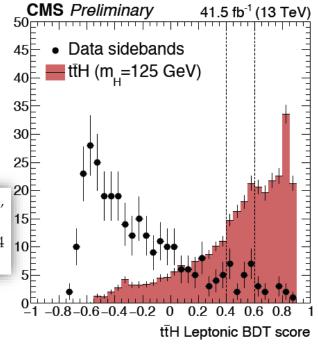


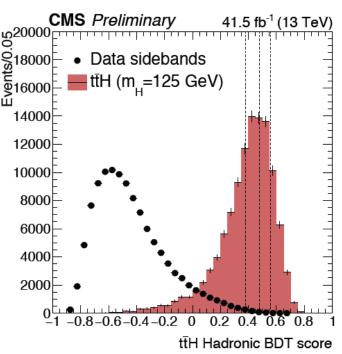
$ttH\rightarrow \gamma\gamma$ measurement with 2017 data

Very rare process but excellent mass resolution, very low background

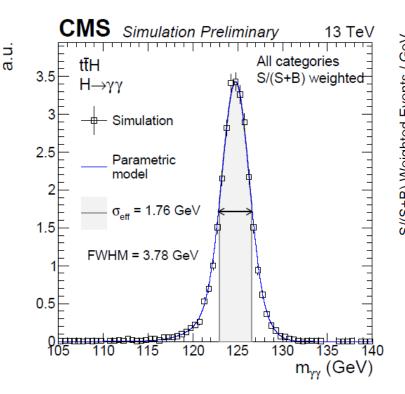

- fully leptonic: $t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}\ell\nu_\ell\ell'\nu_{\ell'}$;
- semi-leptonic: $t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}q\bar{q}\ell\nu_{\ell}$;
- fully hadronic: $t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}qq'\bar{q}\bar{q}'$.

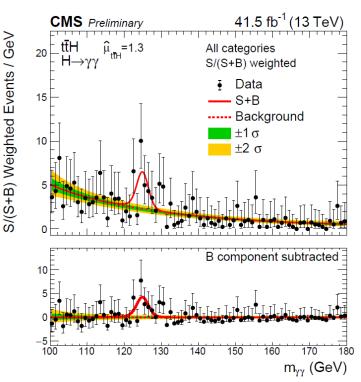
2 leptonic event classes

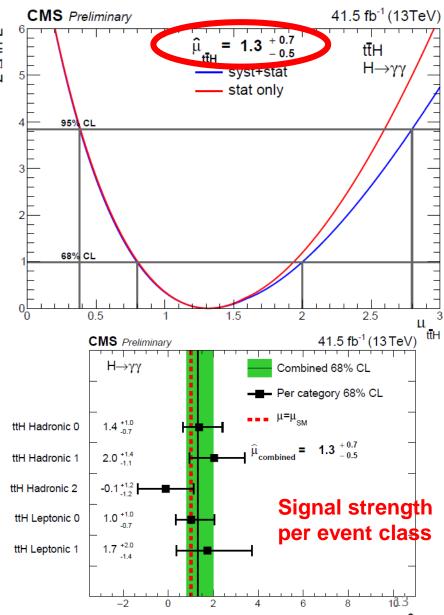

- TTH Leptonic 0: events with at least two leptons and a BDT score greater than 0.5, or exactly one lepton and BDT score greater than 0.6;
- TTH Leptonic 1: events with exactly one lepton and a BDT score greater than 0.4 and smaller than 0.6.


3 hadronic event classes

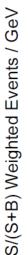
- TTH Hadronic 0: events with a BDT score greater than 0.56;
- TTH Hadronic 1: events with a BDT score between 0.48 and 0.56;
- TTH Hadronic 2: events with a BDT score between 0.38 and 0.48.

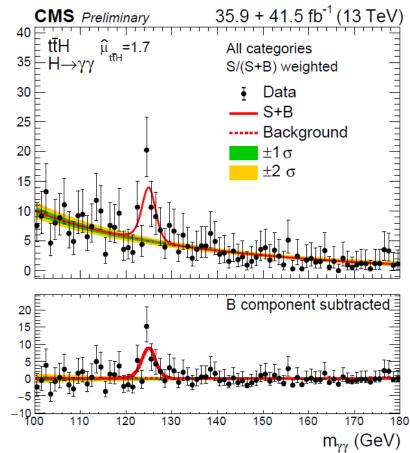


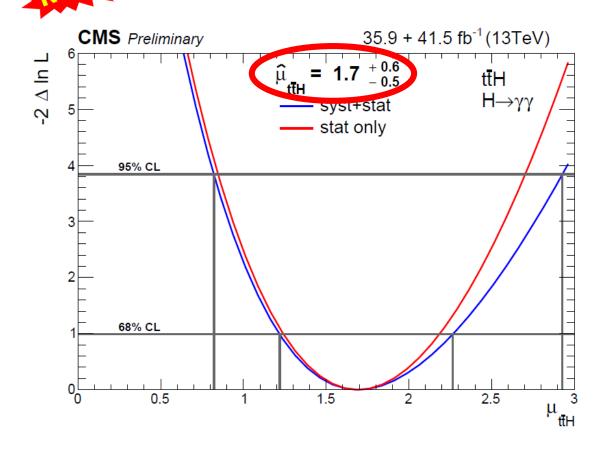



$ttH\rightarrow \gamma\gamma$ measurement with 2017 data (cont.)

> Signal is extracted by a simultaneous maximum-likelihood fit to the diphoton mass in all event classes

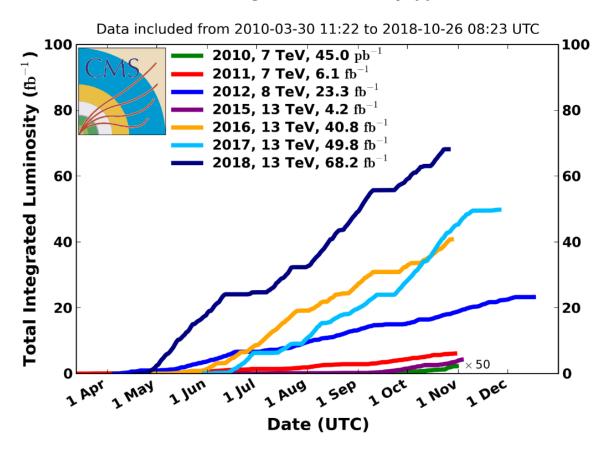






$ttH\rightarrow\gamma\gamma$ measurement : 2016 + 2017 data

- \triangleright Combined (2016+2017) significance: 4.1 σ (2.7 σ)
- Dominant uncertainties
- ✓ Theoretical: QCD scale uncertainties, PDF, α_S , Br(H $\rightarrow \gamma \gamma$)
- ✓ Experimental: photon ID, JES/JER, b-discriminant



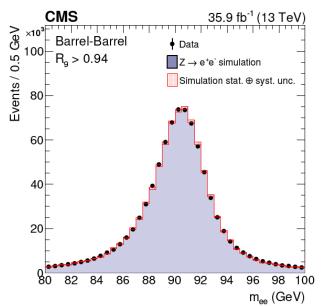
Summary

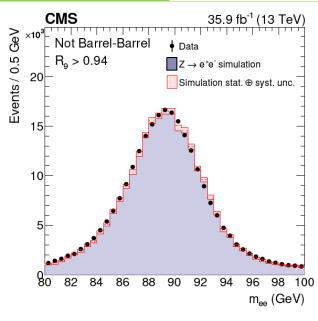
- ► Latest results of $H \rightarrow \gamma \gamma$ measurements with CMS Run2 data are presented
- ➤ All results are compatible with the Standard Model
- ➤ More results to come with full Run-2 dataset!

CMS Integrated Luminosity, pp

Thanks for your attention!

Backup slides




m_{vv}: Photon energy

$$m_{\gamma\gamma} = \sqrt{2E_1 E_2 (1 - \cos \theta)}$$

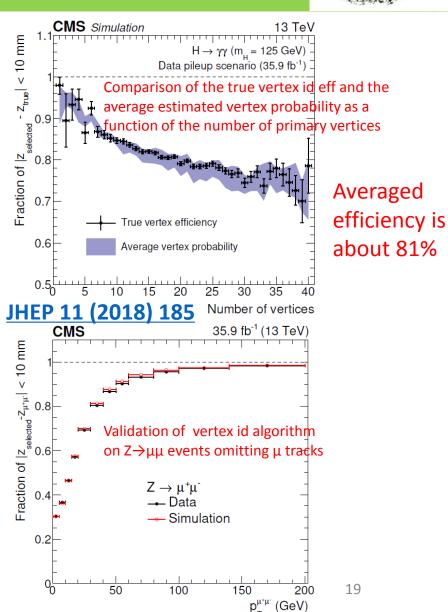
- Photons energy is computed from the sum of the energy of the ECAL reconstructed hits, calibrated and corrected for several detector effects
 - correction for **response changes** in time, $S_i(t)$
 - single-channel intercalibration (C_i)
 - absolute scale adjustment 2013 JINST 8 P09009

- ➤ Energy and its uncertainty corrected for local and global shower containment with a multivariate regression technique targeting E_{true}/E_{reco}
- For energy scale vs time and resolution calibration,
 Z→ee peak used as reference

JHEP 11 (2018) 185

R₉ and η dependent scaling and MC smearing

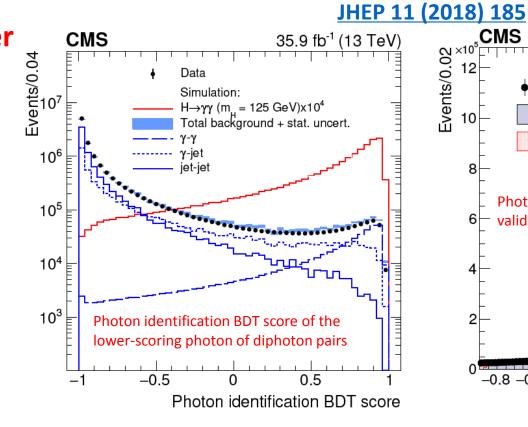
> Corrected energies and resolutions used in analysis

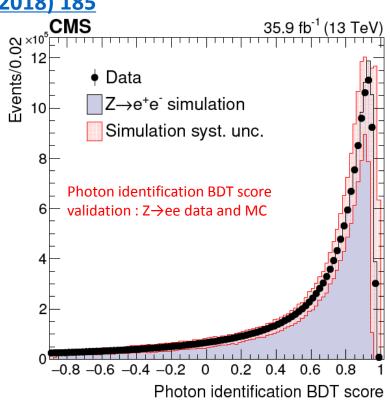


m_{vv}: primary vertex identification

$$m_{\gamma\gamma} = \sqrt{2E_1 E_2 (1 - \cos \theta)}$$

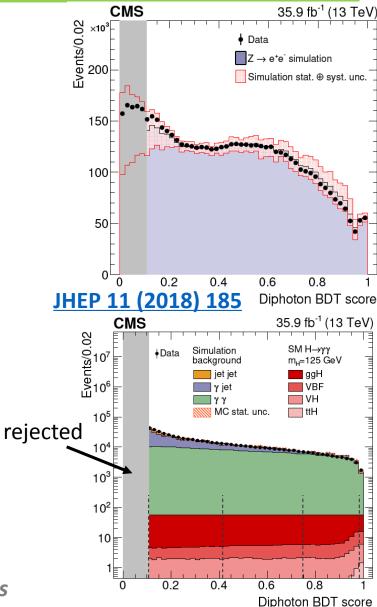
- ➤ Vertex assignment correct within 1 cm → has negligible impact on mass resolution
- > Multivariate approach (BDT) for vertex identification
 - Vertex ID BDT: kinematic correlations and track distribution imbalance $\sum_i |\vec{p_T^i}|^2$, $-\sum_i (\vec{p}_T^i \cdot \frac{\vec{p}_T^{\gamma\gamma}}{|\vec{p}_T^{\gamma\gamma}|})$ and $(|\sum_i \vec{p}_T^i| p_T^{\gamma\gamma})/(|\sum_i \vec{p}_T^i| + p_T^{\gamma\gamma})$
 - if conversions are present conversion information
 - the number of conversions
 - the pull $|z_{\rm vtx}-z_{\rm e}|/\sigma_z$ between the longitudinal position of the reconstructed vertex, $z_{\rm vtx}$, and the longitudinal position of the vertex estimated using conversion track(s), $z_{\rm e}$, where the variable σ_z denotes the uncertainty on $z_{\rm e}$.
- ➤ A second MVA estimates **probability of correct vertex** choice, used for di-photon classification using BDT
- ightharpoonup Method validated on Z \rightarrow μμ events where vertex found after removing muon tracks and γ +j for converted γ




Photon identification

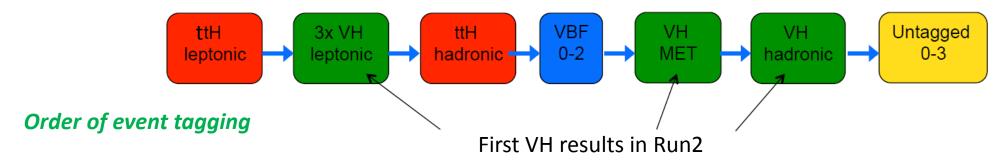
MVA based photon ID classifier (BDT) to discriminate between prompt and fake photons

- Shower shape variables: σίηὶη ,coviηἰφ, E2x2/E5x5, R9, η-width, φ-width, Preshower σRR
- Isolation variables: PF Photon ISO, PF Charged ISO - wrt selected vertex and to the worst (largest isolation sum) vertex
- ρ, ηSC, Eraw


- \triangleright Inputs and output of the MVA are validated on data and MC in $Z\rightarrow ee$ and $Z\rightarrow \mu\mu\gamma$ events
- >Two photon BDT scores are used as inputs of diphoton BDT after a looser direct cut at > -0.9

Diphoton BDT

- ➤ Multivariate discriminator (BDT) used to separate diphoton pairs with signal-like kinematics, high photon ID scores and good mass resolution from background
 - pT/Mγγ, η, cos(Δφ), Photon ID MVA score of the two photons
 - Per event relative mass resolutions (under correct and incorrect vertex hypothesis), vertex probability estimate
- ➤ Validation of Diphoton MVA is done on Z→ee events, with the electrons taken as photons
- ➤ Diphoton BDT used for the untagged event (ggH dominant) categorization, one of the inputs of VBF combined BDT, and direct cut on diphoton BDT score for ttH/VH tagged events

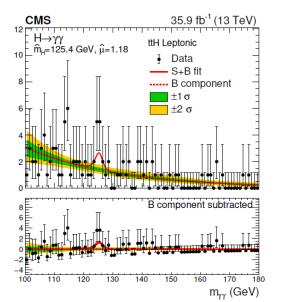


Event categorization

- > Selected events are split into 14 categories depending on Higgs production modes and kinematics, to improve the analysis sensitivity
- Top fusion (ttH): cut-based *leptonic* and mva-based *hadronic* (2cats)
- > VH: cut-based method and split into *leptonic*, *hadronic*, *MET* (5cats)
- **VBF**: combined dijet + diphoton BDT with categories based on significance (3cats)
- ➤ Untagged (ggH): split by *diphoton BDT score*, correspond to different S/B and invariant mass resolutions (4cats)

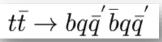
2016 $H \rightarrow \gamma \gamma$: ttH

Objects

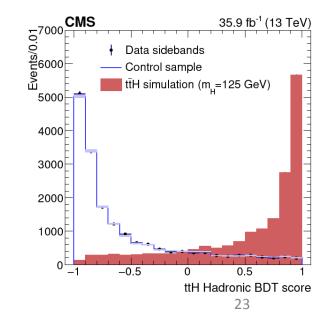

- Jets:
 - ak4PFCHS; pT>25 GeV; |η|<2.4
- Bjets:
 - PF CSV v2 (medium WP)
- Muons:
 - p_T>20 GeV; |η|<2.4; "tight muon"; minilso<0.06
- Electrons:
 - p_T>20 GeV; |η|<2.5; 1.442<|η|<1.566; loose EGM ID

Events / GeV

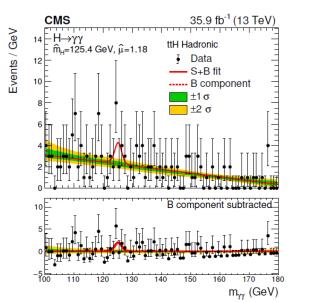
leptonic


 $t ar t o b l
u_l ar b q ar q^{'} \ t ar t o b l
u_l ar b l^{'}
u_{l^{'}}$

- Selection
 - (sub)leading photon $p_T/M_{yy} > 0.5(.25)$
 - At least 2 jets with ΔR(j, y or l) >0.4
 - At least one b-tagged jet
 - At least 1 lepton $\Delta R(I, \gamma) > 0.35$
 - ▲ For electron:
 |M_{ev}-M_Z|>5 GeV
 - ▲ diphoton mva > 0.107



hadronic


- Preselection:
 - ▲ at least 3 jets
 - ▲ at least 1 loose b-jet
- 2-d optimization of diphoton MVA and ttH MVA
 - ▲ diphoton MVA > 0.577
 - ▲ ttH MVA > 0.75

Cut-based strategy replaced with mva to improve μ_{ttH} sensitivity

JHEP 11 (2018) 185

2016 $H \rightarrow \gamma \gamma : VH$

3 VH leptonic categories $W \rightarrow lv$ or $Z \rightarrow l\bar{l}$

Muons

 $p_{T}>20 \text{ GeV}; |\eta|<2.4;$ "tight muon"; pf isolation < 0.25 (loose

Electrons

 p_{τ} >20 GeV; $|\eta|$ <2.5; $1.442 < |\eta| < 1.566$; loose EGM ID

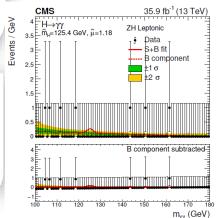
Photons

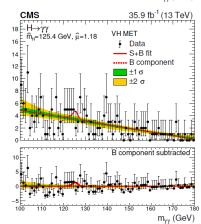
(sub)leading $p_T/m_{vv} > 0.375(0.25)$

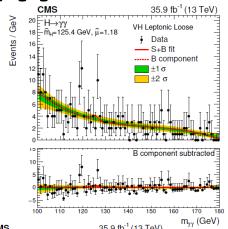
WH leptonic:

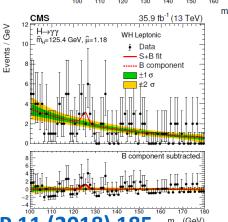
- one lepton:
- $p_{T}^{miss} > 45 \text{ GeV}$
- $\Delta R(\gamma, I) > 1.0$
- diphoton mva>0.28
- ▲ <=2 jets

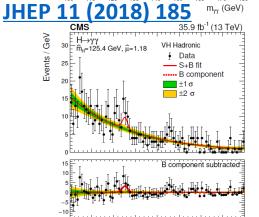
ZH leptonic:


- two leptons:
- 70<m_{||}<110 GeV
- Δ R(γ, μ(e)) >0.5(1.0)
- ▲ diphoton mva>0.107


one lepton:


p_⊤miss < 45 GeV


VH leptonic loose:


- $\Delta R(y, l) > 1.0$
- diphoton mva>0.28
- <=2 jets

W->jj or Z->jj

hadronic category

Photons

- (sub)leading $p_T/m_{yy} > 0.5(0.25)$
- $p_T^{YY}/m_{yy} > 1.0$

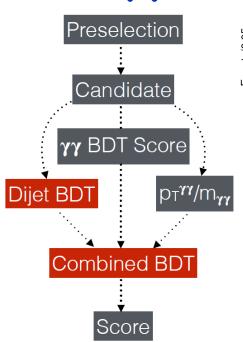
Jets

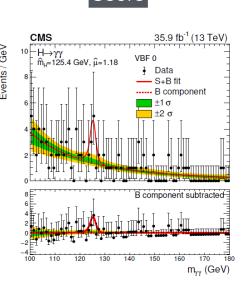
- ▲ At least two jets
- p_⊤ > 40 GeV
- $▲ |\eta| < 2.4$
- ▲ 60<m_{ii} < 120 GeV</p>
- $|\cos\theta^*| < 0.5$

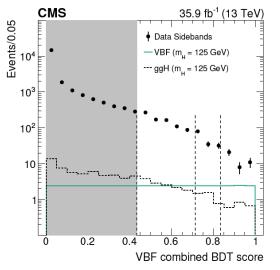
Diphoton MVA > 0.906

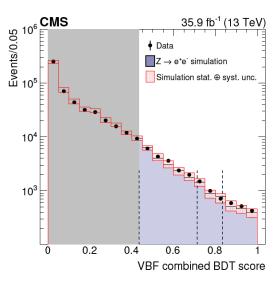
before flattening (0.7)

Diphoton MVA cuts were tuned

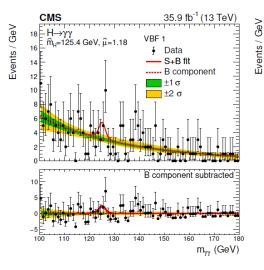

MET category

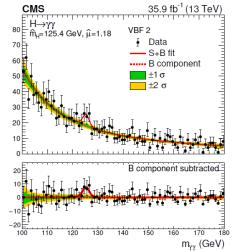

- $W \rightarrow lv$ (lepton out of acceptance) or $Z \rightarrow vv$


 - $\Delta \phi(\gamma \gamma, p_T^{miss}) > 2.4$
 - diphoton MVA > 0.790 (0.6 before flattening)

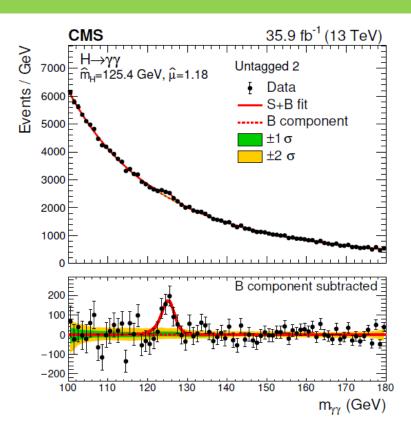

2016 H $\rightarrow \gamma \gamma$: VBF Tag

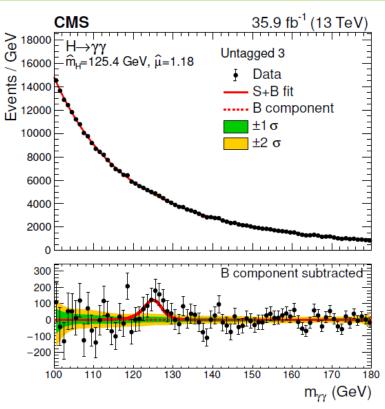
- Preselection: Two jets with pT_{j1}>40GeV, pT_{j2}>30GeV, $|\eta|$ <4.7, m_{jj}>250GeV
- Main Structure: two parts, the Dijet BDT& Combined BDT
- ➤ Dijet BDT: separates VBF dijet from BG (incl. gluon fusion) using dijet kinematics
- ➤ Combined BDT: separates signal/BG diphotons using diphoton BDT, dijet BDT and scaled diphoton pT
- ➤ 3 VBF-tagged categories using the combined MVA with boundary optimisation: cuts on combined score are simultaneously optimized for max significance across all categories



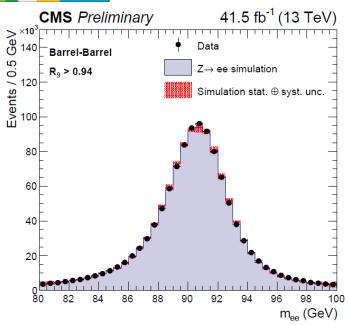


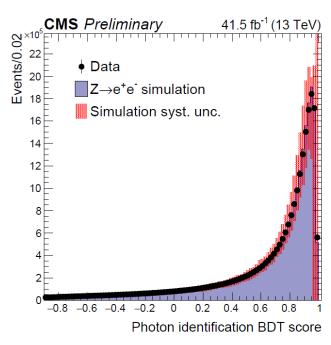
JHEP 11 (2018) 185


25



2016 backup plots




JHEP 11 (2018) 185

$ttH\rightarrow \gamma\gamma$ with 2017 data

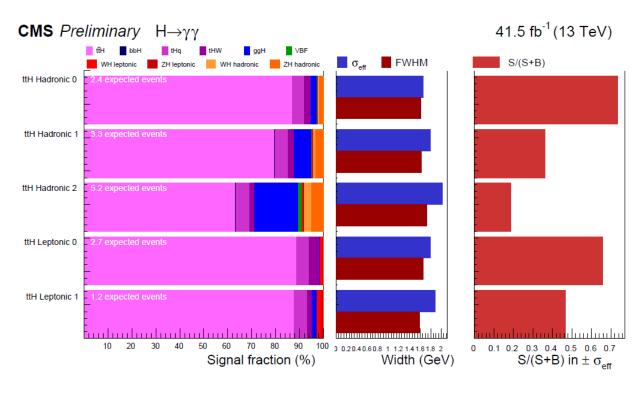
CMS PAS HIG-18-018

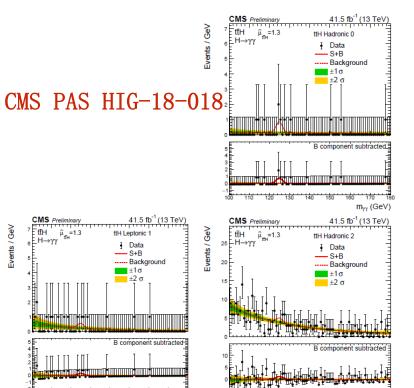
- Photon variables:
 - the $p_T/m_{\gamma\gamma}$ of the two photons;
 - the η of the photons;
 - the azimuthal angle φ of the photons;
 - the photon identification BDT score of the photons;
 - the outcome of the pixel seed veto for the two photons
 - the $p_{\rm T}/{\rm m}_{\gamma\gamma}$ of the diphoton;
 - the rapidity of the diphoton;
- jet variables:
 - the number of jets;
 - the transverse momentum of the four highest p_T jets;

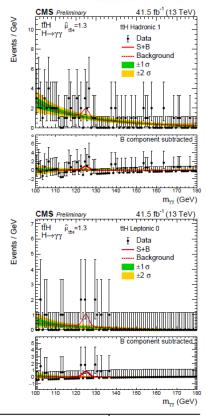
Input variables of hadronic BDT

- the η of the four highest p_T jets;
- the sum p_T of all the reconstructed jets;
- b-tagged jet variables:
 - the value of the b-discriminant of the three jets with the highest score of the b-discriminant;
 - the value of the b-discriminant of the four highest p_T jets;
- the missing transverse momentum p_T^{miss} .

- photon variables:
 - the $p_{\rm T}/{\rm m}_{\gamma\gamma}$ of the two photons; the $p_{\rm T}$ is scaled to the diphoton mass to keep the BDT blind to the diphoton invariant mass;
 - the η of the two photons;
 - · the photon identification BDT scores of the two photons;
 - the azimuthal angle difference between the two photons $\Delta \phi(\gamma \gamma)$;
 - the outcome of the pixel seed veto for the two photons. The veto requires
 the absence of a track seed in the pixel detector matching the photon
 direction, reducing the background due to events where an electron is
 misidentified as a photon;
- jet variables:


Input variables of leptonic BDT


- the number of jets;
- the transverse momentum of the three highest p_T jets;
- the η of the three highest p_T jets;
- b-tagged jet variables:
 - the number of b-tagged jets;
 - the value of the b-discriminant of the two jets with the highest score of the b-discriminant;
- leptonic variables:
 - the transverse momentum of the highest p_T lepton;
 - the η of the lepton of the highest p_T lepton;
- the missing transverse momentum p_T^{miss} .



$ttH\rightarrow \gamma\gamma$ with 2017 data (cont.)

Event categories	SM 125 GeV Higgs boson expected signal													Bkg
	Total	ttH	bbH	tHq	tHW	ggH	VBF	WH lep	ZH lep	WH had	ZH had	σ_{eff}	FWHM	(GeV^{-1})
ttH Hadronic 0	2.4	86.7 %	<0.05 %	5.0 %	2.8 %	2.6 %	0.1 %	0.1 %	0.1 %	0.7 %	1.8 %	1.66	1.61	0.2
ttH Hadronic 1	3.3	79.2 %	0.2 %	5.6 %	2.4 %	7.5 %	0.2 %	0.4~%	0.1 %	1.0 %	3.3 %	1.79	1.62	1.1
ttH Hadronic 2	5.2	62.9 %	0.2 %	5.9 %	1.9 %	18.4 %	1.3 %	0.6 %	0.4 %	3.2 %	5.1 %	2.02	1.72	3.8
ttH Leptonic 0	2.7	88.5 %	< 0.05 %	5.2 %	4.4 %	0.2 %	< 0.05 %	1.2 %	0.2 %	< 0.05 %	0.1 %	1.79	1.66	0.3
ttH Leptonic 1	1.2	87.6 %	< 0.05 %	5.5 %	1.8 %	2.0 %	0.2 %	1.9 %	0.8 %	<0.05 %	0.2 %	1.88	1.59	0.3
Total	14.8	77.2 %	0.1 %	5.5 %	2.6 %	8.7 %	0.5 %	0.7 %	0.3 %	1.5 %	2.8 %	1.84	1.65 ²⁸	5.6