Search for $HH \rightarrow WW\gamma\gamma$ in semi-leptonic channel with ATLAS detector

Yu Zhang

IHEP On behalf of ATLAS Collaboration

Dec 20th, 2018 At CLHCP2018, Wuhan

Outline

- Motivation
- Event Selection
- Signal and background estimation.
- Systematics
- Results

Motivation —Why HH

- Di-higgs search is important to
 - Measurement of Higgs self-coupling.
 - Search of Heavy Higgs, X particle in the diagram, in 2HDM and etc.
 - Anomolous coupling could enhance HH production.
- This study is searching for non-resonant and resonant HH production.

• Public result

channel	Branching ratio	ATLAS result	CMS result
4b	33.6%	36.1 <i>fb</i> ⁻¹	35.9 <i>fb</i> ⁻¹
WWbb	24.8%	36.1 <i>fb</i> ⁻¹	35.9 <i>fb</i> ⁻¹
4W	4.6%	$36.1 \ fb^{-1}$	-
bb au au	7.3%	$36.1 \ fb^{-1}$	35.9 <i>fb</i> ⁻¹
$bb\gamma\gamma$	0.26%	36.1 <i>fb</i> ⁻¹	35.9 <i>fb</i> ⁻¹
$WW\gamma\gamma$	0.098%	36.1 <i>fb</i> ⁻¹	-

- The advantage is :
 - Good mass resolution from diphoton and nice sideband to extract background in signal region.
 - Large branching ratio from WW
 - Good background rejection from semi-leptonic decay.

- Diphoton selection
 - Diphoton trigger
 - Two tight-ID, isolated photons
 - $p_{T\gamma 1(2)}/m_{\gamma\gamma} >$ 0.35(0.25),105 $< m_{\gamma\gamma} <$ 160 GeV
- $WW \rightarrow I \nu j j$
 - B-veto and at least two jets
 - At least one lepton with $p_T > 10~GeV$
- Further optimization
 - $p_{T\gamma\gamma} > 100 \text{ GeV}$ for $m_X = 400 \text{ GeV}$, $m_X = 500 \text{ GeV}$ and non-resonant.

- Data sideband is used to model continuum background.
- SM Higgs is more boosted in $m_X = 400$, 500 GeV and non-resonant.

Signal estimation

• Signal efficiency : signal with higher m_X has higher efficiency.

	No $p_{\rm T}^{\gamma\gamma}$ selection			$p_{\rm T}^{\gamma\gamma} > 100 { m ~GeV}$		
m_X [GeV]	260	300	400	400	500	Non-resonant
Acceptance \times efficiency [%]	6.1	7.1	9.7	7.8	10	8.5

• Signal shape : Double-Sided Crystal Ball (DSCB)

Background estimation

- Background shape : 2nd-order exponential which has best χ^2 passes spurious signal test.
 - Spurious signal is the fitted signal when perform a S+B fit to background-only sample. This is used to estimate the modeling uncertainty.
- Background yield in Higgs mass region is extracted from a fit to data sideband.

Process	Number of events			
	No $p_{\rm T}^{\gamma\gamma}$ selection	$p_{\rm T}^{\gamma\gamma} > 100 { m ~GeV}$		
Continuum background SM single-Higgs SM di-Higgs	$\begin{array}{c} 22\pm 5 \\ 1.92\pm 0.15 \\ 0.046\pm 0.004 \end{array}$	$5.1 \pm 2.3 \\ 1.0 \pm 0.9 \\ 0.038 \pm 0.004$		
Sum of expected background	24 ± 5	6.1 ± 2.5		
Data	33	7		

• Spurious signal

- 0.46 (0.26) with (without) $p_{T\gamma\gamma}$ cut
- The dominant systematics are
 - Spurious signal, e/γ energy scale and resolution

Source of uncertainties		Non-resonant HH	$X \rightarrow HH$	$\begin{array}{l} \text{Single-}H \text{ bkg} \\ p_{\mathrm{T}}^{\gamma\gamma} > 100 \text{ GeV} \end{array}$	Single-H bkg No $p_{\mathrm{T}}^{\gamma\gamma}$ selection
Luminosity 2015+2016		2.1	2.1	2.1	2.1
Trigger		0.4	0.4	0.4	0.4
Event sample size		1.7	2.2	1.6	1.3
Pile-up re	weighting	0.5	0.9	0.7	0.6
Photon	identification	1.7	1.4	0.8	0.8
	isolation	0.8	0.7	0.4	0.4
	energy resolution	0.1	0.1	0.2	< 0.1
	energy scale	0.2	< 0.1	0.2	<0.1
Jet	energy scale	4.0	9.9	2.4	2.6
	energy resolution	0.1	1.6	0.5	1.0
b-tagging	b-hadron jets	< 0.1	< 0.1	3.8	3.6
	c-hadron jets	1.5	1.0	0.7	0.6
	light-flavour jets	0.3	0.3	0.1	0.1
	extrapolation	< 0.1	< 0.1	0.1	< 0.1
Lepton	electron	0.5	0.7	0.2	0.2
	muon	0.5	0.7	0.3	0.5
	PDF on σ	2.1		3.4	3.4
Theory	α_S on σ	2.3	-	1.3	1.3
	scale on σ	6.0	-	0.9	0.9
	HEFT on σ	5.0	-	-	-
	scale on $\epsilon \times A$	2.8	2.5	-	-
	PDF on $\epsilon \times A$	3.0	2.4	-	-
	parton shower on $\epsilon \times A$	7.8	29.6	-	-
	$B(H \rightarrow \gamma \gamma)$	2.1	2.1	2.1	2.1
	$B(H \rightarrow WW^*)$	1.5	1.5	1.5	1.5
Total		13.6	31.8	7.1	6.8

Results

• Observed 36.1 fb^{-1} data and fit

Figure 1: Left plot is without $p_{T\gamma\gamma}$ cut and right plot is with $p_{T\gamma\gamma}$ cut. The fit includes all the components and systematic uncertainties.

Upper limit

- Expected upper limit on $pp \rightarrow HH$ is 7.7pb for non-resonant and varies from 17.6pb ($m_X = 260 \text{ GeV}$) to 4.4pb ($m_X = 500 \text{ GeV}$) for resonant.
- The jump at $m_X = 400 \text{ GeV}$ is due to $p_{T\gamma\gamma}$ cut.

Discussion on the results

- Compare with other HH channel
 - $WW\gamma\gamma$ is not the best!
- Next step : We need improvements!
 - Re-optimize semi-leptonic channel
 - Include full-leptonic channel
 - Investigate other model like $pp \rightarrow X \rightarrow S(\rightarrow WW)H(\rightarrow \gamma\gamma)$.

Summary

- Review the 36.1 \textit{fb}^{-1} $\textit{WW}\gamma\gamma$ analysis
 - Upper limit is set and the study has been published at Eur. Phys. J. C 78 (2018) 1007
- Discuss the plan
 - Re-optimize semi-leptonic channel
 - Include full-leptonic channel
 - Investigate other model like $pp \rightarrow X \rightarrow S(\rightarrow WW)H(\rightarrow \gamma\gamma)$.

