Search for doubly charged Higgs boson decaying to same-sign W boson

Hanlin Xu^{1,2} On behalf of the analysis team

University of Science and Technology of China¹ Centre de Physique des Particules de Marseille²

December 20, 2018

Outline

- Motivation
- Detector
- Background Estimation
- Discriminating Variables
- Result

The Standard Model(SM) of Particle Physics

- Describes 3 of the 4 fundamental forces in nature
- Matter particles (fermions) and their interactions (bosons)
- Include a mechanism to generate masses of these particles
- Demonstrated huge successes in providing experimental predictions

Neutrino Oscillations

- Neutrino oscillations observed by a multitude of experiments
- Flavor eigen states are a mixture of different mass eigen states
- Neutrinos are massive.

Give neutrino mass with mechanism in SM?

- Neutrino is the only fermion with no charge.
- Too light (< 0.120 eV/c^2)
- If follow the Yukawa form as other fermions, right-handed neutrino is needed.
- Only role is to allow for non-zero neutrino masses.
- But neutrino could be a Majorana fermion

Extensions of the Standard Model

Ultra-violet complete model

- Type-II Seesaw Model is an example (Phys. Rev. D84 (2011) 095005)
 - Extend the Higgs-Sector in SM by adding $SU(2)_L$ triplet Δ
 - $m_{\nu} \sim Y_{\nu} \nu_{\Delta} \sim \mu v_0^2 / M_{\Delta}^2$ (v₀ is SM higgs v.e.v., ν_{Δ} is v.e.v. of the triplet Δ , M_{Δ} is mass of th triplet)
- An explanation of the oscillations and finite mass of neutrinos.
- Predicting new scalars, some of which have mass in electroweak scale range.

Scalar Sector

- $\mathcal{L} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + Tr(D_{\mu}\Delta)^{\dagger}(D^{\mu}\Delta) V(H,\Delta) + \mathcal{L}_{Yukawa}$
- $\mathcal{L}_{Yukawa} = \mathcal{L}_{Yukawa}^{SM} Y_{v}L^{T}C \otimes i\sigma^{2}\Delta L + h.c.$
 - Y_{v} : neutrino Yukawa couplings
 - $L: SU(2)_L$ doublets of left-handed leptons
 - C: the charge conjugation operator

Production Mode

- Focus on the pair production mode: $pp o \gamma^*, Z^* o H^{\pm\pm} H^{\mp\mp}$
- Require H^{\pm} heavier than the $H^{\pm\pm}$ by a few 100 GeV to suppress the associated production.
- Require higher $v_{\Delta}(0.1 \text{ GeV})$ to suppress $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}((arxiv: 1710.09748))$ decay mode
 - Assuming BR($H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$) = 100%, model is excluded for $m_{H^{\pm\pm}} < 800$ [GeV]
- $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ (This analysis) as complements.

Atlas Detector

Object considered in this analysis

- Electron, Muon.
- Jets
 - Initiated by quarks and gluons that hadronise in jet of hadrons
- Missing Tranverse Energy(E_T^{miss})
 - Defined as the transverse momentum imbalance in the detector

Topology

Three channels with different final states.

- Two same sign leptons, E_T^{miss} and four jets.
- Three leptons, E_T^{miss} and two jets.
- Four leptons, and E_T^{miss} .
- Consider different masses of $H^{\pm\pm}$, from 200 GeV to 700 GeV. (100 GeV step)

Data and MC samples

Data

pp collision data at \sqrt{s} = 13 TeV during 2015-2016, integrated luminosity = 36.1 fb⁻¹

Prompt background

- $t\bar{t}H$, $t\bar{t}V$
- VH
- VV(V), $V\gamma$

(Note: V means vector bosons W, Z)

Signal Sample

- $H^{\pm\pm}H^{\mp\mp}$: 6 $m_{H^{\pm\pm}}$ points (200-700 GeV) CalcHEP generator, Pythia 8 parton shower

 $m_{H^{\pm\pm}}$ [GeV]200300400500600700cross-section (fb)64.5813.343.9981.4660.6100.276

Overview of $2\ell ss$ channel

$2\ell ss$ channel

 $H^{\pm\pm}H^{\mp\mp} \rightarrow 4W \rightarrow \ell^{\pm}\ell^{\pm} + E_T^{\text{miss}} + 4$ jets

Three sub channels: $ee, e\mu, \mu\mu$

Background

- Background from prompt leptons: WZ, ZZ, same-sign WW, etc: Monte Carlo Simulation.
- Charge-MisID background: W^+W^- and Z+jets: Data-driven likelihood method.
- Background from fake leptons: Z+jets, W+jets and $t\overline{t}$: data-driven fake-factor method.

Background Estimation

Event Pre-Selection

- Trigger requirement (at least one lepton $p_T > 24 \text{ GeV}$)
- Two tight leptons, $p_T > 30$, 20 GeV
 - Tight means several requirement about lepton performance in detector
 - p_T > 30 GeV to ensure efficient triggering
- M_{ll} <80 GeV or M_{ll} > 100 GeV for ee channel
 - Suppress the Z+jets Charge-MisID background.
- No b-jet (jet with b-hadron)
 - Suppress the $t\bar{t}$ Fake-Lepton backgroud.
- $N_{jets} >= 3$

- E_T^{miss} > 70 GeV

2015	2016
HLT_e26_lhmedium_L1EM20VH for data set	HLT_e26_lhtight_nod0_ivarloose
HLT_e60_lhmedium	HLT_e60_lhmedium_nod0
HLT_e120_lhloose	HLT_e140_lhloose_nod0
HLT_mu20_iloose_L1MU15	HLT_mu26_ivarmedium
HLT_mu50	HLT_mu50

Background Estimation: Charge-MisID

Likelihood Method

$$\ln \mathcal{L}(\boldsymbol{\varepsilon}|N_{tot},N_{ss}) = \sum_{i,j} \ln \left[N_{tot}^{i,j}(\boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j) \right] N_{SS}^{i,j} - N_{tot}^{i,j}(\boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j)$$
(1)

- Detector may measure wrong charge with an electron.
- Measured Charge-MisID rates in Z-enrich region (Which suppress Z-jets before) with likelihood method.
- Likelihood based on possion statistics of N_{ss} , of which the mean value is a function of Charge-MisID rate.
- Using opposite-sign event with Charge-MisID rates to calculate same-sign event in other region.
- Charge-MisID rates nominal results: [0.021,9.921] in percent for different kinematic bins
- Several systematic uncertainty taken due to background, kinematic difference and binning. (30%)

Background Estimation: Fake-Leptons

Definition for fake-factor measurement

- $T(\ell)$: lepton pass tight requirement.
- $L(\ell)$: lepton pass a requirement looser than tight, but failed passing tight.

Fake-factor measurement

- Factor measured in $E_T^{miss} < 70 \text{ GeV}$. extrapolated to $E_T^{miss} > 70 \text{ GeV}$

-
$$\theta_{\mu} = \frac{N_{\mu\mu}}{N_{\mu\mu}} (E_T^{miss} < 70 \text{ GeV}) = \frac{N_{\mu\mu}^{Data} - N_{\mu\mu}^{Prompt SS}}{N_{\mu\mu}^{Data} - N_{\mu\mu}^{Prompt SS}}$$
 measured in $\mu\mu$ channel

- $\theta_e = \frac{N_{\mu e}}{N_{\mu e}} (E_T^{miss} < 70 \text{ GeV}) = \frac{N_{\mu e}^{Data} - N_{\mu e}^{Prompt SS} - N_{\mu e}^{QMisId} - N_{\mu e}^{FakeMuon}}{N_{\mu e}^{Data} - N_{\mu e}^{Prompt SS} - N_{\mu e}^{QMisId}}$ measured in $e\mu$ channel

- Fake-factor were using with $TL(\ell \ell)$ events in Event Pre-selection to estimate Fake-Leptons contribution to $TT(\ell \ell)$ events
- The measured muon fake factor is 0.14 \pm 0.08, and the measured electron fake factor is 0.48 \pm 0.25 (with Systematics uncertainty)

Discriminating Variables: Definition

- Three Mass-related Variables:
 - E_T^{miss} : Missing transverse energy
 - $M_{\ell\ell}$: Invariant mass of $\ell\ell$.
 - M_{jets} : Invariant mass of the system composed of all jets
- Three Angular Variables:
 - $\Delta R_{\ell^{\pm}\ell^{\pm}}$: the distance in $\eta \phi$ between two same-sign leptons
 - $\Delta \Phi(\ell \ell, E_T^{miss})$: the difference in azimuth between the dilepton system and missing transverse energy

- Variable *S*: $S = \frac{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_T^{\text{miss}}}) * \mathcal{R}(\phi_{j_1}, \phi_{j_2}, \cdots)}{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_T^{\text{miss}}}, \phi_{j_1}, \phi_{j_2}, \cdots)}$.: \mathcal{R} is the root mean square that quantifies the spread, $\mathcal{R}(\phi_1, ..., \phi_n) = \sqrt{\frac{1}{n} \sum_{i=1}^n (\phi_i - \overline{\phi})^2}$

Discriminating Variables

Hanlin Xu China LHC Physics Workshop

Overview of 3\ell channel

 3ℓ channel

- $H^{\pm\pm}H^{\mp\mp} \rightarrow 4W \rightarrow \ell^{\pm}\ell^{\mp}\ell^{\mp} + E_T^{\text{miss}} + 2\text{jets}$
- Two subchannel: SFOS0, SFOS1,2
- SFOS0: no same flavor opposite sign leptons
- SFOS1,2: presence of same-flavor opposite sign leptons

Background

Background from prompt leptons:

- WZ, ZZ, etc: Monte Carlo

Background from fake leptons:

- $t\overline{t}$, Z+jets:

data-driven fake-factor method.

 $\theta_{e/\mu} = \frac{(Data - N_{prompt})_{xee/x\mu\mu}}{(Data - N_{prompt})_{xee/x\mu\mu}} \quad (2)$

Pre-Selection(Red), Fake-enrich(Blue)

	Selection Criteria	Y	Х	Ζ	Т
Α	Three leptons with $P_T^{0,1,2} > 10, 20, 20 GeV$	\checkmark	\checkmark	\checkmark	\checkmark
В	$ M_{01} - M_Z > 10 \text{ GeV}$ and $ M_{02} - M_Z > 10 \text{ GeV}$	\checkmark	\checkmark		\checkmark
*	$ M_{01} - M_Z \le 10 \text{ GeV or } M_{02} - M_Z \le 10 \text{ GeV}$			\checkmark	
	$M_{01} > 15 \text{ GeV}$ and $M_{02} > 15 \text{ GeV}$	\checkmark	\checkmark		\checkmark
	MET > 30 GeV		\checkmark		\checkmark
	$N_{\rm jet} >= 2$		\checkmark		\checkmark
*	$N_{\rm jet} = 1$	\checkmark			
*	$N_{\rm jet} >= 1$			\checkmark	
С	$N_{\rm b-jet} = 0$		\checkmark	\checkmark	
*	$N_{\rm b-jet} >= 1$				\checkmark

Discriminating Variables: Distribution after

Pre-selection(3L)

Hanlin Xu China LHC Physics Workshop

Overview of 4ℓ **channel**

4ℓ channel

- $H^{\pm\pm}H^{\mp\mp} \rightarrow 4W \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\mp}\ell^{\mp} + E_T^{\text{miss}}$

background

- Background from prompt leptons: Monte Carlo
- Background from fake leptons: Process-dependent scale factors to correct Monte Carlo

Systematics

Systematics included	Relative error (%)		
Theoretical uncertainties	\sim 15%		
Cross section measurements	20~30%		
Luminosity measurements	\sim 2.2%		
Data-driven background estimation	30~80%		
Detector simulation	5~40%		

Strategy used to extract the signal

- based on rectangular cut optimisation from TMVA
- Six sub-channel (*ee*, $e\mu$, $\mu\mu$, *SFOS*0, *SFOS*1, 2, 4 ℓ) and six $m_{H^{\pm\pm}}$ optimized independently
- Choose the cut with highest expected significance as the baseline of the definition of the signal regions

No significant signal observed, set limits.

Hanlin Xu China LHC Physics Workshop

Result (Upper Limit)

- Expected (observed) limits for the combination of $2\ell ss$, 3ℓ , 4ℓ channel.
- Limits are calculated based on likelihood ratio test. (95% CL)
- Mass range of 200 220 GeV excluded in the benchmarking model.

Conclusion

Status

- This is the first search for $H^{\pm\pm} o W^{\pm}W^{\pm}$ at colliders
- No significant signal observed, limits are derived.
- Mass range of 200 220 GeV excluded in the benchmark model.
- Paper is accepted to EPJC.

Future: Next Run.

- Use full Run-2 data
- Associated production $pp o W^{*+} o H^{\pm\pm} H^{\mp}$

Back Up:Doublet-triplet-Higgs-Model

Higgs potential in Seesaw Model

$$\begin{split} V(H,\Delta) &= -m_H^2 H^{\dagger} H + \frac{\lambda}{4} (H^{\dagger} H)^2 + m_{\Delta}^2 Tr(\Delta^{\dagger} \Delta) \\ &+ [\mu(H^{\dagger} i \sigma^2 \Delta^{\dagger} H) + h.c.] + \lambda_1 (H^{\dagger} H) Tr(\Delta^{\dagger} \Delta) + \lambda_2 (Tr\Delta^{\dagger} \Delta)^2 + \lambda_3 Tr(\Delta^{\dagger} \Delta)^2 \\ &+ \lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H. \end{split}$$

- Parameters: 5 independent couplings λ , 3 mass parameters m_H^2 , m_{Δ}^2 , μ
- SM-like Higgs naturally available. Can be either h^0 or H^0 .
- Electro-Weak Symmetry Breaking results in 7 scalar bosons: $H^{\pm\pm}, H^{\pm}, \Lambda^0(CP \text{ odd}), H^0(CP \text{ even}), h^0(CP \text{ even})$

Explanation and Prediction

- An explanation of the oscillations and finite mass of neutrinos.
- Predicting new scalars, some of which have mass in electroweak scale range.

Large Hadron Collider (LHC)

- Proton-Proton collision $@\sqrt{S} = 13 TeV$
- L = $2 * 10^{34} cm^{-2} s^{-1}$
- 4 experiments: ATLAS, CMS, ALICE and LHCb
- Purpose:
 - Search for new physics
 - Precise measurement of parameters in EW and SM higgs

Atlas Detector 44m 25m Tile calorimeters LAr hadronic end-cap and forward calorimeters **Pixel** detector Toroid magnets LAr electromagnetic calorimeters Transition radiation tracker Solenoid magnet Muon chambers Semiconductor tracker

Hanlin Xu China LHC Physics Workshop

Background Estimation: Charge-MisID

Likelihood Method

$$\ln \mathcal{L}(\boldsymbol{\varepsilon}|N_{tot},N_{ss}) = \sum_{i,j} \ln \left[N_{tot}^{i,j}(\boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j) \right] N_{SS}^{i,j} - N_{tot}^{i,j}(\boldsymbol{\varepsilon}_i + \boldsymbol{\varepsilon}_j)$$
(3)

- Detector may measure wrong charge with an electron.
- Measured Charge-MisID rates in Z-enrich region (Which suppress Z-jets before) with likelihood method.
- Likelihood based on possion statistics of N_{ss} , of which the mean value is a function of Charge-MisID rate.
- Using opposite-sign event with Charge-MisID rates to calculate same-sign event in other region.
- Charge-MisID rates nominal results: [0.021,9.921] in percent for different kinematic bins
- Several systematic uncertainty taken due to background, kinematic difference and binning. (30%)

Background Estimation: Fake-Leptons

Definition for fake-factor measurement

- $T(\ell)$: lepton pass tight requirement.
- $L(\ell)$: lepton pass a requirement looser than tight, but failed passing tight.

Fake-factor measurement

- Factor measured in $E_T^{miss} < 70 \text{ GeV}$. extrapolated to $E_T^{miss} > 70 \text{ GeV}$

-
$$\theta_{\mu} = \frac{N_{\mu\mu}}{N_{\mu\mu}} (E_T^{miss} < 70 \text{ GeV}) = \frac{N_{\mu\mu}^{Data} - N_{\mu\mu}^{Prompt SS}}{N_{\mu\mu}^{Data} - N_{\mu\mu}^{Prompt SS}}$$
 measured in $\mu\mu$ channel

- $\theta_e = \frac{N_{\mu e}}{N_{\mu e}} (E_T^{miss} < 70 \text{ GeV}) = \frac{N_{\mu e}^{Data} - N_{\mu e}^{Prompt SS} - N_{\mu e}^{QMisId} - N_{\mu e}^{FakeMuon}}{N_{\mu e}^{Data} - N_{\mu e}^{Prompt SS} - N_{\mu e}^{QMisId}}$ measured in $e\mu$ channel

- Fake-factor were using with $TL(\ell \ell)$ events in Event Pre-selection to estimate Fake-Leptons contribution to $TT(\ell \ell)$ events
- The measured muon fake factor is 0.14 \pm 0.08, and the measured electron fake factor is 0.48 \pm 0.25 (with Systematics uncertainty)

Backup: Mass-related Variables

- Three Mass-related Variables:
 - E_T^{miss} : Missing transverse energy
 - $M_{\ell\ell}$: Invarient mass of $\ell\ell$.
 - M_{jets} : Invarient mass of the system composed of all jets
- Signal Characteristics:
 - All signal events are expected to feature significant E_T^{miss}
 - $M_{\ell\ell}$ and M_{jets} are closely related to $m_{H^{\pm\pm}}$

Backup: Angular Variables

- Three Angular Variables:
 - $\Delta R_{\ell^{\pm}\ell^{\pm}}$: the distance in $\eta \phi$ between two same-sign leptons
 - $\Delta \Phi(\ell \ell, E_T^{miss})$: the difference in azimuth between the dilepton system and missing transverse energy
 - Variable *S*: $S = \frac{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_T^{\text{miss}}}) * \mathcal{R}(\phi_{j_1}, \phi_{j_2}, \cdots)}{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_T^{\text{miss}}}, \phi_{j_1}, \phi_{j_2}, \cdots)}$: \mathcal{R} is the root mean square that

quantifies the spread,
$$\mathcal{R}(\phi_1, ..., \phi_n) = \sqrt{\frac{1}{n} \sum_{i=1}^n (\phi_i - \overline{\phi})^2}$$

- Signal Characteristics:
 - Due to spin correlations with low $m_{H^{\pm\pm}}$
 - $\ell^{\pm}\ell^{\pm}$ will emit in the closed direction as $H^{\pm\pm}$
 - $\ell^\pm \ell^\pm$ tend to be close in the $\eta-\phi$ plane
 - Small spread in both $\ell^{\pm}\ell^{\pm} E_T^{miss}$ and *jets* system
 - This correlations will break with high $m_{H^{\pm\pm}}$

Back Up: Preparation of the next round

- Reprocessing new version data/MC.
- ChargeFlip ScaleFactor with ChargeFlip Killer
 - ChargeFlip ScaleFactor: produced from performance group
 - ChargeFlip Killer: a tool reject ChargeFlip electrons
- PromptLepVeto: a tool reduce fake leptons
- Associate production
- Full Run-2 stat 150 fb^{-1}
- sinergy with $t\bar{t}H$ analysis (similar final states)

Back Up: Detector resolution

Detector component	Required resolution	η coverage		
		Measurement	Trigger	
Tracking	$\sigma_{p_T}/p_T = 0.05\% \ p_T \oplus 1\%$	± 2.5		
EM calorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	± 3.2	± 2.5	
Hadronic calorimetry (jets)				
barrel and end-cap	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$	± 3.2	± 3.2	
forward	$\sigma_{\!E}/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$	
Muon spectrometer	$\sigma_{p_T}/p_T = 10\%$ at $p_T = 1$ TeV	± 2.7	± 2.4	

Back Up: Limit Setting

- CL: confidence level

-
$$CL_{s+b} = P_{s+b}(X \le X_{obs/exp}) = \frac{e^{-(s+b)\sum_{n=0}^{n} (s+b)^n}}{n!}$$

- $CL_b = \frac{e^{-(b)\sum_{n=0}^{n} (b)^n}}{n!}$
- $CL_s = \frac{CL_{s+b}}{CL_b}$

- X: a test statistic or discriminant
- *b*: number of expected background events (estimated)
- n_{obs} : number of observed events in data (counted)
- s: estimated signal, when CLs reach 95%
- arXiv:hep-ex/9902006

Likelihood Ratio Test

CLs Method (Confidence level 95%)

- H_0 : null hypothesis, signal plus background founded
- H_1 : alternative hypothesis, background only.
- Parameter of interest: signal strength
 - $\sigma_{beyond SM} / \sigma_{benchmarkmodel}$
- Systematic uncertainties: nuisance parameters constraint with Gaussian PDF.