Observation of electroweak production of a same-sign WW boson pair in association with two jets in *pp* collisions at \sqrt{s} =13 TeV with the ATLAS detector

Liqing Zhang

University of Science and Technology of China

CLHCP2018 December 20, 2018

Introduction

3

Same sign $W^{\pm}W^{\pm}$ scattering

- Motivation
 - Same sign W[±]W[±] is a promising means to understand the electroweak symmetry breaking mechanism
 - It involves quartic gauge couplings(QGC), is used to search for new physics: anomalous QGC(aQGC)
- > Advantage
 - Has good signal-to-background ratio compare to $W^{\pm}W^{\mp}$
- ➤ Goals
 - Discover same sign WW process
 - Measure cross sections of same sign WW process
 - Search the aQGC

Vector Boson Scattering

Previous results

Same sign WW production

- ATLAS: 8TeV, 20.3 fb⁻¹, significance of 3.6σ
- CMS: 8TeV, 19.4 fb⁻¹, significance of 2.0 σ 13TeV, 35.9 fb⁻¹, significance of 5.5 σ
- Measurements are dominated by statistics in 8 TeV data
- ✓ High statistics in 13 TeV have a significant improvement

Analysis strategy

Signal signature

Develop event selection according to signal signature

- two isolated leptons with same electric charge
 - Leptons are separated by flavour and charge (e^+, e^-, μ^+, μ^-)
- missing transverse energy
- ➤ two forward jets

Background estimation

Charge Flip Background

- An electron's charge is misidentified
- Mostly Z+jets events and also $t\bar{t}$, $W^{\pm}W^{\mp}$
- Suppressed by Z-mass veto cut
- Determined in a DataDriven way

$V\gamma$ Background

- A photon is reconstructed as an electron
- Determined by MC

Non-Prompt Background

- Jet is mis-identified as a lepton
- Mainly from tt and also from W+jets or singletop
- Determined in a DataDriven way

WZ Background

- One of leptons is not identified or reconstructed
- Determined by MC

Selection	Signal Region	-
Leptons	exactly two good selected leptons	_
Lepton p_T	\geq 27 GeV	reduce low mass Drell-Yan processes
(<i>M</i> ₁₁	\geq 20 GeV	- Gets rid of W/7 process
ThirdLepVeto		
Leptons	same sign	
Jets	at least two jets	$reduce Z \rightarrow ee background$
$ M_{ee} - M_Z $	> 15 <i>GeV</i>	
E ^{miss}	\geq 30 GeV	Gets rid of left over Z posons
B-jet veto	85% using MV2 tagger	Gets rid of fake background from
M _{jj}	> 500 <i>GeV</i>	top process
$ \Delta Y_{jj} $	> 2	separate signal from the QCD

Background estimation – charge flip

> Two sources of charge mis-measurement:

Conversion of bremsstrahlung photon Wrong tracks reconstruction

Estimation:

- ϵ , charge mis-identification rate is estimated in $Z \rightarrow ee$
- Consider opposite-sign electron pair N_{OC}^{data}
- Assign them a weight to derive the estimation of the same-charge (SC)

 $N_{bkg}^{charge-flip} = N_{OC}^{data} \cdot weight$

weight =
$$\frac{\epsilon_1(1-\epsilon_2)+\epsilon_2(1-\epsilon_1)}{(1-\epsilon_1)(1-\epsilon_2)+\epsilon_1\epsilon_2}$$

> Systematic uncertainties:

- The variation of the Z mass window selection
- The switching on and off of the background subtraction
- The closure test in MC

Estimated charge flip background in validation region

Background estimation – non-prompt

> Two sources of non-prompt lepton:

Leptons from semi-leptonic decays of B hadrons

Jets mis-identified as charged electron in calorimeter

> Estimation:

- Estimate fake factor in a fake enriched dijet sample
- Consider ID + AntiID event, $N_{\text{ID+AntiID}}$
- Assign them the fake factor to derive the estimation of the non-prompt background

 $N_{bkg}^{fake} = N_{ID+AntiID} \cdot fake facor$

> Systematic uncertainties:

- The variation of dijet event selection
- The prompt lepton subtraction, vary normalization correction

Estimated non-prompt background in validation region

fake factor =
$$\frac{N_{ID}}{N_{AntiID}}$$

Background estimation – WZ+jets & others

➤ WZ+jets

- WZ is the dominant background
- A Trilepton control region is used to check the overall normalization of WZ+jets cross section

\succ V γ +jets

- MC estimation
- A normalization factor is obtained from a Z $\!\gamma$ control region

Other background

- *ZZ*, *VVV*, *tZ*, *ttZ*, *ttW*
- MC estimation

Estimated WZ background in Trilepton control region

Validation region

- \succ WZ and low M_{ij} Validation Region
 - check the estimation of various backgrounds
 - WZ VR: $N_{lep} = 3$
 - low M_{jj} VR: 200 < M_{jj} < 500 GeV

Event yields for data, signal and background in the WZ and 200 < m_{jj} < 500 GeV validation regions

Systematic uncertainty

Experimental uncertainty			
 DataDriven estimation uncertainty 			
 Non-prompt uncertainty 			
 Charge flip uncertainty 			
 Standard CP Uncertainties 			
• Muon			
• Electron			
• Jet			
• MET			
 Pileup and Luminosity 			
Theoretical uncertainty			
 7-point scale 			
PDF envelope			

- α_s uncertainty
- Parton shower

Source	Impact [%]
Reconstruction	± 4.0
Electrons	± 0.5
Muons	± 1.2
Jets and $E_{\rm T}^{\rm miss}$	± 2.8
b-tagging	± 2.0
Pileup	± 1.5
Background	± 5.0
Misid. leptons	± 3.9
Charge misrec.	± 0.3
WZ	± 1.3
$W^{\pm}W^{\pm}jj$ strong	± 2.8
Other	± 0.8
Signal	± 3.6
Interference	± 1.0
EW Corrections	± 1.3
Shower, Scale, PDF & α_s	± 3.2
Total	± 7.4

Impact of systematic effects on the measurement of the fiducial cross section

Cross section and significance

- Signal is extracted in a likelihood fit to M_{jj} distribution
- Observed W[±]W[±]jj production integrated fiducial cross section is

 $\sigma_{\text{meas.}}^{\text{fid.}} = 2.91^{+0.51}_{-0.47}(\text{stat.}) \pm 0.27(\text{syst.}) \text{ fb}$ Events / 100 GeV **LAS** Preliminary 25 V⁺W⁺ii EW $\sqrt{s} = 13 \text{ TeV}$. 36.1 fb⁻¹ [±]W[±]ii QCD lon-promp 20 conversions Other prompt otal uncertaint 15 10 5 500 1500 2000 2500 3000 1000 m_{ii} [GeV] m_{ii} distribution in signal region

- The measured fiducial cross section is compared with predicted by Sherpa and Powheg+Pythia8
- > Observed significance is 6.9σ (4.6 σ expected)

Comparison of the measured fiducial cross section and the theoretical calculations from Sherpa and Powheg

- The same sign WW VBS production is process of great interest. The studies with 13 TeV data have been done.
- The electroweak production of same sign WW have been observed with >5σ and cross-sections agree with SM predictions