New VBS observations at the LHC

<u>Elena Yatsenko</u> (SJTU & TDLI, Shanghai) on behalf of the ATLAS and CMS collaborations

CLHCP 2018, CCNU, Wuhan

December 20th, 2018

Elena Yatsenko

Motivation

Vector boson scattering (VBS) are rare processes predicted by the Standard Model.

- Unitarity at high energies requires the presence of the SM Higgs boson
 - VBS production probes the mechanism that restores the unitarity.
- VBS allows indirect search of New Physics by studying anomalous quartic gauge couplings (aQGC)

Introduction

Experimentally we cannot access pure VBS diagrams and pure quartic couplings

Introduction

VBS phenomenology

- Two hadronic jets in forward and backward regions with very high energy: tagging jets
- Absence of color flow between interacting partons: hadronic activity suppressed between the two jets.
- Two bosons are produced ~back-to-back.

CMS: Phys. Rev. Lett. 120 (2018) 081801

ATLAS: ATLAS-CONF-2018-030

 $W^{\pm}W^{\pm}jj$

- $W^{\pm}W^{\pm}jj$ EWK: no s-channel
- $W^{\pm}W^{\pm}jj$ QCD: no gg-, nor qg-initiated diagrams
 - \rightarrow the largest EWK/QCD production ratio among VVjj processes
- Two same-sign leptons, MET, 2 tagging jets

See talk of liqing Zhang for details of the ATLAS ssWW measurement

$W^{\pm}W^{\pm}jj$ signal extraction

Simultaneous likelihood fit of:

- **1** Signal region: m_{jj} spectrum split in 4 bins (for $m_{jj} > 500$ GeV), separately for 6 channels $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$
- 2 Control region enriched with WZjj (a single channel with one bin): the fit allows for normalization of this background.
- 3 Control region enriched with 'non-prompt': 200 < m_{jj} < 500 GeV.</p>

Simultaneous likelihood fit of:

- Signal region: two-dimensional distributions (m_{jj}, m_{ll}).
- 2 Control region enriched with WZjj (a single channel, binned): m_{jj} spectrum, the fit allows for normalization of this background.

Results for $W^{\pm}W^{\pm}jj$

ATLAS:

Observed significance 6.9 σ (4.6 σ expected) $\mu_{EWK} = 1.45^{+0.25}_{-0.24}$ (stat.) $^{+0.13}_{-0.14}$ (syst.)

Measured fiducial cross-section:

 $\sigma_{ extsf{Data}}^{ extsf{fid}} = 2.95 \pm 0.49 (extsf{stat.}) \pm 0.23 (extsf{syst.}) extsf{ fb}$

- $\sigma_{\text{Data}}^{\text{fid}}$ includes $W^{\pm}W^{\pm}jj$ EWK plus interference with $W^{\pm}W^{\pm}jj$ QCD
- $W^{\pm}W^{\pm}jj$ QCD subtracted as background

CMS:

Observed significance 5.5 σ (5.7 σ expected)

 $\mu_{\textit{EWK}} = 0.90 \pm 0.22$

Measured fiducial cross-section: $\sigma^{\rm fid}_{\rm Data} = 3.83 \pm 0.66 ({\rm stat.}) \pm 0.35 ({\rm syst.}) ~{\rm fb}$

Predicted LO cross-section (MadGraph): $\sigma_{\rm th}^{\rm fid} = 4.25 \pm 0.27~{\rm fb}$

CMS: CMS-PAS-SMP-18-001

ATLAS: ATLAS-CONF-2018-033

W[±]Zjj

- 3 isolated leptons (e or μ), MET, 2 tagging jets
- Major background from WZ QCD production

Details of the ATLAS analysis

 15 discriminative variables are used as inputs for BDT training.

- Trained on MC to separate WZjj-EWK from all background.
- Background description of BDT score distribution and of all input variables is controlled in QCD CR.
- BDT score is used as SR template in the fit.

 Combined maximum-likelihood fit of SR + 3 CRs (WZ QCD, b-CR, ZZ)

Elena Yatsenko

Details of the CMS analysis

 EWK contribution grows with increasing values of the dijet mass and Δη_{jj}: fit 2d distribution to extract WZjj EWK significance.

Target results:

- Extract signal strength of WZjj EWK production
- Measure WZjj EWK+QCD cross section in VBS-enhanced phase space
- Extrapolate results to loose fiducial regions for easier comparison with theory.

Results

ΔΤΙ Δ.

SHERPA Observed significance of WZij-EWK 5.6 σ (3.3 σ expected) FIRST OBSERVATION OF THIS PROCESS!

 $\mu_{FWK} = 1.77 \pm 0.41 (\text{stat.}) \pm 0.17 (\text{syst.}) = 1.77 \pm 0.45$ $(\mu_{WZ-QCD} = 0.60 \pm 0.25, \ \mu_{t\bar{t}+V} = 1.18 \pm 0.19 \text{ and } \mu_{ZZ} = 1.34 \pm 0.29)$

Measured fiducial CS of EWK production: $\sigma_{\text{meas}}^{\text{fid.,EW}} = 0.57^{+0.15}_{-0.14} \text{fb} = 0.57^{+0.14}_{-0.12} (\text{stat.})^{+0.05}_{-0.04} (\text{syst.})^{+0.04}_{-0.02} (\text{th.}) \text{fb}$

Predictions (interference not included): $\sigma_{\rm Sherpa}^{\rm fid.,~EW~th.} = 0.321 \pm 0.002~{\rm (stat.)} \pm 0.005~{\rm (PDF)}^{+0.027}_{-0.023}~{\rm (scale)~fb}$ $\sigma_{\text{MadGraph}}^{\text{fid., EW th.}} = 0.366 \pm 0.004 \text{ (stat.) fb}$

> CMS MG AMC@NLO Observed significance of WZii-EWK 1.9σ (2.7 σ expected) $\mu_{FWK} = 0.64^{+0.45}$

Measured fiducial CS of EWK+QCD production (tight fiducial region):

$$\sigma^{
m fid}_{
m WZjj} = 2.91^{+0.53}_{-0.49}\,(
m stat)\,\,{}^{+0.41}_{-0.34}\,(
m syst) = 2.91^{+0.67}_{-0.60}\,\,
m fb$$

Predictions¹ $\sigma_{MC}^{\text{fid., th.}} = 3.27^{+0.39}_{-0.32}(\text{scale}) \pm 0.15(\text{PDF})\text{fb}$

Differential distributions

- Interesting kinematic distributions are unfolded from WZjj-EWK SR to fiducial PS.
 → first differential results in VVjj measurements
- Migration matrices are derived using WZjj-QCD and WZjj-EWK SHERPA2.2.2 samples.
- Two types of variables studied:
 - Variables sensitive to aQGCs: m_T^{WZ} , $\sum p_T^{\ell}$, $\Delta \phi(W, Z)$
 - Constraining variables for MC modeling:

 $egin{aligned} & N_{
m jets}(p_T > 40) \; {
m GeV}, \ & N_{
m jets}^{
m gap}(p_T > 25) \; {
m GeV}, \; & m_{jj}, \ & \Delta \phi(j_1,j_2), \; \Delta y(j_1,j_2) \end{aligned}$

- Data is compared to total post-fit WZjj production.
- Measurements are dominated by statistical uncertainties.

More processes to explore...

WVjj semileptonic Wγjj

Searches of neutral VBS channels

Observed (expected) of 2.7 σ (1.6 σ) $\mu = \sigma_{obs}/\sigma_{th.} = 1.39 \stackrel{+0.72}{_{-0.57 (stat)}} \stackrel{+0.46}{_{-0.51 (syst.)}}$ CMS: <u>Phys. Lett. B 770 (2017) 380</u>, 19.7 fb⁻¹ at 8 TeV ATLAS: <u>JHEP07(2017)107</u>, 20.2 fb⁻¹ at 8 TeV

ATLAS: observed (expected) significance 2.0 σ (1.8 σ)

CMS: observed (expected) significance 3.0 σ (2.1 σ)

Searches of charged VBS channels

ATLAS: <u>Phys. Rev. D 95 (2017) 032001</u>, 20.2 fb⁻¹ at 8 TeV

- $VWjj \rightarrow qq' \ell \nu jj \ (V = W \text{ or } Z)$
- Main challenge: presence of large background from W+jets and $t\bar{t}$ events \rightarrow leads to low signal-to-background ratio
- => This channel is *not sensitive yet for CS measurement*, but is **optimized** for aQGC searches

- CMS: JHEP 06 (2017) 106 , 19.7 fb $^{-1}$ at 8 TeV
- Leptonic W decay: $(W\gamma)jj \rightarrow e/\mu\nu\gamma jj$
- One of the largest CS among VBS processes

Prospects for HL-LHC

ATL-PHYS-PUB-2017-023

ATL-PHYS-PUB-2018-023

- Planned 3000 $\rm fb^{-1}$ of data after 10 years of operation

- Estimate impact of improved detectors geometries on VBS studies
- One of the main focuses: searches for $V_L V_L \rightarrow V_L V_L$ production
 - \rightarrow Improved analysis techniques are required

 $\begin{array}{l} \rightarrow \mbox{For } Z_L Z_L \rightarrow Z_L Z_L \mbox{ He-LHC} \\ \mbox{option } (15 \mbox{ ab}^{-1} \mbox{ fb}, \\ \sqrt{s} = 27 \mbox{TeV}) \mbox{ would bring} \\ 5\sigma \mbox{ sensitivity:} \end{array}$

	significance		
	w/ syst. uncert.	w/o syst. uncert.	
HL-LHC	1.4σ	1.4σ	
HE-LHC	5.2σ	5.7σ	

Elena Yatsenko

Summary

	₩ [±] ₩ [±] jj	₩±Zjj	WVjj semilept.	Wγjj	ZZjj	Zγjj
	Best EW/QCD ratio		access to aQGCs	Largest CS		
	13TeV, 8TeV	13TeV		8TeV	13TeV, 8TeV	8TeV
CMS	5.5 σ obs.	1.9σ obs.	-	2.7σ obs.	2.7σ obs.	3.0σ obs.
	$(5.7\sigma \text{ exp.})$	$(2.7\sigma \text{ exp.})$		$(1.5\sigma \text{ exp.})$	$(1.6\sigma \text{ exp.})$	(2.1 exp.)
	13TeV, 8TeV	13TeV , 8TeV				8TeV
ATLAS	6.9σ obs.	5.6 σ obs.	8TeV	-	-	2.0σ obs.
	$(4.6\sigma \text{ exp.})$	$(3.3\sigma \text{ exp.})$				(1.8 exp.)

- Observation of $W^{\pm}W^{\pm}jj$ and WZjj EWK production with partial Run2 data (2015+2016).
- Cross sections are measured in fiducial regions for both pure EWK and EWK+QCD production: both give a useful input for theorists.
- First differential cross section results are reported.
- Interpretation of the data in terms of aQGCs, no sign of new physics so far...
- More results to come with <u>full Run2 data</u>
- And even more improvements are expected at <u>HL-LHC</u>

BACKUP SLIDES

Phase space definitions for $W^{\pm}W^{\pm}jj$ measurements

ATLAS:

Fiducial phase space	_
Two same-sign leptons ($\ell = e$ and/or μ):	_
$p_T^\ell > 27 { m GeV}$	
$ \eta^\ell < 2.5$	
$m_{\ell\ell}>20{ m GeV}$	
$\Delta R_{\ell\ell} > 0.3$	
$p_T^{ u u}>30{ m GeV}$	_
At least two jets:	_
$p_T^{j, lead} > 65 \; GeV, \; p_T^{j, sub-lead} > 35 \; GeV$	
$ \eta^j <$ 4.5	
$m_{jj} > 500 { m GeV}$	
$ \Delta y j j > 2$	
$\Delta R_{\ell j} > 0.3$	_

*leptons are "dressed" with photons inside a cone of $\Delta R = 0.1$

CMS:

Fiducial phase space			
Two same-sign leptons ($\ell=e$ and/or μ):			
$p_{\mathcal{T}}^\ell > 20 { m GeV}$			
$ \eta^\ell < 2.5$			
At least two jets:			
$p_T^j > 30 { m GeV}$			
$ \eta^j < 5.0$			
$m_{jj}>500{ m GeV}$			
$ \Delta\eta_{jj} >2.5$			
$\Delta R_{\ell j}$			

Phase space definitions for WZjj measurements

ATLAS:			CMS:	
Variable	Fiducial VBS		Tight Fiducial	Loose Fiducial
Lepton $ \eta $	< 2.5	$p_{\mathrm{T}}(\ell_{Z,1})$ [GeV]	> 25	> 20
p_T of ℓ_Z , p_T of ℓ_W [GeV]	> 15, > 20	$p_{\mathrm{T}}(\ell_{Z,2})$ [GeV]	> 15	> 20
m_7 range [GeV]	$ m_{Z} - m_{Z}^{PDG} < 10$	$p_{\rm T}(\ell_{\rm W})$ [GeV]	> 20	> 20
m_{W}^{W} [GeV]	> 30	$ \eta(\mu) $	< 2.5	< 2.5
$\Delta R(\ell^{-} \ell^{+}) \Delta R(\ell_{-} \ell_{-})$	>02 > 03	$ \eta(e) $	< 2.5	< 2.5
$\Delta R(e_Z, e_Z), \Delta R(e_Z, e_W)$	> 0.2, > 0.3	$m_{\rm Z}-m_{\rm Z}^{\rm PDG}$ [GeV]	< 15	< 15
pr two leading jets [GeV]	> 40 = 4 F	$m_{3\ell}$ [GeV]	> 100	> 100
$ \eta_j $ two leading jets	< 4.5	$m_{\ell\ell}$ [GeV]	>4	>4
Jet multiplicity	≥ 2	$p_{\rm T}^{\rm miss}$ [GeV]	-	-
$\eta_{j1} \cdot \eta_{j1}$	< 0	$ \eta(\mathbf{j}) $	< 4.7	< 4.7
<i>m_{jj}</i> [GeV]	> 500	$p_{\rm T}({ m j})$ [GeV]	> 50	> 30
$\Delta R(j,\ell)$	> 0.3	$ \Delta R(\mathbf{j}, \ell) $	> 0.4	> 0.4
$N_{b-\mathrm{quark}}$	= 0	$n_{\rm j}$	≥ 2	≥ 2
		$p_{\mathrm{T}}(b)$ [GeV]	-	-
		$n_{\mathrm{b-jet}}$	-	-
		m_{jj}	> 500	> 500
		$ \Delta \eta(\mathbf{j}_1,\mathbf{j}_2) $	> 2.5	> 2.5
		$ \eta_{3\ell} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2}) $	< 2.5	-

Systematic uncertainties for EWK WZjj measurement

ATLAS:		
Source	Uncertainty [%]	
WZjj-EW theory modelling	5.0	
WZjj-QCD theory modelling	2.3	
WZjj-EW and WZjj-QCD interference	1.9	
Jets	6.7	
Pileup	2.2	
Electrons	1.6	
Muons	0.7	
b-tagging	0.3	
MC statistics	2.1	
Misid. lepton background	1.0	
Other backgrounds	0.1	
Luminosity	2.1	

- Object-related systematics mostly coming from jet reconstruction and calibration.
- Theory-related sources come from:
 - QCD scale and PDF uncertainties for both WZjj-EW and WZjj-QCD
 - Signal modeling: MADGRAPH VS SHERPA2.2.2
 - *WZjj* QCD modeling: Powheg+Pythia VS Powheg+Herwig.
- Interference is included as a shape uncertainty on signal.

CMS:			
Source of systematic uncertainty	Relative systematic uncertainty [%]		
	σ_{WZjj}	EW WZ Significance	
Jet energy scale	+9.8/-9.2	7.5	
Jet energy resolution	+1.1/-1.9	< 0.1	
QCD WZ modeling	-	0.9	
Other background theory	+2.5/-2.2	0.2	
Nonprompt normalization	+2.1/-2.4	1.1	
Nonprompt stat.	+6.1/-5.8	6.2	
Lepton energy scale and eff.	+3.5/-2.7	< 0.1	
b-tagging	+1.7/-1.9	< 0.1	
Luminosity	+3.1/-3.4	< 0.1	

- Object-related systematics is dominated by jet energy measurements and nonprompt estimation.
- Theory-related uncertainties:
 - QCD scale and PDF uncertainties
 - Signal modeling: no additional uncertainty - signal predictions are within scale and PDF uncertainties.
 - WZjj QCD modeling: compare predictions of the MLM and FxFx merged samples, and LO+up to 3j with NLO+ up to 1j samples.
- Interference is included as a shape uncertainty on signal.