

Observation of H ->bb decays and VH production with the ATLAS detector

Yanhui Ma

On behalf of the ATLAS Collaboration

CLHCP 2018 @ CCNU Wuhan, 21/12/2018

LABORATOIRE DEL'ACCÉLÉRATEUR LINÉAIRE

Introduction

- ≻ Why V (W/Z)H, H→bb
- The dominant decay (BR~58%) of the SM Higgs boson is to pairs of b-quarks
- Measurement of the Yukawa coupling to down type quarks
- Constrain the Higgs boson decay width
- VH production mode is the most sensitive channel to detect H → bb decays
- The leptonic decay of the vector boson allows for efficient triggering and significant reduction of the multi-jet (MJ) backgrounds

- Run 2 evidence result at EPS 2017 (36.1 fb⁻¹) (JHEP12(2017)024)
 - Evidence for VH(bb) with a significance of 3.5 σ (3.0 σ exp.) and a mu (signal strength) value of 1.20 +/-0.39

- ➤ This talk will focus on Run2 VH, H→bb measurement with the full 2015-2017 data (79.8 fb⁻¹)
 - To achieve the observation of H→bb decay and VH production mode, the result is also combined with:
 - the Run 1 analysis
 - other searches for bb decays of the Higgs boson
 - other searches in the VH production mode

Event Selection

- \blacktriangleright Leptonic decays of Z/W for background rejection and trigger \rightarrow 3 channels : 0,1,2 leptons
- Exactly 2 b-tagged jets (70% b-tagging efficiency), Leading (Sub-leading) jet p_T>45 (20) GeV, with 0 or 1 (>=1 for 2-lepton channel) additional jet

0-Lepton	1-Lepton	2-Lepton	
E _T ^{miss} trigger	Single-electron or E _T ^{miss} trigger	Single-lepton trigger	
Veto leptons p _T >7 GeV	Exactly one isolated lepton p _T >25 (27)GeV for muon (electron)	2 electrons or muons p _T >27 (7) GeV	
p _T ^Z (E _T ^{miss}) > 150GeV	p _T ^W (l,v) > 150GeV	p _T ^z (l,l) [75-150GeV] or >150GeV	
Angular cuts to remove MJ	E _T ^{miss} >30 GeV in electron channel	81 < m _{ll} < 101 GeV	

Main Backgrounds after Event Selection

Non-resonant backgrounds from W/Z+jets, ttbar and single-top

Resonant VZ, Z \rightarrow bb background, used to validate the analysis procedure

Small residual multi-jet background component in 1-lepton channel (<3%)

Multivariate Analysis (MVA)

MVA setup

- Use simple and robust Boosted Decision Tree (BDT)
- Input variables and training parameters tuned to yield best sensitivity
- Inputs Variables
- Kinematic variables, some specific to 3-jet regions

Variable	0-lepton	1-lepton	2-lepton	
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×	
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×		
$p_{\mathrm{T}}^{ar{b}_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m _{bb}	×	×	×	
$\Delta R(\boldsymbol{b}_1, \boldsymbol{b}_2)$	×	×	×	
$ \Delta \eta(\boldsymbol{b}_1, \boldsymbol{b}_2) $	×			
$\Delta \phi(V, bb)$	×	×	×	
$ \Delta \eta(\boldsymbol{V}, \boldsymbol{b} \boldsymbol{b}) $			×	
$m_{\rm eff}$	×			
$\min[\Delta \phi(\boldsymbol{\ell}, \boldsymbol{b})]$		×		
m_{T}^W		×		
$m_{\ell\ell}$			×	
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$			×	
m _{top}		×		
$ \Delta Y(\boldsymbol{V}, \boldsymbol{b} \boldsymbol{b}) $		×		
	Only in 3-jet events			
$p_{\rm T}^{\rm jet_3}$	×	×	×	
m _{bbj}	×	×	×	

🔶 Data VH. $H \rightarrow b\overline{b}$ (u=1

Diboson

Single top

Multijet

V+iet:

Uncertainty

Pre-fit background

/H. H → $b\overline{b} \times 70$

400 450

- Data

VH, $H \rightarrow b\overline{b}$

Diboson

Multijet W+iets

Z+jets

Single top

W Uncertainty ···· Pre-fit background

 $-VH. H \rightarrow b\overline{b} \times 5$

m_{bb} [GeV]

p^v₊ [GeV

Z+jets

Fit Model

> Perform a binned maximum likelihood fit simultaneously in different categories to extract signal significance / signal strength (μ) $\mu = \frac{\sigma \cdot BR}{\sigma_{SM} \cdot BR_{SM}}$

		Categories			
Channel	SB/CB	$75 { m GeV}$	$V < p_{\mathrm{T}}^{V} < 150 \mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 1$	$50 \mathrm{GeV}$
Onamiei		2 jets	3 jets	2 jets	3 jets
0-lepton	SR	_	-	BDT	BDT
$1 ext{-lepton}$	SR	-	-	BDT	BDT
2-lepton	SR	BDT	BDT	BDT	BDT
1-lepton	W + HF CR	-	-	Yield	Yield
2-lepton	$e\mu~{ m CR}$	m_{bb}	m_{bb}	Yield	m_{bb}

8 Signal Regions (SR)

2 W+HF (heavy flavor) control regions (CRs) in 1-lepton channel (Purity:~75%)
 m_{top} > 225 GeV && m_{bb} < 75 GeV.

Use only the normalization info in the fit

4 Top eµ CRs in 2-lepton (Purity: ~99%)

Use m_{bb} distribution (or only the normalization info) in the fit

Background Modelling

- Use state-of-the-art MC generators (except MJ which is modelled in 1lepton using a data-driven method)
- Constrain (shape and normalization) from data by using high purity control regions

0.13

vents /

Main background normalizations \succ floating in the fit

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\overline{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

- Parametrize extrapolation uncertainties across regions as uncertainties on ratios of yields
- Shape uncertainties on BDTs

An Useful Standard Candle : Diboson MVA analysis

- Same analysis strategy as the VH MVA analysis
 - Re-train the BDTs to look for WZ+ZZ instead of VH
 - The yield of VZ is typically 2-3 times higher than those of VH
 - Robust validation of background model and associated uncertainties
- Very clear diboson signal, good agreement between channels

VH MVA analysis results

Individual production modes significances

2.5 σ (2.3 σ exp.) for WH • 4.0 σ (3.5 σ exp.) for ZH

Signal strength	Signal strength	p	Significance		
Signal Strongth	Signar serengen	Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04_{-0.32}^{+0.34}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38^{+0.46}_{-0.42}$	$4.0 \cdot 10^{-3}$	$3.3\cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16^{+0.27}_{-0.25}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

The compatibility test of μ among three channels: 80%. \geq

	Source of une	certainty	σ_{μ}
	Total		0.259
	Statistical		0.161
	Systematic		0.203
	Experimenta	l uncertainties	
	Jets		0.035
	$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
	Leptons		0.009
		$b ext{-jets}$	0.061
	b-tagging	$c ext{-jets}$	0.042
		light-flavour jets	0.009
		extrapolation	0.008
	Pile-up		0.007
	Luminosity		0.023
	Theoretical a	and modelling uncer	tainties
l	Signal		0.094
5	Floating nor	${ m malisations}$	0.035
0	Z + jets		0.055
ł	W + jets		0.060
	$t\overline{t}$		0.050
	Single top qu	ıark	0.028
	Diboson		0.054
	Multi-jet		0.005
	MC statistics	al	0.070

measurement dominated by systematics (signal and background modelling, MC statistics, b-tagging)

Cross check: Di-jet mass analysis (DMA)

- Important cross-check to test robustness of result
 - Additional p_T^V Split at 200 GeV
 - Additional cuts on $\triangle R_{bb}$ (p_T^V dependent), m_T^W (1 lepton), E_T^{miss} significance (2 lepton)
 - Fit m_{bb} instead of BDT output

- Significance of VH(bb) signal at 3.6 σ (3.5 σ exp.)
- Consistent with MVA result in all channels

Combination of $H \rightarrow bb$ searches

- Combine Run 1 and Run 2 analyses in VH, VBF(*) and ttH production modes
 - Results assume SM Higgs boson production cross-section
 - Only $H \rightarrow$ bb branching ratio is correlated across the six analyses
- Observation of H \rightarrow bb decays at 5.4 σ (5.5 σ exp.)
- Main contributions from VH channels (contributions) of VBF and ttH channels 1.5σ and 1.9σ)
- Compatibility of the 6 measurements 54% \succ

(See Zhijun's talk for more details)

Combination of VH searches

- Combine Run 2 analyses in bb, γγ and 4l decays
- Updated analyses with 2015-2017 Run 2 data in all channels
- γγ and 4I analyses have both leptonic and hadronic categories
- Results assume SM Higgs boson branching fractions
- > Observation of VH production at 5.3 σ (4.8 σ exp.)
- Main contributions from bb channels
 (contributions of 4l and γγ channels 1.1σ and 1.9 σ)

0.5

0

1.5

1

2

Compatibility of the 3 measurements 96%

vs=13 TeV, 79.8 fb⁻¹

(Stat., Syst.)

+1.26 +0.32

+0.53 +0.28

+0.16

+0.15

4

-0.50 , -0.22

-0.16 , -0.19

-0.15 , -0.17

+0.21

+0.18

4.5

, 5 μ_{νн}

-0.85 , -0.14

Tot.

+1.30

-0.87

+0.60

-0.54

+0.27

-0.25

+0.24

0.23

3.5

0.94

1.03

1.17

1.13

3

2.5

Conclusions

- VH(bb) analysis carried out on full 2015-17 dataset
- With Run 2 79.8 fb⁻¹ dataset, found strong evidence for VH(bb) with a significance of 4.9 σ (4.3 σ exp.) and a mu value of 1.16 +/-0.26
- With full Hbb combination, 5.4 (5.5) σ observed (exp.) for H→bb with mu value of 1.01 +/- 0.20
- With Run 2 VH combination, 5.3 (4.8) σ observed (exp.) for VH with mu value of 1.13 +/- 0.24

These results provide an observation of the H \rightarrow bb decay mode, and also of the Higgs boson being produced in association with a vector boson

SDU (Lianliang Ma; Mario Sousa; Yanhui Ma) contribution:

- Supporting note co-editor; Analysis approval talk;
- Main 1-lepton analyzer: data/MC validation; multijet estimation; optimization; provide inputs;
- Statistical analysis for the final results.

Back Up

Q 1	0-lepton	1-le	pton	2-lepton
Selection	-	e sub-channel	μ sub-channel	-
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	$\begin{array}{l} 1 \ tight \ electron \\ p_{\rm T} > 27 \ {\rm GeV} \end{array}$	$\begin{array}{l} 1 \hspace{.1in} tight \hspace{.1in} \text{muon} \\ p_{\mathrm{T}} > 25 \hspace{.1in} \mathrm{GeV} \end{array}$	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$ $\geq 1 \text{ lepton with } p_{\rm T} > 27 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m ~GeV}$	_	-
$m_{\ell\ell}$	—		_	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$
Jets	Exactly $2 / E_{2}$	xactly 3 jets		Exactly 2 / \geq 3 jets
Jet $p_{\rm T}$		> 20 GeV > 30 GeV for	for $ \eta < 2.5$ $2.5 < \eta < 4.5$	
b-jets		Exactly 2	b-tagged jets	
Leading <i>b</i> -tagged jet $p_{\rm T}$		> 4.	5 GeV	
H_{T}	$>120~{\rm GeV}$ (2 jets), $>\!150~{\rm GeV}$ (3 jets)		_	_
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	_
$\Delta \phi(ec{E}_{ ext{T}}^{ ext{miss}}, ec{bb})$	$> 120^{\circ}$		_	_
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	_
$p_{\rm T}^V$ regions	> 150	${ m GeV}$		75 GeV $< p_{\rm T}^V < 150$ GeV, > 150 GeV
Signal regions	_	$m_{bb} \ge 75 { m ~GeV}$ of	r $m_{\rm top} \leq 225~{\rm GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions		$m_{bb} < 75 \text{ GeV}$ and	d $m_{\rm top} > 225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order
Signal, mass set to) 125 GeV and $b\bar{b}$ branching fract	tion to 58%			
$\begin{array}{c} qq \to WH \\ \to \ell \nu b\bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80,81]	NNPDF3.0NLO ^(\star) [77]	Рутніа 8.212 [68]	AZNLO [78]	$\frac{\text{NNLO(QCD)}+}{\text{NLO(EW)} [82-88]}$
$qq ightarrow ZH ightarrow u u u ar{b}/\ell \ell b ar{b}$	Powheg-Box v2 + GoSam + MiNLO	$NNPDF3.0NLO^{(\star)}$	Рутніа 8.212	AZNLO	$\frac{\text{NNLO(QCD)}^{(\dagger)}}{\text{NLO(EW)}} +$
$gg ightarrow ZH \ ightarrow u u b ar{b}/\ell\ell b ar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NLO+ NLL [89–93]
Top quark, mass s	et to $172.5 \mathrm{GeV}$				
$egin{array}{c} tar{t}\ s ext{-channel}\ t ext{-channel}\ Wt \end{array}$	Powheg-Box v2 [94] Powheg-Box v2 [97] Powheg-Box v2 [97] Powheg-Box v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]
Vector boson $+$ jet	ts				
$ \begin{array}{l} W \to \ell \nu \\ Z/\gamma^* \to \ell \ell \\ Z \to \nu \nu \end{array} $	Sherpa 2.2.1 [71, 102, 103] Sherpa 2.2.1 Sherpa 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO
Diboson					
$\begin{array}{c} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO

Signal and Backgrounds Samples

Signal

 Both qqVH and ggZH using latest Powheg+MiNLO + Pythia8 samples

Background

- V (W/Z)+jets : Sherpa 2.2.1 with jet flavor filter
- Dibson : Sherpa 2.2.1 for quark induced samples (qqVV). After EPS, include also gluon induced (ggVV) samples with Sherpa 2.2.2
- ttbar : Powheg+Pythia8, 2-lepton also incorporates dilepton filtered sample. Dedicated MET filter ttbar samples also used in 0 lepton
- Single-top : updated to Powheg+Pythia8 samples since EPS

Multijet

Negligible in 0 and 2 lepton (confirmed by lots of detailed studies), data-driven in 1 lepton channel (fraction: ~2-3%)

Signal and Control Regions

		Categories			
Channel	SB/CB	$75 \mathrm{GeV}$	$V < p_{\mathrm{T}}^V < 150 \mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 1$	$50 \mathrm{GeV}$
Channel	SIL/OIL	2 jets	3 jets	2 jets	3 jets
0-lepton	SR	-	-	BDT	BDT
1-lepton	\mathbf{SR}	-	-	BDT	BDT
2-lepton	SR	BDT	BDT	BDT	BDT
1-lepton	W + HF CR	-	-	Yield	Yield
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}

- With total 8 signal regions and 6 control regions
- A highly pure (>70%) 1L W +hf CR to provide additional constraint and validation of W + hf normalization
 - Mtop>225GeV and mBB<75GeV
 - Implemented as a single bin in the fit
- 2L Top eµ CR with very high top purity (>99%) and same kinematics selectios as ttbar in SR
 - Constrains top background normalization and shape
 - mbb discriminant is used in the fit

Channel			
Selection	0-lepton	1-lepton	2-lepton
$m^W_{ m T}$	-	$< 120 { m ~GeV}$	_
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$	_	_	$< 3.5 \sqrt{\mathrm{GeV}}$
	p_{T}^{V} re	egions	
p_{T}^{V}	$75-150~{ m GeV}$	$150-200~{\rm GeV}$	$> 200 { m ~GeV}$
	(2-lepton only)		
$\Delta R(\vec{b}_1,\vec{b}_2)$	<3.0	<1.8	<1.2

Process	$\sigma \times \mathcal{B}$ [fb]	Acceptance $[\%]$		
1100000		0-lepton	1-lepton	2-lepton
$qq \to ZH \to \ell\ell b\bar{b}$	29.9	< 0.1	0.1	6.0
$gg \to ZH \to \ell\ell b\bar{b}$	4.8	< 0.1	0.2	13.5
$qq \to WH \to \ell \nu b \overline{b}$	269.0	0.2	1.0	_
$qq \to ZH \to \nu\nu b\bar{b}$	89.1	1.9	—	—
$gg \to ZH \to \nu\nu b\bar{b}$	14.3	3.5	—	_

Background Modelling

	Z + jets
Z + ll normalisation	18%
Z + cl normalisation	23%
Z + HF normalisation	Floating (2-jet, 3-jet)
Z + bc-to- $Z + bb$ ratio	30-40%
Z + cc-to- $Z + bb$ ratio	13-15%
Z + bl-to- $Z + bb$ ratio	20-25%
0-to-2 lepton ratio	7%
$m_{bb}, p_{\mathrm{T}}^{V}$	S
	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + HF normalisation	Floating $(2\text{-jet}, 3\text{-jet})$
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	10% (1-lepton)
$m_{bb},p_{ m T}^V$	S
$t\bar{t}$ (all are uncorrelation	ted between the $0+1$ - and 2-lepton channels)
$t\bar{t}$ normalisation	Floating (0+1-lepton, 2-lepton 2-jet, 2-lepton 3-jet)
0-to-1 lepton ratio	8%
2-to-3-jet ratio	9% (0+1-lepton only)
W + HF CR to SR ratio	25%
$m_{bb},p_{ m T}^V$	S
	Single top-quark
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)
Acceptance 2-jet	17% (t-channel), $55%$ (Wt(bb)), $24%$ (Wt(other))
Acceptance 3-jet	20% (t-channel), $51%$ ($Wt(bb)$), $21%$ ($Wt(other)$)
$m_{bb},p_{ m T}^V$	S (t-channel, $Wt(bb)$, $Wt(other)$)
	Multi-jet (1-lepton)
Normalisation	60 – 100% (2-jet), 90 – 140% (3-jet)
BDT template	S
±	

ZZ					
Normalisation	20%				
0-to-2 lepton ratio	6%				
Acceptance from scale variations	10-18%				
Acceptance from PS/UE variations for 2 or more jets	6%				
Acceptance from PS/UE variations for 3 jets	7% (0-lepton), $3%$ (2-lepton)				
$m_{bb}, p_{\rm T}^V$, from scale variations	S (correlated with WZ uncertainties)				
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S (correlated with WZ uncertainties)				
m_{bb} , from matrix-element variations	S (correlated with WZ uncertainties)				
WZ					
Normalisation	26%				
0-to-1 lepton ratio	11%				
Acceptance from scale variations	13-21%				
Acceptance from PS/UE variations for 2 or more jets	4%				
Acceptance from PS/UE variations for 3 jets	11%				
$m_{bb}, p_{\rm T}^V$, from scale variations	S (correlated with ZZ uncertainties)				
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S (correlated with ZZ uncertainties)				
m_{bb} , from matrix-element variations	S (correlated with ZZ uncertainties)				
WW					
Normalisation	25%				

Signal	
Cross-section (scale)	0.7%~(qq),27%~(gg)
Cross-section (PDF)	$1.9\% (qq \to WH), 1.6\% (qq \to ZH), 5\% (gg)$
$H \to b\bar{b}$ branching fraction	1.7%
Acceptance from scale variations	2.5-8.8%
Acceptance from PS/UE variations for 2 or more jets	2.9-6.2% (depending on lepton channel)
Acceptance from PS/UE variations for 3 jets	1.8-11%
Acceptance from $PDF + \alpha_S$ variations	0.5-1.3%
$m_{bb}, p_{\rm T}^V$, from scale variations	S
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S
$m_{bb}, p_{\rm T}^V$, from PDF+ $\alpha_{\rm S}$ variations	S
$p_{\rm T}^V$ from NLO EW correction	S

	0-le	pton	1-le	pton	2-lepton				
	$p_{\mathrm{T}}^V > 150 \mathrm{C}$	GeV, 2-b-tag	$p_{\mathrm{T}}^{V} > 150 \mathrm{G}$	GeV, 2-b-tag	$75 GeV < p_{\rm T}^V$	< 150 GeV, 2-b	$-tag p_{\rm T}^V > 150 G$	$p_{\mathrm{T}}^{V} > 150 GeV, 2\text{-}b\text{-}\mathrm{tag}$	
Process	2-jet	3-jet	2-jet	3-jet	2-jet	\geq 3-jet	2-jet	\geq 3-jet	
Z + ll	$17\pm~11$	$27\pm~18$	2 ± 1	3 ± 2	14 ± 9	49 ± 32	4 ± 3	$30\pm~19$	
Z + cl	$45\pm$ 18	$76\pm~30$	3 ± 1	7 ± 3	$43\pm~17$	170 ± 67	12 ± 5	$88\pm$ 35	
Z + HF	4770 ± 140	5940 ± 300	180 ± 9	348 ± 21	7400 ± 120	14160 ± 220	1421 ± 34	5370 ± 100	
W + ll	$20\pm~13$	$32\pm~22$	$31\pm~23$	65 ± 48	< 1	< 1	< 1	< 1	
W + cl	$43\pm~20$	$83\pm$ 38	139 ± 67	$250\pm~120$	< 1	< 1	< 1	< 1	
W + HF	$1000\pm~87$	1990 ± 200	2660 ± 270	5400 ± 670	2 ± 0	$13\pm$ 2	1 ± 0	4 ± 1	
Single top quark	368 ± 53	1410 ± 210	2080 ± 290	9400 ± 1400	188 ± 89	440 ± 200) 23 ± 7	$93\pm~26$	
$t\bar{t}$	1333 ± 82	9150 ± 400	6600 ± 320	50200 ± 1400	3170 ± 100	8880 ± 220	104 ± 6	839 ± 40	
Diboson	254 ± 49	$318\pm~90$	$178\pm~47$	$330\pm~110$	152 ± 32	355 ± 68	52 ± 11	196 ± 35	
Multi-jet <i>e</i> sub-ch.	_	_	100 ± 100	100 ± 100 41 ± 35		_	_	_	
Multi-jet μ sub-ch.	_	—	138 ± 92	$260\pm~270$	—	—	-	_	
Total bkg.	$7850\pm~90$	19020 ± 140	12110 ± 120	66230 ± 270	10960 ± 100	24070 ± 150	1620 ± 30	$6620\pm~80$	
Signal (post-fit)	128 ± 28	128 ± 29	131 ± 30	125 ± 30	$51\pm~11$	$86\pm$ 22	$2 \qquad 28 \pm 6$	67 ± 17	
Data	8003	19143	12242	66348	11014	24197	1626	6686	

	1-lepton			2-lepton	2-lepton		
	$p_{\mathrm{T}}^{V} > 150 \mathrm{G}$	GeV, 2-b-tag	$75 GeV < p_{\mathrm{T}}^{V} <$	$< 150 GeV, 2\text{-}b\text{-} ext{tag}$	$p_{\mathrm{T}}^{V} > 150 \mathrm{C}$	GeV, 2-b-tag	
Process	2-jet	3-jet	2-jet	\geq 3-jet	2-jet	\geq 3-jet	
Z + HF	15.1 ± 1.4	33 ± 2.5	$2.5\pm~0.2$	2.1 ± 0.2	< 1	< 1	
W + ll	2.1 ± 1.5	3.8 ± 2.6	—	—	—	—	
W + cl	8.4 ± 4.1	13.5 ± 6.6	—	< 1	—	—	
W + HF	498 ± 34	1044 ± 92	2.5 ± 0.3	8.4 ± 1.0	< 1	3.3 ± 0.4	
Single top quark	23.8 ± 5.4	122 ± 23	189 ± 90	450 ± 210	22.4 ± 7.1	93 ± 27	
$tar{t}$	68 ± 18	307 ± 77	3243 ± 98	8690 ± 210	107.3 ± 6.7	807 ± 37	
Diboson	13.4 ± 3.7	22.6 ± 7.5	—	< 1	—	< 1	
Multi-jet e sub-ch.	8.3 ± 8.5	3.6 ± 2.9	_	_	_	_	
Multi-jet μ sub-ch.	6.9 ± 4.6	13 ± 13	_	_	_	—	
Total bkg.	644 ± 23	1563 ± 39	3437 ± 58	9153 ± 95	130.1 ± 6.7	905 ± 27	
Signal (post-fit)	< 1	2.3 ± 0.6	< 1	< 1	< 1	< 1	
Data	642	1567	3450	9102	118	923	

Significance

Signal strength	Signal strength	p	Significance		
2181101 2010118011		Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04_{-0.32}^{+0.34}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38\substack{+0.46\\-0.42}$	$4.0 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16_{-0.25}^{+0.27}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

The probability that the signal strengths measured in the three lepton channels are compatible is 80%.

Channel	Significance		-	Channel	Significance	
	Exp.	Obs.		Chamier	Exp.	Obs.
VBF+ggF	0.9	1.5		$H \to ZZ^* \to 4\ell$	1.1	1.1
$t\bar{t}H$	1.9	1.9		$H \to \gamma \gamma$	1.9	1.9
VH	5.1	4.9		$H \to b\bar{b}$	4.3	4.9
$H \to b\bar{b}$ combination	5.5	5.4		VH combined	4.8	5.3

Post-fit plots VH MVA

Post-fit plots VH di-jet mass analysis

GeV 240 -

/10

Events ,

220Ē

160

140⊟

120⊟

100E

80Ē

60E

40Ē

20Ē

1.5

1 0.5

Data/Pred.

ATLAS

180 *p*^{*V*}_{*T*} ≥ 200 GeV

√s = 13 TeV, 79.8 fb⁻¹

200 0 lepton, 2 jets, 2 b-tags

60 80

40

🔶 Data

tī

W+jets

Z+jets

100 120 140 160

Diboson

Single top

Uncertainty

····· Pre-fit background

180 200

m_{bb} [GeV]

- VH, $H \rightarrow b\overline{b} \times 2$

VH, H \rightarrow bb (μ =1.06)

muon-in-jet correction in all three channels;

- PtReco in 0- and 1-lepton channel;
- Kinematic fit in 2-lepton channel;

- $m_{bb}{:}$ invariant mass of the dijet system constructed from the two $b{-}{\rm tagged}$ jets
- $\Delta R(b_1, b_2)$: distance in η and ϕ between the two b-tagged jets
- $p_T^{b_1}$: transverse momentum of the *b*-tagged jet in the dijet system with the higher p_T
- $p_T^{b_2}$: transverse momentum of the *b*-tagged jet in the dijet system with the lower p_T
- p_T^V : transverse momentum of the vector bosos; given by E_T^{miss} in the 0 lepton channel, vectorial sum of E_T^{miss} and the transverse momentum of the lepton in the 1 lepton channel and vectorial sum of the transverse momenta of the two leptons in the 2 lepton channel

- $\Delta \phi(V, bb)$: distance in ϕ between the vector boson candidate, i.e. E_T^{miss} in the 0 lepton channel, E_T^{miss} and the lepton in the 1 lepton channel and the di-lepton system in the 2 lepton channel, and the Higgs boson candidate, i.e. the dijet system constructed from the two *b*-tagged jets
- p_T^{jets} : transverse momentum of the jet with the highest transverse momentum amongst the jets that are not *b*-tagged; only used for events with 3 or more jets
- m_{bbj}: invariant mass of the two b-tagged jets and the jet with the highest transverse momentum amongst the jets that are not b-tagged; only used for events with 3 or more jets

0 lepton channel uses two additional variables:

- $|\Delta \eta(b_1, b_2)|$: distance in η between the two b-tagged jets
- m_{eff} : scalar sum of E_T^{miss} and the p_T of all jets present in the event

1 lepton channel uses two additional variables:

- E_T^{miss} : missing transverse energy of the event
- $min[\Delta\phi(l,b)]$: distance in ϕ between the lepton and the closest b-tagged jet
- m_T^W : transverse mass of the W boson candidate, more details see 5.3
- $\Delta Y(V, bb)$: difference in rapidity between the Higgs boson candidate and W boson candidate, the four-vector of the neutrino in the W boson decay is estimated as explained in Section 5.3 for m_{top} .
- m_{top} : reconstructed mass of the leptonically decaying top quark, more details see Section 5.3

2 lepton channel uses three additional variables:

- E_T^{miss} significance: quasi-significance of the E_T^{miss} in the event, defined as $E_T^{miss}/\sqrt{S_T}$ with S_T the scalar sum of the p_T of the leptons and jets in the event.
- |Δη(V,bb)|: distance in η between the dilepton and dijet system of the btagged jets
- m_{ll}: invariant mass of the dilepton system