Measurement of the lifetime of the doubly charmed baryon Ξ_{cc}^{++} at LHCb

Ao Xu for the LHCb collaboration

Tsinghua University

The 4th China LHC Physics Workshop

December 20, 2018

- Introduction
- Analysis strategy
- LHCb detector
- Data samples and selection
- Fit method and results
- Systematics and robustness checks
- Conclusion

Observation of Ξ_{cc}^{++} at LHCb PRL 119 (2017) 112001

- Measured mass of Ξ_{cc}^{++} consistent with theoretical predictions 3621.40 \pm 0.72 (stat) \pm 0.27 (syst) \pm 0.14 (Λ_c^+) MeV/ c^2
- Not in the same isospin-doublet as the SELEX " Ξ_{cc}^+ " state $\Delta M = 103 \pm 2 \,\mathrm{MeV}/c^2$

Motivation of the lifetime measurement

Further confirm the observed state is the $J = 1/2 \equiv_{cc}^{++}$

- Necessary ingredient for theoretical predictions of BRs
- Provide info for experimental searches of doubly heavy baryons
- Test various predictions in QCD models

CLHCP 2018

- In the range of $[0.20, 1.05] \, \mathrm{ps}$ (see backup for references)
 - Diquark model, effective constituent model, NRQCD potential model, harmonic oscillator model, etc.
 - Important roles of spectator
 - Pauli interference
- $\tau(\Xi_{cc}^{++}) \sim 3-4 \times \tau(\Xi_{cc}^{+})$
 - Destructive Pauli interference in Ξ_{cc}^{++} decays
 - W^+ exchange between c and d quarks only in Ξ_{cc}^+ decays

- The same data sample used for the mass measurement
 - Specific hardware trigger to ease efficiency estimation
- \blacksquare Measure decay time distribution relative to $\Lambda^0_b \to \Lambda^+_c \pi^- \pi^+ \pi^-$
 - Correct the difference in acceptances with simulated sample
- Weighted unbinned maximum likelihood fit
 - Use histograms for acceptances and Λ_b^0 decay time distributions
- Verify major systematics using resampling techniques

The LHCb detector JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

- Excellent vertexing, tracking and hadron PID
 - Allow for precise measurement of decay time $t \equiv \frac{\vec{p} \cdot \vec{r}}{p^2} \times m$

CLHCP 2018

- 2016 data collected by LHCb, corresponding to $\mathcal{L} = 1.7 \ \mathrm{fb}^{-1}$
- Hardware and dedicated software trigger
- Offline multivariate selection (multilayer perceptron)
- Signal: Gaussian + double-sided Crystal Ball Background: 2nd order Chebychev

•
$$N_{\Xi_{cc}^{++}} = 304 \pm 35, \ N_{\Lambda_b^0} = 3397 \pm 119$$

Signal PDF of Ξ_{cc}^{++} in data

- Background subtracted with sPlot technique using the mass as discriminant
- Signal PDF

$$\mathcal{P}(t) = h_{\Lambda_b^0}(t) imes rac{arepsilon_{\pm cc}^{++}(t)}{arepsilon_{\Lambda_b^0}(t)} imes \exp\left[-\left(rac{t}{ au_{\pm cc}^{++}} - rac{t}{ au_{\Lambda_b^0}}
ight)
ight]$$

where

- $h_{\Lambda_b^0}(t)$: decay time distribution of Λ_b^0 data • $\frac{\varepsilon_{\Xi^{++}(t)}}{\varepsilon_{\Lambda_b^0}(t)}$: decay time acceptance ratio determined from simulated samples
- $\tau_{A^0_b} = 1.470 \pm 0.010 \, {\rm ps:}$ PDG value of A^0_b lifetime

Decay time distributions and acceptances

- Decay time range: 0.1-2.0 ps in 20 even bins
- Backgrounds in data subtracted uisng sPlot technique using the mass as discriminant
- Acceptances determined using p_T-weighted simulated sample

• The fit result: $au_{\Xi_{cc}^{++}} = 0.256^{+0.022}_{-0.020}\,\mathrm{ps}$

• Limited sample size of simulated and real data: $\sigma = 0.009 \, \mathrm{ps}$

•
$$\tau_{\Xi_{cc}^{++}} = 0.256_{-0.022}^{+0.024} \, (\text{stat}) \, \text{ps}$$

Systematic uncertainty: resonant structure

 Weight the *hhh* mass of the simulated sample to background-subtracted data

•
$$\Delta \tau_{\Xi_{cc}^{++}} = 0.011 \, \mathrm{ps}$$

Summary of systematic uncertainties

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014

Dominated by the resonant structure of decays

Final result

$$au_{\Xi_{cc}^{++}} = 0.256^{+0.024}_{-0.022}\,\mathrm{(stat)} \pm 0.014\,\mathrm{(syst)\,ps}$$

Statistical uncertainty dominates

Consistency between sub-samples

- Electric charge
- Magnetic polarity
- Number of primary vertices
- Fitted Λ_b^0 lifetime to be 1.474 \pm 0.077 ps, confirming that decay time acceptance is well-described by simulation
- Alternative fit result
 - Binnined χ^2 fit to the ratio of efficiency-corrected decay time distributions of Ξ_{cc}^{++} and Λ_b^0 decays
 - $\tau_{\Xi_{cc}^{++}} = 0.264_{-0.023}^{+0.026} \, (\text{stat}) \pm 0.015 \, (\text{syst}) \, \text{ps}$

Conclusions PRL 121 (2018) 052002

• First measurement of Ξ_{cc}^{++} lifetime

$$au_{\Xi_{cc}^{++}} = 0.256^{+0.024}_{-0.022} \, ({
m stat}) \pm 0.014 \, ({
m syst}) \, {
m ps}$$

- \blacksquare Within theoretical prediction of $[0.20, 1.05]\,\mathrm{ps}$
- Further confirm the weakly decay nature of the observed Ξ_{cc}^{++}
- Imply $\tau_{\Xi_{cc}^+} \sim$ 0.060-0.090 ps, important information for the Ξ_{cc}^+ search

Conclusions PRL 121 (2018) 052002

• First measurement of Ξ_{cc}^{++} lifetime

$$au_{\Xi_{cc}^{++}} = 0.256^{+0.024}_{-0.022} \,(\mathrm{stat}) \pm 0.014 \,(\mathrm{syst}) \,\mathrm{ps}$$

- \blacksquare Within theoretical prediction of $[0.20, 1.05]\,\mathrm{ps}$
- Further confirm the weakly decay nature of the observed Ξ_{cc}^{++}
- Imply $\tau_{\Xi_{cc}^+} \sim$ 0.060-0.090 ps, important information for the Ξ_{cc}^+ search

Please Stay Tuned!

BACKUP

Predictions of Ξ_{cc}^{++} lifetime

- [8] M. Karliner and J. L. Rosner, Baryons with two heavy quarks: masses, production, decays, and detection, Phys. Rev. D90 (2014) 094007, arXiv:1408.5877.
- [9] S. Fleck and J.-M. Richard, Baryons with double charm, Prog. Theor. Phys. 82 (1989) 760.
- [10] B. Guberina, B. Melić, and H. Štefančić, *Inclusive decays and lifetimes of doubly charmed baryons*, Eur. Phys. J. C9 (1999) 213, Erratum ibid. C13 (2000) 551, arXiv:hep-ph/9901323.
- [11] V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Lifetimes of doubly charmed baryons: \(\mathcal{E}_{cc}^+\) and \(\mathcal{E}_{+}^+\), Phys. Rev. D60 (1999) 014007, arXiv:hep-ph/9807354.
- [12] A. K. Likhoded and A. I. Onishchenko, Lifetimes of doubly heavy baryons, arXiv:hep-ph/9912425.
- [13] A. I. Onishchenko, Inclusive and exclusive decays of doubly heavy baryons, in 5th International Workshop on Heavy Quark Physics, Dubna, Russia, April 6-8, 2000, 2000. arXiv:hep-ph/0006295.
- [14] K. Anikeev et al., B physics at the Tevatron: Run II and beyond, in Workshop on B physics at the Tevatron: Run II and beyond, Batavia, Illinois, September 23-25, 1999, 2001. arXiv:hep-ph/0201071.
- [15] V. V. Kiselev and A. K. Likhoded, Baryons with two heavy quarks, Phys. Usp. 45 (2002) 455, arXiv:hep-ph/0103169.
- [16] C.-H. Chang, T. Li, X.-Q. Li, and Y.-M. Wang, Lifetime of doubly charmed baryons, Commun. Theor. Phys. 49 (2008) 993, arXiv:0704.0016.
- [17] A. V. Berezhnoy and A. K. Likhoded, *Doubly heavy baryons*, Phys. Atom. Nucl. **79** (2016) 260, [Yad. Fiz. 79, 151 (2016)].

CLHCP 2018

Systematic uncertainty: discrepency between simulated and real data

Weight the MVA response of simulated sample to data

• $\Delta \tau_{\Xi_{cc}^{++}} = 0.004 \, \mathrm{ps}$

Systematic uncertainty: Models of mass fit

Use alternative models
 Signal: double Gaussian
 Background: exponential

Δτ_{Ξ⁺⁺}_{cc} = 0.005 ps

- Significant dependence of background mass slope parameter on decay-time
- Alternative sWeight calculation
 - Simultaneous mass fits in 4 bins of decay-time
 - Allow different background slopes

• $\Delta \tau_{\Xi_{cc}^{++}} = 0.004 \, \mathrm{ps}$