The precise measurement of the 2HDM at the future e^+e^- colliders

CHEN Ning *

School of Physics, Nankai University

December 21, 2018

CLHCP 2018, at Central China Normal University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We will (almost) have CEPC/ILC/Fcc-ee

http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf
http:

//cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

What will CEPC buy us?

This talk: based on 1808.02037, with T. Han, S. Su, W. Su, Y. Wu.

The estimated precisions for the Higgs measurements

collider	CEPC	FCC-ee	ILC		
\sqrt{s}	240 GeV	240 GeV	250 GeV		
∫ £dt	5 ab ⁻¹	5 ab ⁻¹	2 ab ⁻¹		
production	Zh	Zh	Zh		
$\Delta\sigma/\sigma$	0.51%	0.57%	0.71%		
$h ightarrow bar{b}$	0.28%	0.28%	0.42%		
$h ightarrow car{c}$	2.2%	1.7%	2.9%		
h ightarrow gg	1.6%	1.98%	2.5%		
$h ightarrow WW^*$	1.5%	1.27%	1.1%		
$h ightarrow au^+ au^-$	1.2%	0.99%	2.3%		
$h ightarrow ZZ^*$	4.3%	4.4%	6.7%		
$h ightarrow\gamma\gamma$	9.0%	4.2%	12.0%		
$h ightarrow \mu^+ \mu^-$	17%	18.4%	25.5%		
$(uar{ u})h o bar{b}$	2.8%	3.1%	3.7%		

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The model setup of 2HDM-II

The 2HDM Lagrangian for the Higgs sector can be written as

$$\begin{split} \mathcal{L} &= \sum_{i} |D_{\mu} \Phi_{i}|^{2} - V(\Phi_{1}, \Phi_{2}) + \mathcal{L}_{\text{Yuk}} \,, \\ V(\Phi_{1}, \Phi_{2}) &= m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) \\ &+ \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) \\ &+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} \Big[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \Big] \,. \end{split}$$

We shall focus on the type-II setup:

$$-\mathcal{L}_{\text{Yuk}} = Y_d \overline{Q}_L \Phi_1 d_R + Y_e \overline{L}_L \Phi_1 e_R + Y_u \overline{Q}_L \widetilde{\Phi}_2 u_R + \text{h.c.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The model setup of 2HDM-II

Relevant parameters in the physical basis:

$$\begin{split} &\tan\beta\,,\quad \cos(\beta-\alpha)\,,\ \beta\in(0\,,\frac{\pi}{2})\,,\ \beta-\alpha\in(0\,,\pi)\\ &m_{\Phi=H,A,H^{\pm}}\,,\quad \lambda v^2\equiv m_H^2-\frac{m_{12}^2}{\sin\beta\cos\beta}\,. \end{split}$$

- ► Two limits in the 2HDM:
 - 1. The alignment limit of: $\cos(\beta \alpha) = 0$.
 - 2. The degenerate limit of: $m_H = m_A = m_{\pm} = m_{\Phi}$. For non-degenerate case, mass splittings are parametrized as $\Delta m_{A,C} \equiv m_{A,H^{\pm}} m_{H}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Higgs couplings in the 2HDM-II

The effective couplings for the light CP-even Higgs boson to the SM particles in the κ frame:

$$\begin{aligned} \mathcal{L} &= \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu h + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{\mu-} h \\ &+ \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} h + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} h + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} h \\ &- \left(\kappa_u \sum_{f=u,c,t} \frac{m_f}{v} f \bar{f} + \kappa_d \sum_{f=d,s,b} \frac{m_f}{v} f \bar{f} + \kappa_e \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \bar{f}\right) h \end{aligned}$$

with the tree-level values of

$$\kappa_W = \kappa_Z = \sin(\beta - \alpha), \quad \kappa_u = \frac{\cos \alpha}{\sin \beta}, \quad \kappa_{d,e} = -\frac{\sin \alpha}{\cos \beta}$$

2HDM precision

The one-loop corrected Higgs couplings in the 2HDM-II

The SM-like Higgs boson couplings receive the one-loop corrections from the 2HDM sector:

2HDM precision

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The one-loop corrected Higgs couplings in the 2HDM-II

• The effective Higgs couplings in the κ frame with loop effects included:

$$egin{aligned} &\kappa_{ ext{loop}} &\equiv & \displaystyle rac{g_{ ext{tree}}^{2 ext{HDM}}+g_{ ext{loop}}^{2 ext{HDM}}}{g_{ ext{tree}}^{ ext{SM}}+g_{ ext{loop}}^{ ext{SM}}} \ &\simeq & \kappa_{ ext{tree}}+rac{g_{ ext{loop}}^{2 ext{HDM}}(\Phi)}{g_{ ext{tree}}^{ ext{SM}}}+\Big[rac{g_{ ext{loop}}^{2 ext{HDM}}(ext{SM})}{g_{ ext{tree}}^{ ext{SM}}}-\kappa_{ ext{tree}}rac{g_{ ext{loop}}^{ ext{SM}}}{g_{ ext{tree}}^{ ext{SM}}} \end{aligned}$$

The alignment limit corresponds to $\kappa_{tree} = 1.0$.

• The general $h\bar{f}f$ and hVV vertices are

$$\hat{\Gamma}^{R}_{hff}(p_{1}^{2}, p_{2}^{2}, q^{2}) = \hat{\Gamma}^{S}_{hff} + \dots,$$

$$\hat{\Gamma}^{R,\mu\nu}_{hVV}(p_{1}^{2}, p_{2}^{2}, q^{2}) = \hat{\Gamma}^{1}_{hVV}g^{\mu\nu} + \dots.$$

• The κ 's with loop effects included:

$$\kappa_{V} = \frac{\hat{\Gamma}_{hVV}^{1}(m_{V}^{2}, m_{h}^{2}, q^{2})_{\text{2HDM}}}{\hat{\Gamma}_{hVV}^{1}(m_{V}^{2}, m_{h}^{2}, q^{2})_{\text{SM}}}, \quad \kappa_{f} = \frac{\hat{\Gamma}_{hff}^{S}(m_{f}^{2}, m_{f}^{2}, q^{2})_{\text{2HDM}}}{\hat{\Gamma}_{hff}^{S}(m_{f}^{2}, m_{f}^{2}, q^{2})_{\text{SM}}}$$

The electroweak precision measurements

	Current (1.7 × 10 ⁷ Z's)				CEPC (10 ¹⁰ Z's)			FCC-ee (7 × 10 ¹¹ Z's)			ILC (10 ⁹ Z's)					
		correlation		σ		correla	tion	σ	σ correlation		σ		correlation			
	0	S	T	U	(10 ⁻²)	S	Т	U	(10^{-2})	S	Т	U	(10^{-2})	S	Т	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
Т	0.09 ± 0.14	-	1	-0.87	2.55	-	1	-0.735	0.53	-	1	-0.097	4.89	-	1	-0.909
U	-0.02 ± 0.11	-	-	1	2.08	-	-	1	2.40	-	-	1	3.76	-	-	1

Table: Fit of the Peskin-Takeuchi *S*, *T*, *U* parameters performed by Gfitter.

Previous studies of electroweak S, T, U parameters made by H. He, N. Polonsky, S. Su, hep-ph/0102144:

$$\begin{split} \Delta S &= \frac{1}{\pi m_Z^2} \Big\{ \Big[\mathcal{B}_{22}(m_Z^2; m_H^2, m_A^2) - \mathcal{B}_{22}(m_Z^2; m_{H^{\pm}}^2, m_{H^{\pm}}^2) \Big] + \Big[... \Big] \cos^2(\beta - \alpha) \Big\} \,, \\ \Delta T &= \frac{1}{16\pi m_W^2 s_W^2} \Big\{ \Big[F(m_{H^{\pm}}^2, m_A^2) + \Big] + \Big[F(m_{H^{\pm}}^2, m_h^2) - ... \Big] \cos^2(\beta - \alpha) \Big\} \,, \\ \Delta U &= -\Delta S + \frac{1}{\pi m_W^2} \Big\{ \Big[\mathcal{B}_{22}(m_W^2, m_A^2, m_{H^{\pm}}^2) - ... \Big] \\ &+ \Big[\mathcal{B}_{22}(m_W^2, m_h^2, m_{H^{\pm}}^2) - ... \Big] \cos^2(\beta - \alpha) \Big\} \,. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strategies and results

- The one-loop Higgs coupling measurements: the Higgs Yukawa couplings (tan β and cos(β − α)), as well as the self couplings.
- The electroweak precision measurements: mass splitting in the heavy Higgs boson mass spectrum.
- Theoretical constraints of: tree-level vacuum stability, perturbativity, and unitarity are taken into account, as implemented by the 2HDMC.
- The evaluations are made through the chain of packages: FeynArts-FormCalc-LoopTools. For more details: https://github.com/ycwu1030/THDMNLO_FA.
- The global fit:

Higgs coupling :
$$\chi^2 = \sum_i \frac{(\mu_i^{\text{BSM}} - \mu_i^{\text{obs}})^2}{\sigma_{\mu_i}^2}$$
,
electroweak precision : $\chi^2 = \sum_{ij} (X_i - \hat{X}_i) (\sigma^2)_{ij}^{-1} (X_j - \hat{X}_j)$

with the μ -fit of $\mu_i = (\sigma \times Br)_{2HDM} / (\sigma \times Br)_{SM}$ for various Higgs decay channels.

Higgs signal fit: degenerate heavy Higgs bosons

Figure: 95% C.L. allowed region in the $\cos(\beta - \alpha)$ -tan β plane with CEPC Higgs precision measurements. Two solid horizontal black lines: theoretical constraints.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Higgs signal fit: degenerate heavy Higgs bosons

Figure: Three-parameter fitting results at 95% C.L. in the $\cos(\beta - \alpha)$ -tan β plane for various values of $\sqrt{\lambda v^2}$ with CEPC precision.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Higgs signal fit: different machines

Figure: Two-parameter fitting results at 95% C.L. in the $\cos(\beta - \alpha)$ -tan β plane with CEPC (red), Fcc-ee (blue) and ILC (green) precisions. The black dashed lines: the CEPC tree-level results.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Higgs signal fit: non-degenerate heavy Higgs bosons

Figure: Three-parameter fitting results at 95% C.L. for $\Delta m_{\Phi} = m_{A/H^{\pm}} - m_{H}$, with varying m_{H} under the alignment limit $\cos(\beta - \alpha) = 0$ with CEPC Higgs precision.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Higgs signal fit: non-degenerate heavy Higgs bosons

Figure: Constraints on the Δm_A - Δm_C plane from individual Higgs coupling measurement (color curves), and the 95% C.L. global fit results (red shaded region) under the alignment limit, with $m_H = 600$ GeV and $\sqrt{\lambda v^2} = 300$ GeV.

▲口▶▲圖▶▲≣▶▲≣▶ ■ のみの

Higgs signal fit: different machines

Figure: Two-parameter fitting results at 95% C.L. in the Δm_A - Δm_C plane with CEPC (red), Fcc-ee (blue) and ILC (green) precisions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

- The previous studies focus on either tree-level deviations, or loop effects under the alignment/degenerate limits.
- ► The BSM NP sector can lead to corrections to the Higgs couplings to the SM particles. We show that the Higgs self couplings ($\sim \lambda v^2$ or $\Delta m_{A,C}$) play a role at the one-loop level.
- ► The generally allowed parameter ranges are: $\tan \beta \sim 0.2 5$, $|\cos(\beta \alpha)| \lesssim 0.008$, $|\Delta m_{\Phi}| < 200$ GeV for 2HDM-II.
- We focus on the CEPC measurements, while the ILC and Fcc-ee show better reaches in the Higgs precision or Z-pole precision, respectively.
- More BSM NP models are being tested, to appear. More improvements can be made: theoretical constraints and productions at loop level, and the bridges to other BSM issues.

Backups: Higgs signal fit by LHC data (tree-level)

Type II

ヘロト 人間 とく ヨン 人 ヨン

э.

Backups

ヘロト 人間 とく ヨン 人 ヨン

3

Backups

ヘロト 人間 とく ヨン 人 ヨン

э.

Backups

