Recent Theoretical Progresses on Heavy Flavor Physics

4th China LHC Physics Workshop 第4届中国LHC物理工作会议 Not Every Interesting Topics covered Disclaimer: Not Every publication mentioned

Bottom
Anomalies
Corrections
3-body decays
Charm
Charmed hadron

✓ Doubly-charmed baryon

Bottom

Extract the SM parameters: Vub, Vcb, Weak Phases Test the SM: unitarity triangle Hunt for NP

- Looks great, but can be deceived (tension)
- O(10%-15%) NP is still allowed

Anomalies

R_K/R_K* Anomaly: FCNC

$$R_{K} = rac{\mathcal{B}(B^{+} o K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} o K^{+} e^{+} e^{-})} = 1.000 + O(m_{\mu}^{2}/m_{b}^{2})$$
 (SM)

R_K/R_K^* Anomaly:

$$R_{K} = rac{\mathcal{B}(B^{+} o K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} o K^{+} e^{+} e^{-})} = 1.000 + O(m_{\mu}^{2}/m_{b}^{2})$$
 (SM)

LHCb: PRL, 113, 151601(2014)

 $R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$

2.6 Sigma Deviation

R_K/R_K^* Anomaly:

$$R_{K^*}[q_{\min}^2, q_{\max}^2] \equiv \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 d\Gamma(B \to K^* \mu^+ \mu^-)/dq^2}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 d\Gamma(B \to K^* e^+ e^-)/dq^2},$$

Observable	SM results	Experimental data	
$R_K: q^2 = [1, 6] \mathrm{GeV}^2$	1.00 ± 0.01	$0.745^{+0.090}_{-0.074} \pm 0.036$	2.6 Sigma Deviation
$R_{K^*}^{\text{low}}: q^2 = [0.045, 1.1] \text{GeV}^2$	$0.920\substack{+0.007\\-0.006}$	$0.66^{+0.11}_{-0.07} \pm 0.03$	2.3 Sigma Deviation
$R_{K^*}^{\text{central}}: q^2 = [1.1, 6] \text{GeV}^2$	0.996 ± 0.002	$0.69^{+0.11}_{-0.07} \pm 0.05$	2.5 Sigma Deviation

SM: Geng, et.al, 1704.05446

LHCb: PRL, 113, 151601(2014)

9

LHCb: 1705.05802

R_K/**R**_K* Anomaly

✓ At low q2, photon dominates
✓ At high q2, SM box+Z dominates

semileptonic

R_K/**R**_K* Anomaly

✓ At low q2, photon dominates
✓ At high q2, SM box+Z dominates

NP with a heavy particle cannot explain R_{κ}^* at low q2.

Effective Field Theory or Many UV models:

R(D)/R(D*) Anomaly

 $R(D^{(*)}) = \frac{\operatorname{Br}(B \to D^{(*)} \tau \nu_{\tau})}{\operatorname{Br}(B \to D^{(*)} \ell \nu_{\ell})}$

R(D)/R(D*) Anomaly

 $R_{J/\psi} \ 0.71 \pm 0.17(stat) \pm 0.18(syst)$

13

$R(X_c)$ constraint: [Kamali/Rashed/Datta,1801.08259; Lai/Li/Li/Yang, w.i.p.]

 0.25 ± 0.01

WW, R.L. Zhu, 1808.10830

Higher Order/Higher Power

Higher order radiative corrections: QCDF at leading power and at NNLO in QCD established and almost complete. Xin-Qiang Li et.al.

➢ Higher Power Corrections: (Beneke, Y.M. Wang, C.D.Lu, Y.L.Shen,...)

Subleading power contributions from hadronic photon corrections.

- ► NLL twist-two hadronic photon effect yields $\mathcal{O}(30\%)$ correction at $\lambda_B = 354$ MeV.
- Strong cancellation between $F_{V,\text{photon}}^{2\text{PHT,LL}}$ and $F_{V,\text{photon}}^{3\text{P,LL}}$.
- Large-recoil symmetry violation due to $F_{V(A),NLP}^{LC}$, $F_{V,photon}^{2PHT,LL}$ and $F_{V,photon}^{3P,LL}$.

Three-body Decays

- ✓ More sophisticated Phenomena
- ✓ Resonant vs non-resonant
- ✓ Lack of reliable theory

Three-body Decays

(Preliminary) Frameworks:

✓ Factorization Approach Cheng, Chua, Fajfer, YLi,...

16

- ✓ PQCD Li, Chen, Wang, Lu, Xiao ...
- ✓ QCD Factorization: Krankl, Mannel, Virto,...
- ✓ Diagrammatic Approach combined SU(3):

Gronau,London

Charm

CP violation in Charm

$$D^+ \to \pi^+ K(t) (\to \pi^+ \pi^-) \qquad A_{CP}(t) \equiv \frac{\Gamma_{\pi\pi}(t) - \overline{\Gamma}_{\pi\pi}(t)}{\Gamma_{\pi\pi}(t) + \overline{\Gamma}_{\pi\pi}(t)}$$

18

D.Wang, FSY, H.n.Li, Phys.Rev.Lett 119, 181802(2017)

Lifetime of $\Omega_{\rm c}$

Heavy quark expansion:

$$\Gamma(H_{Q} \to f) = \frac{G_{F}^{2} m_{Q}^{5}}{192\pi^{3}} V_{CKM} \left(A_{0} + \frac{A_{2}}{m_{Q}^{2}} + \frac{A_{3}}{m_{Q}^{3}} + \dots \right)$$

to $1/m_c^{3}$

	$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma_{-}^{\mathrm{int}}$	Γ_+^{int}	Γ^{semi}	Γ^{tot}	$\tau(10^{-13}s)$	$\tau_{\rm expt}(10^{-13}s)$
Λ_c^+	0.886	1.449	-0.397	0.039	0.283	2.26	2.91	2.00 ± 0.06
Ξ_c^+	0.886	0.083	-0.427	0.839	0.771	2.153	3.06	4.42 ± 0.26
Ξ_c^0	0.886	1.559		0.839	0.771	4.055	1.62	$1.12\substack{+0.13 \\ -0.10}$
Ω_c^0	1.019	0.505		2.830	1.881	6.235	1.06	0.69 ± 0.12

Lifetime of $\Omega_{\rm c}$

Cheng (1807.00916):

$$\Gamma(\mathbf{B}_{c} \to f) = \frac{G_{F}^{2} m_{c}^{5}}{192 \pi^{3}} V_{CKM} \left(A_{0} + \frac{A_{2}}{m_{c}^{2}} + \frac{A_{3}}{m_{c}^{3}} + \frac{A_{4}}{m_{c}^{4}} \dots\right)$$

	$\Gamma^{ m dec}$	$\Gamma^{\mathtt{ann}}$	Γ^{int}	Γ^{int}_+	$\Gamma_{ m SL}$	Γ^{tot}	$ au(10^{-13}s)$	$ au_{ m expt}(10^{-13}s)$
Λ_c^+	1.012	1.883	-0.209	0.021	0.308	3.015	2.18	2.00 ± 0.06
Ξ_c^+	1.012	0.115	-0.189	0.353	0.524	1.854	3.55	4.42 ± 0.26
Ξ_c^0	1.012	2.160		0.351	0.524	4.083	1.61	$1.12\substack{+0.13\\-0.10}$
Ω^0_c	1.155	0.126		0.346	0.520	2.855	2.31	0.69 ± 0.12

20

 $\tau(\Xi_{c}^{+}) > \tau(\Omega_{c}^{0}) > \tau(\Lambda_{c}^{+}) > \tau(\Xi_{c}^{0})$

LHCb 1807.02024:

 $\tau(\Omega_{c}^{0}) = (2.68 \pm 0.24 \pm 0.10 \pm 0.02) \times 10^{-13} s$

Four-times larger than the world average of $(0.69 \pm 0.12) \times 10^{-13}$ s from fixed target experiments!

Doubly-Charm Baryons

LHCb, PRL 119, 112001 (2017) Ξ_{cc}^{++}

Doubly-Charm Baryons

> Study Ξ_{cc}^{++} in more channels?

- > Lifetime?
- $\succ E_{cc}^+$?
- $▷ J^P = 1/2^+?$
- > Semi-leptonic decay modes?
- > CP Violation?

Doubly-Charm Baryons:

Recent Theoretical Progresses on Weak Decays:

- > Form factors in quark model: (Z.X.Zhao)
- > Lifetime estimate (H.Y.Cheng)
- Rescattering mechanisms for nonleptonic decays (R.H.Li, F.S.Yu)

Doubly-Charm Baryons

Chiral Perturbation Theory

24

NRQCD

?

 $ar{Q}$

Heavy Diquark EFT?

Bottom:

R_K*, low q2 vs high q2 Higher Power Corrections

 \succ Charm: New CP; lifetime of Ω_{c}

Doubly-charm baryons: model calculations of decays

25

 \checkmark EFT/LQCD is needed.

Thank you for your attention!