ALICE Detector Upgrade during Long Shutdown 2 (LS2)

Yaping Wang (王亚平) Central China Normal University for the ALICE Collaboration

Dec. 22, 2018

ALICE in Run 1 and Run 2

ALICE Detector:

- ✓ Central Barrel: $|\eta| < 0.9$
- ✓ Muon spectrometer: $-4.0 < \eta < -2.5$
- ✓ Forward detectors: trigger, centrality

Operation in Run 1 and Run 2:

- ✓ Tracking and PID in large kinematic range
- ✓ High resolution vertex reconstruction

ALICE strategy for Run 3 + Run 4

- ✓ 50 kHz Pb-Pb interaction rate (current < 10 kHz)</p>
- ✓ Collect $L_{Pb_Pb} \ge 13.0 \text{ nb}^{-1}$
- ✓ Experiment upgrades during LS2

- Heavy-flavour and Quarkonia at very low p_{T}
 - Mechanism of quark-medium interactions
 - Dissociation/regeneration as tool to study de-confinement and medium temperature
- Low-mass vector mesons and low-mass di-leptons
 - Chiral symmetry restoration, initial temperature and EOS
- High-precision measurement of light nuclei and hyper-nuclei
 - QGP nucleosynthesis, exotics

Shutdown/Technical stop

Protons physics

Commissioning

Ions

Main detector requirements

- High tracking efficiency and resolution at low p_{T} \bigcirc Increase granularity, reduce material thickness
- High-statistics, un-triggered data sample \bigcirc Increase readout rate, reduce data size (online data reduction)
- Preserve excellent particle id capabilities \bigcirc

Consolidate and "speed-up" PID detectors

ALICE

Upgrade of the

ALICE Experiment

2012

ALICE Inner Tracking System (ITS) Upgrade

J.Phys. G41 (2014) 087002

ALICE ITS Upgrade

ALICE

1. Improve impact parameter resolution by a factor of 3 (5) in $r\varphi$ (z)

- Reduce beam pipe radius: 29mm
 18.2 mm
- Get closer to IP (position of first layer): 39 mm \Rightarrow 23 mm (layer 0)
- Reduce material budget: $\sim 1.14\% \Rightarrow \sim 0.3\%$ (for inner layers)
- Reduce pixel size: 50mm x 425mm 🏓 29 mm x 27 mm

2. Improve tracking efficiency and $p_{\rm T}$ resolution at low $p_{\rm T}$

- Improved integration time: < 10 μs

3. Fast readout: 50 kHz @ Pb-Pb

400

J.Phys. G41 (2014) 087002

Current ITS

CMOS MAPS – ALICE PIxel Detector (ALPIDE)

NWELL

NWELL

TRANSISTORS

PMOS

NMOS

1024 pixel columns 12 rows continuous ero or external trigger С Bias, Data Buffering, Interface

Key Features:

- Dimensions: 30mm x 15mm x 50 (100) µm \odot
- Pixel pitch: 29µm x 27µm \odot
- Spatial resolution: ~ 5 μ m (3-D) \odot
- Fake-hit rate: ~10⁻¹⁰ pixel/event \odot
- Ultra-low power (entire chip): < 40mW/cm² \odot
- Global shutter: triggered acquisition (200 kHz) or \odot

continuous (integration time <10µs)

ITS Layout

ITS Construction – Inner Barrel HIC Modules and Staves

- Inner Barrel Production completed and all layers assembled @ CERN
- Construction of spare staves continues till Jan.
 2019. By then:
 - IB-2 Half Barrel
 - 12 additional spares
- The 2nd IB-2 half barrel will be completed at a later stage

ITS Construction – Outer Barrel HIC Modules and Staves

OB HIC Production

- 2238 HIC modules + 250 spares
- 5 HIC production sites: Bari, Liverpool, Pusan, Strasbourg, Wuhan

Strasbourg — Pusan — Wuhan

- Steady production in Bari, Liverpool, Strasbourg and Wuhan, ramping up in Pusan
- Production end Mar. 2019 (~2 HICs/day/site)
- Production yield stable ~ 84%, well monitored

OB Stave Production

- 90 +10 (OL), 54 + 6 (ML) (# spares in blue)
- 5 stave construction sites: Berkeley, Daresbury, Frascati, Nikhef, Torino
- Production has reached cruise speed in all sites
- 47 OL and 19 ML staves have been built so far
- OB Barrel Assembly and Test at CERN

ITS Construction – Readout Electronics

- ITS Frontend Electronics is subdivided into 192 Readout Unit (RU) modules, each connected to and control a stave and optically interfaced to the Common Readout Unit (CRU) and to the Central Trigger Processor (CTP)
- > RU distributes trigger and control signals, interface data links to ALICE DAQ, control power supply of chips
- Mass production and testing ongoing (started in Sept 2018, will complete in April 2019)
 - ✓ First 20 boards (pre-series) received on 23rd Nov., 2018
 - ✓ Qualification tests at CERN (visual inspection and PCB analysis) and NIKHEF (functional test)

ITS Construction – Timeline

China Effort on the ALICE ITS Upgrade

 参与LS2期间ALICE/ITS硅像素探测器升级
 参与ITS硅像素芯片设计: (1) 芯片读出结构; (2) 像素 模拟前端电子学改进
 ITS探测器预研、建造与测试

 ✓ 2017年9月份启动预生产
 ✓ 2018年4月份启动正式生产,计划于2019年4月完成(生产率为2 模块/天,共建造500个模块)
 ✓ 2019年起,开始试运行、刻度、调试等工作,以 及重味物理分析方面的工作

 参与新一代MAPS硅像素探测器ITS3的预研

Beam pipe thickness: 500 μ m (0.14% X₀) Sensor thickness: 20 μ m (0.03% X₀)

ALICE

(参与学生与技术员)

ITS3

己生产230个模块,

良品率约80%

13

(ALICE Upgrade beyond 2020)

Present MUON spectrometer blurred in muon track extrapolation

• No constraint in the primary vertex region (no charm/beauty separation)

New MFT + MUON Spectrometer

MFT Layout

ALICE

- 0.4 m² active silicon area, 920 MAPS (ALPIDE chip)
- 10 Half-disks, 2 detection planes each

MFT Construction

Dec. 22, 2018

ALICE Time Projection Chamber (TPC) Upgrade

CERN-LHCC-2013-020

ALICE TPC Upgrade

Current detector (Run 1, Run 2):

- Diameter: 5 m, length: 5 m
- \blacktriangleright Gas: Ne-CO₂-N₂, Ar-CO₂
- > 72 MWPCs, 18 sectors on each side
- > ~550 000 readout pads
- Wire gating grid (GG) to minimize Ion Back-Flow (IBF)
- Max drift time: ~ 100 μs
- Rate limitation: few kHz

Continuous operation in Run 3:

- ♦ 50 kHz Pb–Pb collisions with the goal to inspect them all!
- ♦ 100 µs electron drift time in TPC. Average event spacing: ~20 µs → average pileup: 5 events
- ♦ Triggered operation does not make sense!
- IBF suppression with gating grid can not work!
- Minimize IBF without the use of a gating grid

→ Continuous readout with GEMs

TPC Continuous Readout with GEMs

TPC upgrade requirements:

- Nominal gain = 2000 in Ne-CO2-N2 (90-10-5)
- ➢ IBF < 1% (ε = 20)</p>
- > Energy resolution: $\sigma E/E < 12\%$ for ⁵⁵Fe (X-rays)
- Stable operation under LHC Run 3 conditions
- Unprecedented challenges in terms of loads and performance
- ➢ Newly developed Front-End (SAMPA chips) and readout electronics → continuous readout

Baseline solution: 4-GEM stack

- Combination of standard (S) and large pitch (LP) GEM foils
- Highly optimized HV configuration
- Results of intensive R&D

Preserve momentum resolution for TPC + ITS tracks

CFRN-LHCC-2013-020

displaced tracks

Physics Performance With the ALICE Upgrade LS2 (selected topics)

J.Phys. G41 (2014) 087002 CERN-LHCC-2013-020

rimary ver

CERN-LHCC-2015-001

prompt tracks

Physics Performance – D and B-meson Production

- Significant improvement in the non-strange Dmeson production measurement down to $p_T = 0$
- Extend p_T range on D_s -production measurement and low statistical uncertainties
 - access to hadronization mechanisms
 - possibility to disentangle between theoretical models
- Full reconstruction of B⁺ meson down to 1 GeV/*c*
- Beauty measurements using both exclusive (nonprompt D⁰ and J/ψ) and inclusive decays (B mesons to hadronic decays) at mid and forward rapidity
- Precise R_{AA} allows a quantitative verification of mass dependence energy loss ($\Delta E_{charm} > \Delta E_{beauty}$) and can discriminate between models at low p_T

Dec. 22, 2018

Physics Performance – Baryon-to-meson Ratio

Dec. 22, 2018

- Hints of charm recombination both at RHIC and LHC, very large uncertainty from heavy-ion measurements
- $\succ \Lambda_c/D$ can discriminate between models at low p_{τ}
- $\succ \Lambda_c$ measurement possible down to 2 GeV/c in Pb-Pb collisions

Insight into thermalisation and hadronisation of beauty

20

 $\succ \Lambda_{\rm h}$ measurement possible down to 4 GeV/c in Pb-Pb

ALICE Detector Upgrade (CLHCP2018) – Y. Wang

Physics Performance – Flow Measurements

Elliptic flow

ALI-SIMUL-308758

- Elliptic flow of charm and beauty hadrons down to 0 and 1 GeV/c, respectively
- Provide the strongest constrain on the c and b quark diffusion coefficients and path-length dependence of the parton energy loss
- [•] More differential measurement will be possible, as v_2 using the Event-Shape-Engineering technique

Directed flow

- Magnetic field from moving spectators influence moving charges -> charge-dependent directed flow, asymmetric in rapidity
- Very promising sensitivity to the effect of the early time magnetic field in heavy-ion collisions, can help constrain QGP properties

- Assess exited ψ states with small uncertainties and possibility for multi-differential measurements
- Two different scenarios describing charmonium data:
 - statistical hadronisation model: all ψ generated at hadronisation from deconfined c and c-bar
 - transport model: interplay between dissociation and recombination from deconfined c-quarks

- More differential quarkonia measurements with high precision
- Assess low- p_{T} and elliptic flow of different Y states

Physics Performance – Low Mass Di-leptons Measurements

- Low mass di-electrons \rightarrow Initial temperature from EM radiation
- Up to now difficult to disentangle all the electron-background sources
- After the ALICE upgrade:
 - > Cocktail-subtracted distributions $|\eta| < 0.9$
 - Improved uncertainty figures in Run 3 and 4

Summary and Outlook

- The ALICE Upgrade project has successfully completed the R&D phase and it is now in the production/assembly phase -> upgraded detectors
- Enhanced readout capabilities and higher LHC luminosity -> very large statistics
- > Production of all parts is ongoing, installation & commissioning during LS2 start in 2019
- The ALICE upgrade will give access to physics not reachable up to now

Next-Generation HI Experiment at LHC (beyond LS4)

The ALLCE LINGRAD to d the DOD is A new experiment based on a "all-silicon" detector Tracker: ~10 tracking barrel layers (blue, yellow and green) based on CMOS sensors Hadron ID: TOF with outer silicon layers (orange) Extended rapidity coverage: up to 8 rapidity units Electron ID: pre-shower (outermost blue layer) + FoCal Preliminary studies Magnetic Field B = 0.5 or 1 T ~100cm Spatial resolution Innermost 3 layers: $\sigma \sim 1 \mu m$ Outer layers: $\sigma \sim 5\mu m$ Time Measurement Outermost layer integrates high precision time measurement (σ, < 30ps) '360cn Thanks for your attention! Authors: Luciano, PBM, Federico https://indico.cern.ch/event/779787/

Spare Slides

TPC Construction – GEMs and ROCs

- Production of 40 IROCs and 40 OROCs finishes in Dec. 2018
 - ROC assembly: Yale (IROC), GSI (OROC), HPD Bucharest (OROC)
 - ROC bodies: Heidelberg, Frankfurt, UT Knoxville
- Production of 720 GEM foils + spares finished in May 2018 (yield ~ 90%)
 - GEM QA: CERN, Budapest, Helsinki
 - GEM framing: Munich, Bonn, GSI, Wayne State

All chambers thoroughly qualified in terms of

- Gas tightness
- Gain and ion backflow uniformity
- Stability (long-term irradiation with X-rays)
- Selected ROCs tested at the LHC
 - Noise performance within specs: 1 ADC (= 670 e⁻)

OROC stack

OROC stack

ALICE Detector Upgrade (CLHCP2018) – Y. Wang

X coordinate (in)

Distribution of ion backflow

1.6

1.2

0.8 0.6 0.4 0.2

TPC Construction – Readout Electronics

- Newly developed FE SAMPA ASIC (130 nm TSMC CMOS)
 - 32 channels (positive or negative input)
 - PASA preamplifier + 10-bit ADC
 - Programmable conversion gain and peaking times
 - > DSP, Memory, High speed e-links
 - Readout mode: continuous or triggered
 - Excellent noise figure of 670 e-
 - Production and testing finished in Sep. 2018
- Front-End Cards (FEC)
 - 5 SAMPA chips per FEC (3276 FECs in total)
 - System continuously digitizes signals at 5 MHz
 - All ADC values are read out 3.28 TB/s
 - FECs send digitized data over fiber optic links to ALICE Common Readout Units (CRU)
- FEC Production schedule
 - > 100 pre-production FECs for sector test will be available in Jan 2019
 - > 50% production FECs assembled, tested and received at CERN: 15 Feb 2019
 - > 100% production FECs assembled, tested and received at CERN: 15 Apr 2019
 - Start of FEC installation on TPC: 11 Sep 2019
 - FEC production progressing as planned (5 months of contingency)

SAMPA Chip Complete Readout Chain 32 PASA 10-bit 10MHz ADC DSP + Memory High-speed e-links

ALICE

Remaining agenda for today

- Update reports
- AOB
 - Because of the Christmas beak at CERN, the next FIT weekly meeting will be on Wednesday, 9/01/2019, at 15:30 CERN time
 - The next FIT Collaboration Meeting will be on Wednesday, 23/01/2019, at 15:30 CERN time

March 2019

Mon	Tue	wea	Thu	Fri	Sat	Sun
	Cha	iracteri	zation	1 of batc	2 h #4	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
HV testing of batch #4						
18	19	20	21	22	23	24
25	26	27	28	29	30	31
 2834 PMTs tested and characterized enough for FIT-C assembly (+2 spare PMTs in Moscow) 						
t-a-oelender.com						

A Large Ion Collider Experiment

O² is being reorganised

^{→ 3} separate projects:

- First Level Processors (FLP)
- Event Processing Nodes (EPN)
- Physics and Data Processing (PDP)

details are being finalised

FA | ALICE Week | 10 December 2018

ALICE Detector Upgrade (CLHCP2018) – Y. Wang

7