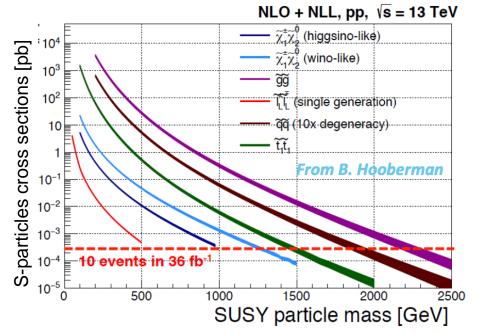

21st Dec 2018 The 4th China LHC Physics Workshop (CLHCP 2018) Wuhan, Central China Normal University

Searches for SUSY at LHC, Run-II

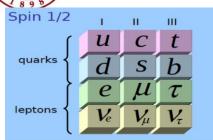
Antonis Agapitos



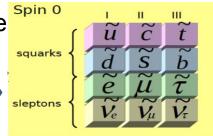
Outline

- Disclaimer: It is impossible to cover all Run-2 results in ~20 min
- Focus only on highlight results of the last ~1-2 years from ATLAS & CMS (Personal biases are unavoidable at this mission)

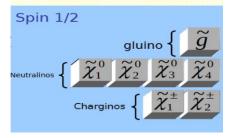
Talk's structure:


- 1. STRONGLY produced SUSY:
 - Gluino direct production
 - Stop (& squark) direct production
- 2. ELECTROWEAK production:
 - Chargino-Neutralino production
 - Higgsinos / sleptons
- 3. REST SUSY:
 - RPV
 - GMSB

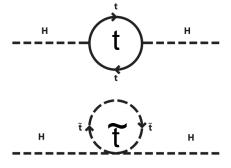
- → Focus: Signal signatures features, event selection, exclusion limits
- → Skip: physics objects, prediction methods, simulations, systematics treatment
- → Spoiler: No statistically significant excess of events; no evidence of SUSY (yet)



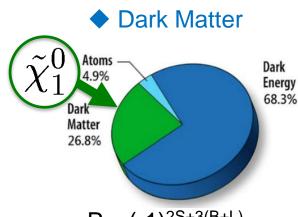
Why SUSY? A bit of motivation...


SUSY proposed as a "New Principle" of Nature

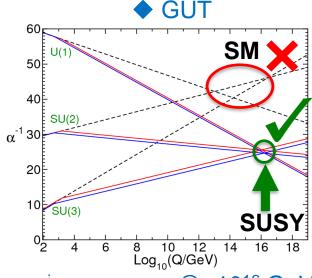
Spin-based symmetry $[\Delta spin = \frac{1}{2}]$ linking fermions(matter) to bosons(forces)



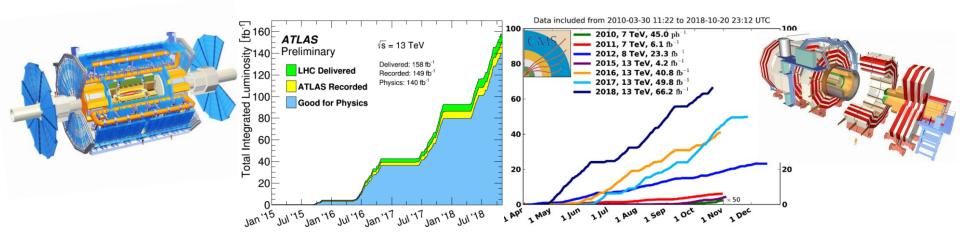
It is a whole framework, not a model (MSSM) Same couplings as in SM but unknown flavor mixing, masses, couplings & BRs... $M_{\text{SM-particle}} < \text{or} << M_{\text{SUSY-Sparticle}}$



SUSY proposes solutions to three SM shortcomings:


♦ Hierarchy Problem

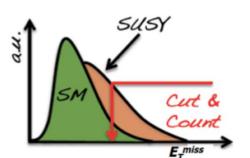
Sparticle loops cancel out corrections (if Λ_{cut} ~< 1 TeV)


 $P_R=(-1)^{2S+3(B+L)}$ If "R-parity" conserved LSP \rightarrow DM candidate

a⁻ⁱ converges @~10¹⁶ GeV

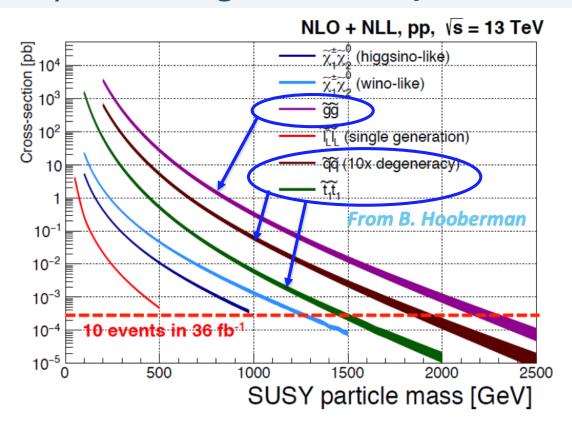
Run-2: 2015-2018, Int.Lumi: 2x140 fb⁻¹

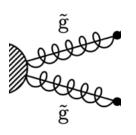
- ATLAS & CMS have recorded ~150 fb⁻¹ of data (each) during Run-2
- ~140 fb⁻¹/experiment certified as "good" for physics.
- Only a few have been analyzed for the moment (~26%, 36 fb⁻¹, basically 2016 data)
 - → Moriond 2019, on March, will probably hosts (some) full Run-2 results
- This talk includes mainly results with these ~26% (36 fb⁻¹) of Run-2 data.
 - → not the best moment for Run-2 (strong) conclusions on SUSY...

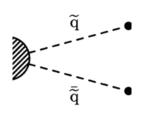

How to...

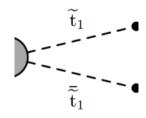
Look for an excess of events at the tails of discriminating variables.

- 1. Exploitation of signal Final State (SF) kinematic features to distinguish from the background:
 - \rightarrow jets, t, b, MET, I, ...
 - → 2 LSPs main common feature of RPC SUSY leading to significant MET
 - → Use sophisticated variables, and/or MVA techniques, hybrid physics objects for this
- Implement cut & count selection (or MVA) to suppress SM background → Divide in many bins (observables) to enhance sensitivity

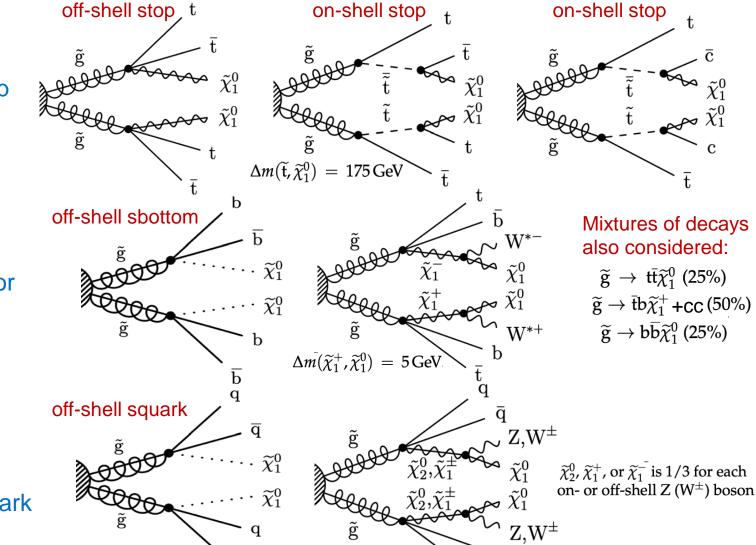








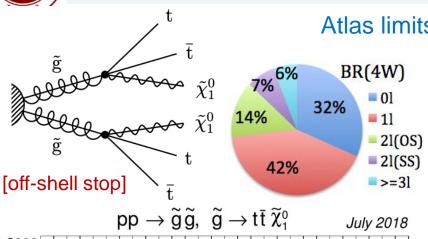
1) "Strong" SUSY production



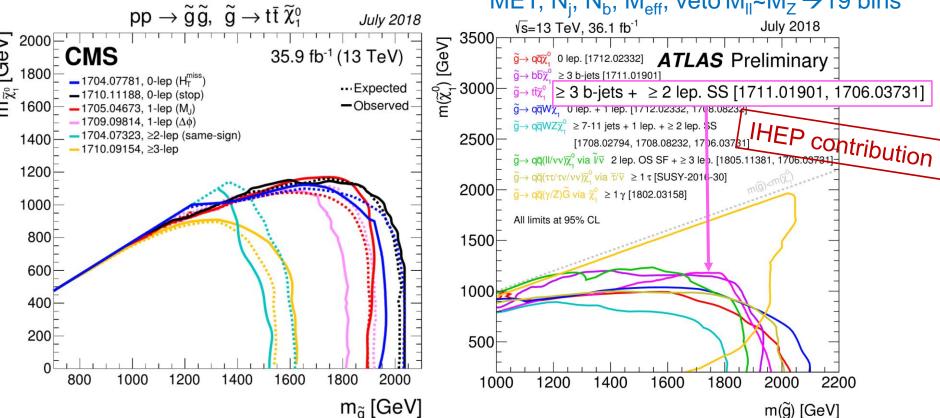
Direct production of gluino-pair (map)

Decay with stop (stop-induced):

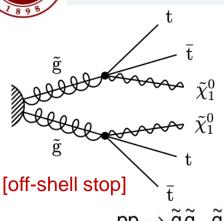
Decays
with sbottoms or
with charginos


Decays
with non-3rd
generation squark

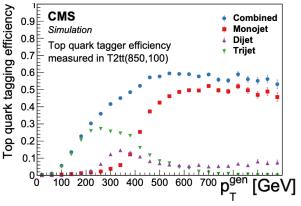
Main features: → 2 LSPs, many jets, many t/b-quarks, t→Wb so many W-bosons in FS

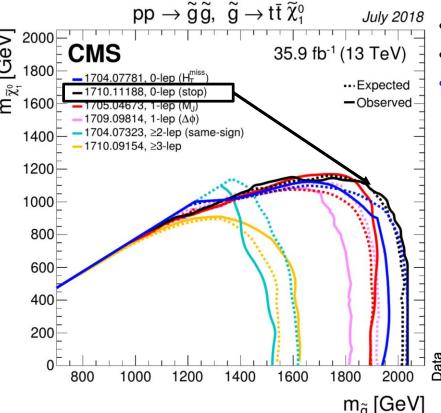

Search for gluino-pair (with stops*)

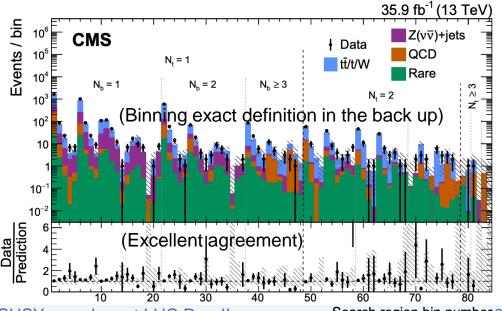
Atlas limits: Using all Final States (FS) in combination.


Very generic searches to probe multiple FSs

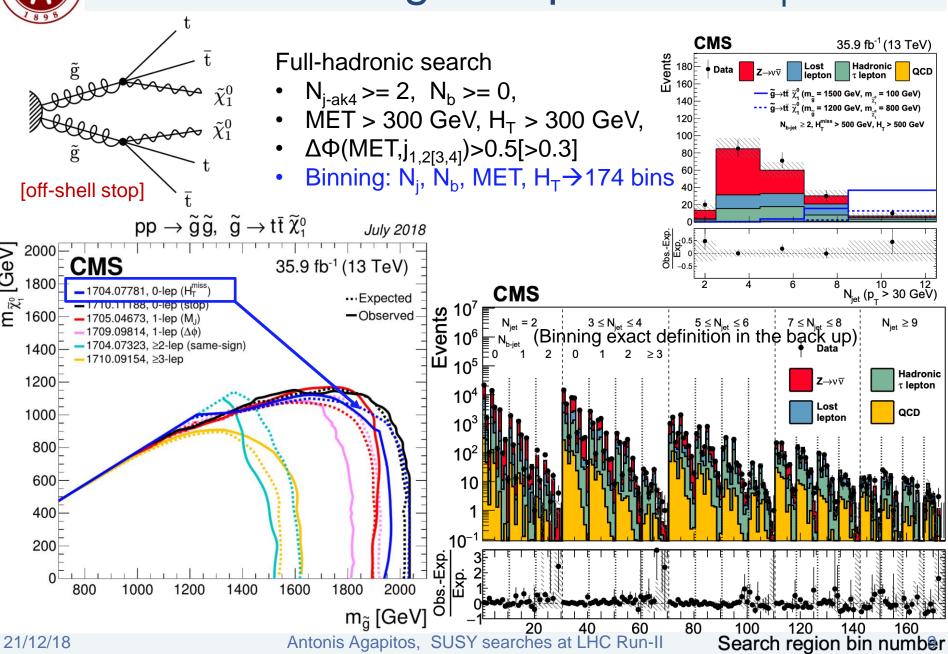
- 1711.01901: 0I & >=1I, MET, N_j , N_b >=3, M_{eff} , $M_{T(I,MET)}$, M_{T}^{min} _(b,MET), M_{J}^{Σ}
- 1706.03731: 2I(SS) or >=3I, MET, N_j, N_b, M_{eff}, veto M_{II}~M_Z \rightarrow 19 bins



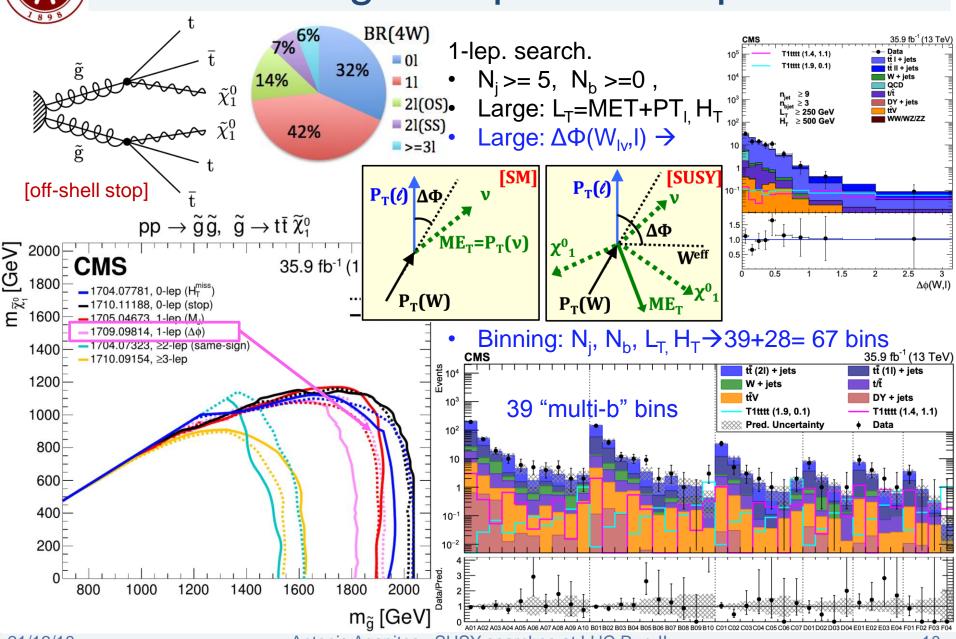

Search for gluino-pair with top-tagging


Full-hadronic, 4t → 4Wb in FS → top-tagging algo:

- 3-prong ak8-jet, or
- 2-prong ak8-jet + ak4, or
- 3 resolved ak4-jets (with a b-jet)

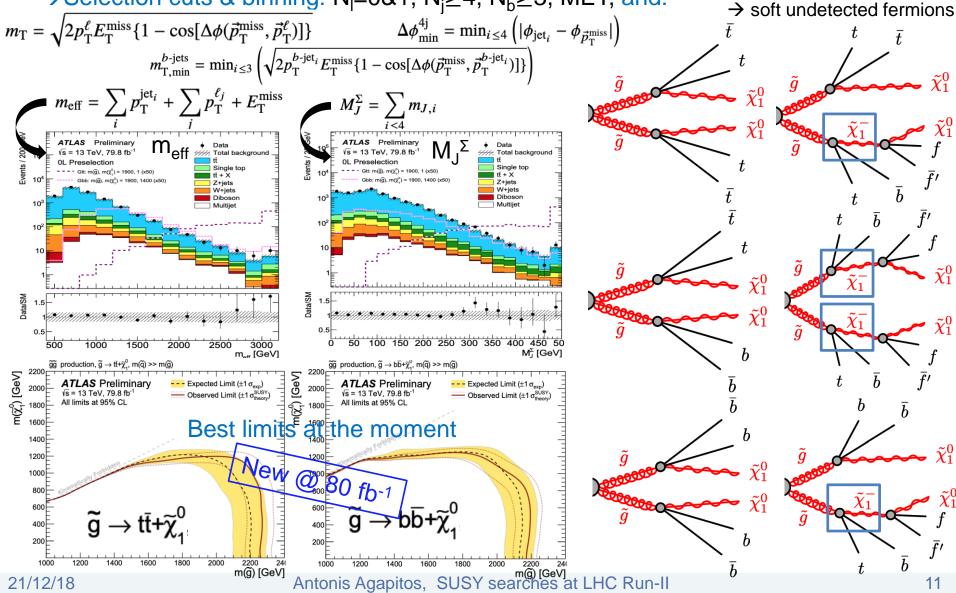


- $N_{j-ak4} >= 4$, $N_b >= 1$, $N_t >= 1$ MET> 250 GeV, $H_T > 300$ GeV, $M_{T2} > 200$ GeV
- SR Binning: N_b , N_t , MET, H_T (or M_{T2}) \rightarrow 84 bins



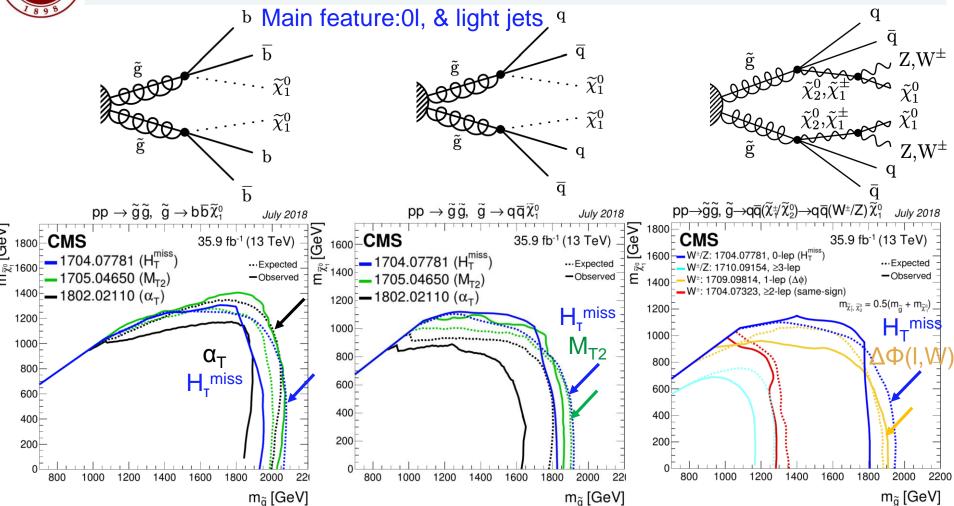
Search for gluino-pair with H_Tmiss

Search for gluino-pair in 1Lep with ΔΦ

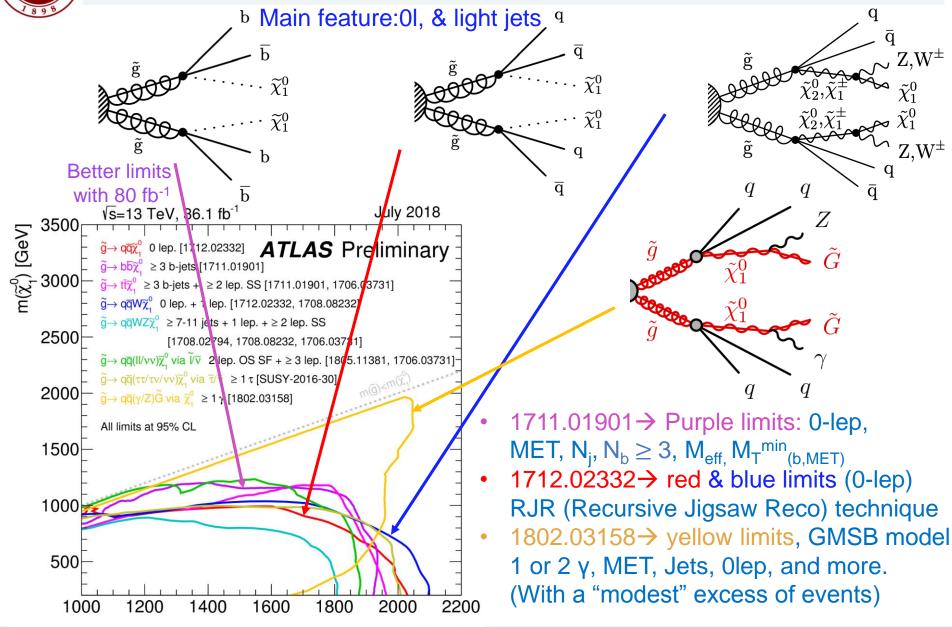

Gluino-pair search in 01 & 11

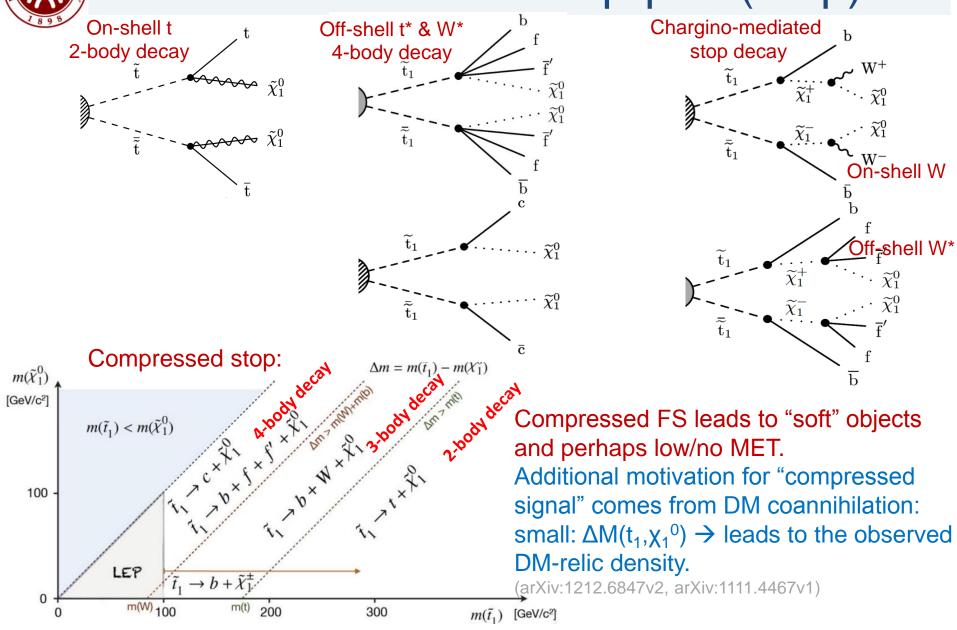
New @ 80 fb-1

Chargino-mediated decay at one leg $\Delta M(\chi^{\pm}_{1}, \chi^{0}_{1})=2$ GeV


ATLAS-CONF-2018-041 Gluino-pair direct prod., variable BRs.

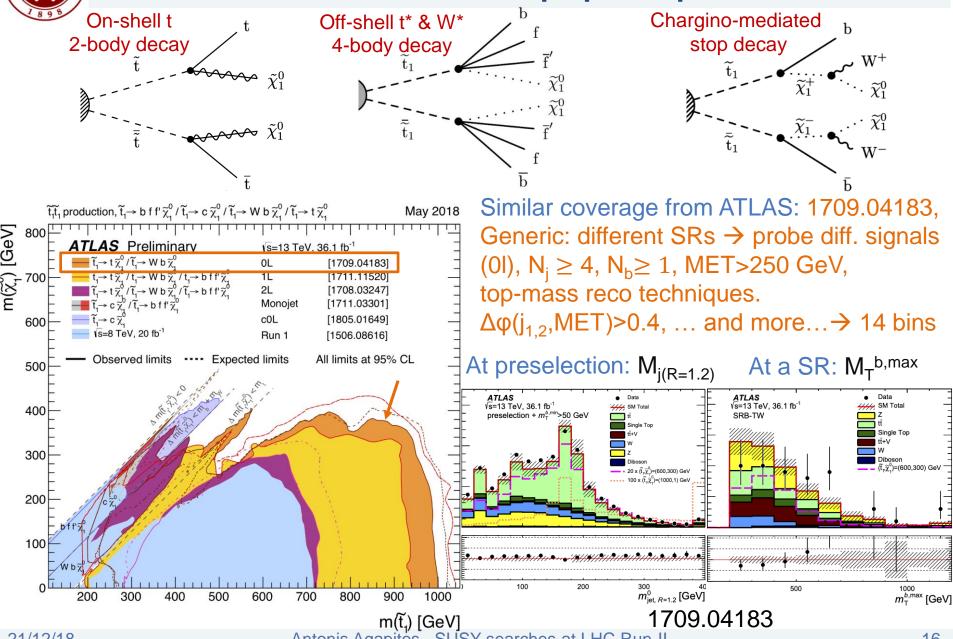
⇒ Selection cuts & binning: N_1 =0&1, N_j ≥4, N_b ≥3, MET, and:


Search for gluinos in other signatures

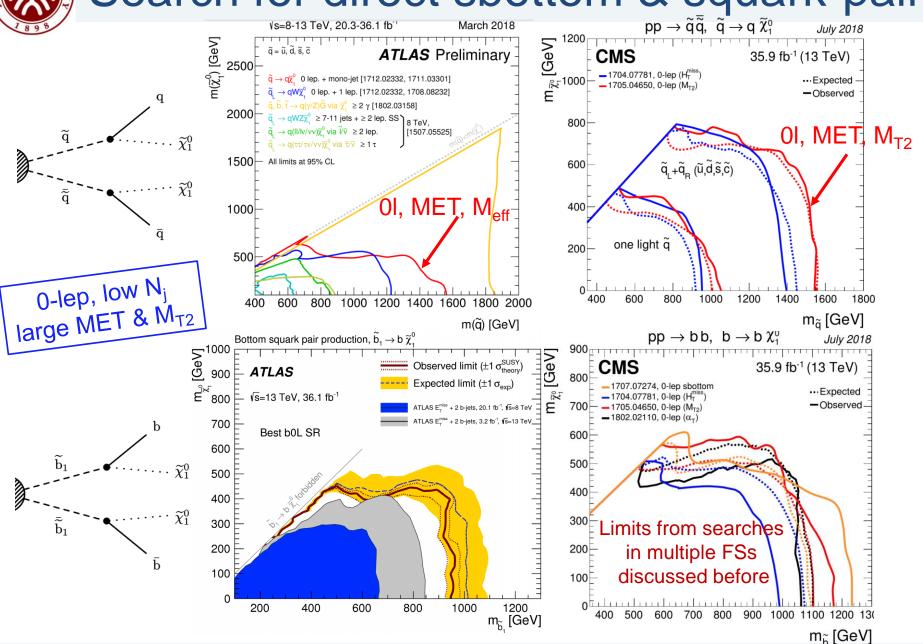

- 1705.04650: M_{T2} : all-hadronic. Cluster jets in 2 hemispheres \rightarrow form 2 pseudo-jets \rightarrow form: $M_{T2} = \min_{\vec{p}_T^{\text{miss}}X(1) + \vec{p}_T^{\text{miss}}X(2) = \vec{p}_T^{\text{miss}}} \left[\max \left(M_T^{(1)}, M_T^{(2)} \right) \right]$ binning: $N_{\text{j-ak4}}, N_{\text{b}}, H_{\text{T}}, M_{T2}$
- 1802.02110: $\alpha_T (=E_T^{j2}/M_{T(j1,j2)})$, Full-had. Cuts/bins N_i , N_b , MET, H_T , $\Delta \phi^*_{min}(H_t^{vec}, MET)$

Search for gluinos in other signatures

Search for direct stop-pair (map)


Limits for direct stop-pair production

PT_I<30 GeV (soft) 11+21 searches $M_{T(I,MET)}$ and more... \rightarrow 44 bins


on the left provide the best limits here as well

Limits for direct stop-pair production

Search for direct sbottom & squark-pair

Inclusive Searches

Much more results on the public pages

SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$ e, μ, τ, γ Jets $E_{\mathrm{T}}^{\mathrm{miss}} \int \mathcal{L} dt [\mathrm{fb}^{-1}]$ Model **Mass limit** \sqrt{s} = 7, 8 TeV \sqrt{s} = 13 TeV Reference $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ 2-6 jets $m(\tilde{\chi}_{\perp}^{0})<100 \,\text{GeV}$ 1712.02332 1-3 jets [1x, 8x Degen.] mono-jet Yes 36.1 $m(\tilde{q})-m(\tilde{\chi}_{\perp}^{0})=5 \text{ GeV}$ 1711.03301 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ $m(\tilde{\chi}_1^0)$ <200 GeV 2-6 iets Yes 36.1 1712.02332 $m(\tilde{\chi}_1^0)=900 \text{ GeV}$ 1712.02332 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ 4 jets 36.1 $m(\tilde{\chi}_{\perp}^{0})$ <800 GeV 1706.03731 ее, ии 2 jets Yes 36.1 $m(\tilde{g})-m(\tilde{\chi}_{\perp}^{0})=50 \text{ GeV}$ 1805 11381 7-11 jets $m(\tilde{\chi}_1^0) < 400 \,\text{GeV}$ 1708.02794 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ 0 Yes 36.1 1.8 4 jets 0.98 1706.03731 36.1 $m(\tilde{g})-m(\tilde{\chi}_{\perp}^{0})=200 \text{ GeV}$ 0-1 e, µ $m(\tilde{\chi}_1^0)$ <200 GeV 1711.01901 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{\perp}^{0}$ 3b36.1 4 jets 36.1 1.25 $m(\tilde{g})-m(\tilde{\chi}_{\perp}^{0})=300 \text{ GeV}$ 1706.03731 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$ Multiple 36.1 Forbidden $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV, } BR(b\tilde{\chi}_{1}^{0})=1$ 1708.09266, 1711.03301 0.58-1.82 Multiple $m(\tilde{\chi}_{\perp}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{\perp}^{0})=BR(t\tilde{\chi}_{\perp}^{\pm})=0.5$ 36.1 Forbidden 1708.09266 Multiple $m(\tilde{\chi}_{\perp}^{0}) = 200 \text{ GeV}, m(\tilde{\chi}_{\perp}^{\pm}) = 300 \text{ GeV}, BR(t\tilde{\chi}_{\perp}^{\pm}) = 1$ 36.1 1706.03731 M_{stop} < ~1 TeV $\tilde{b}_1 \tilde{b}_1, \tilde{t}_1 \tilde{t}_1, M_2 = 2 \times M_1$ Multiple 1709.04183, 1711.11520, 1708.03247 36.1 $m(\tilde{\chi}_1^0)=60 \text{ GeV}$ Multiple 1709.04183, 1711.11520, 1708.03247 36.1 $m(\tilde{\chi}_{\perp}^{0})=200 \,\text{GeV}$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0 \text{ or } t\tilde{\chi}_1^0$ 0-2 e, μ 0-2 jets/1-2 b Yes 36.1 1.0 1506.08616, 1709.04183, 1711.11520 $\tilde{t}_1\tilde{t}_1,\,\tilde{H}\,\mathsf{LSP}$ Multiple 0.4-0.9 $m(\tilde{\chi}_{1}^{0})=150 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$ 1709 04183 1711 11520 36.1 Multiple Forbidden $m(\tilde{\chi}_1^0)=300 \text{ GeV}, m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV}, \tilde{t}_1 \approx \tilde{t}_L$ 1709.04183, 1711.11520 36.1 0 6-0.8 $\tilde{t}_1\tilde{t}_1$, Well-Tempered LSP Multiple 0.43-0.84 $m(\tilde{\chi}_{1}^{0})=150 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$ 1709.04183.1711.11520 36.1 $\tilde{t}_1 \tilde{t}_1, \, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 36.1 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1805.01649 2cYes 0.46 $m(\tilde{t}_1,\tilde{c})$ - $m(\tilde{\chi}_1^0)$ =50 GeV $m(\tilde{t}_1,\tilde{c})$ - $m(\tilde{\chi}_1^0)$ =5 GeV 1805.01649 mono-iet 36.1 0.43 1711.03301 Yes $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ 1-2 e, µ 4 b 0.32-0.88 $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=180$ GeV 1706.03986 Yes 36.1 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via WZ2-3 e. u 0.6 1403.5294, 1806.02293 Yes 36.1 0.17 ee, µµ ≥ 1 Yes 36.1 $m(\tilde{\chi}_{\perp}^{\pm})-m(\tilde{\chi}_{\perp}^{0})=10 \text{ GeV}$ 1712.08119 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh $\ell\ell/\ell\gamma\gamma/\ell bb$ Yes 20.3 0.26 1501.07110 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$ $m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1708.07875 Yes 36.1 0.76 0.22 1708.07875 $m(\tilde{\chi}_{\perp}^{\pm})-m(\tilde{\chi}_{\perp}^{0})=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{\perp}^{\pm})+m(\tilde{\chi}_{\perp}^{0}))$ $\tilde{\ell}_{L,R} \tilde{\ell}_{L,R}$, $\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$ 2 e.u 0 Yes 36.1 0.5 1803.02762 $2e, \mu$ ≥ 1 Yes 36.1 0.18 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 1712.08119 $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ $\geq 3b$ Yes 36.1 0.13-0.23 0.29-0.88 $BR(\tilde{\chi}_{\perp}^{0} \rightarrow h\tilde{G})=1$ 1806.04030 36.1 0.3 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 1804.03602 Yes Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Disapp. trk 1 jet 0.46 Yes 36.1 Pure Wino 1712.02118 Pure Higgsino 0.15 ATL-PHYS-PUB-2017-019 Stable § R-hadron 1.6 3.2 1606 05129 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\tilde{\chi}_1^0$ Multiple 32.8 $[\tau(\tilde{g}) = 100 \text{ ns}, 0.2 \text{ ns}]$ $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 1710.04901, 1604.04520 GMSB, $\tilde{\chi}_1^0 \rightarrow \nu \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 0.44 $1 < \tau(\tilde{\chi}_{\perp}^{0}) < 3$ ns, SPS8 model 2γ Yes 20.3 1409.5542 $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ displ. $ee/e\mu/\mu\mu$ 20.3 $6 < c\tau(\tilde{\chi}_{\perp}^{0}) < 1000 \text{ mm, m}(\tilde{\chi}_{\perp}^{0}) = 1 \text{ TeV}$ 1504.05162 1.3

1.9

1.9

1.8 2.1

1.33

1.3

0.4-1.45

1.05

1.05

0.82

 λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07

 $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like

 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like

 $m(\tilde{\chi}_{1}^{0})=200$ GeV, bino-like

Mass scale [TeV]

BR($\tilde{t}_1 \rightarrow be/b\mu$)>20%

 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$

Large $\lambda_{112}^{\prime\prime}$

1607.08079

1804.03602

1804.03568

ATLAS-CONF-2018-003

ATLAS-CONF-2018-003

ATLAS-CONF-2018-003

1710.07171

1710.05544

 $e\mu$, $e\tau$, $\mu\tau$

0

 $2e, \mu$

LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$

 $\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\bar{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$

 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$

 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$

 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$

 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$

 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$

 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \quad [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$

=200 GeV, 1100 GeV]

0.42

0.61

3.2

36.1

36.1

36.1

36.1

36.7

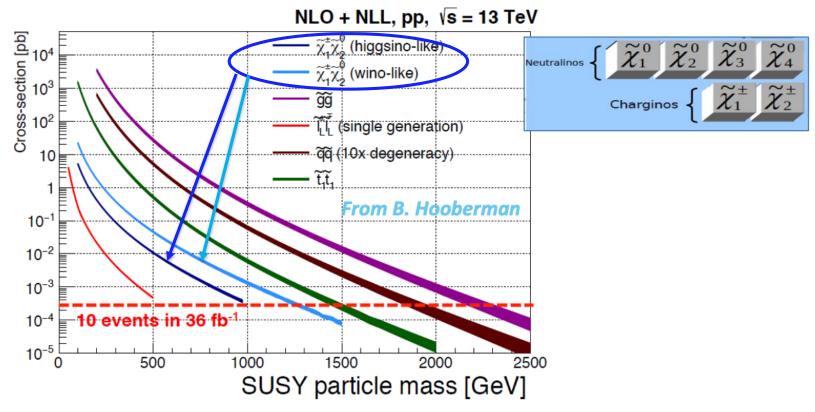
36.1

Yes

4-5 large-R jets

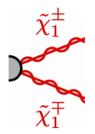
Multiple

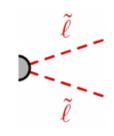
Multiple

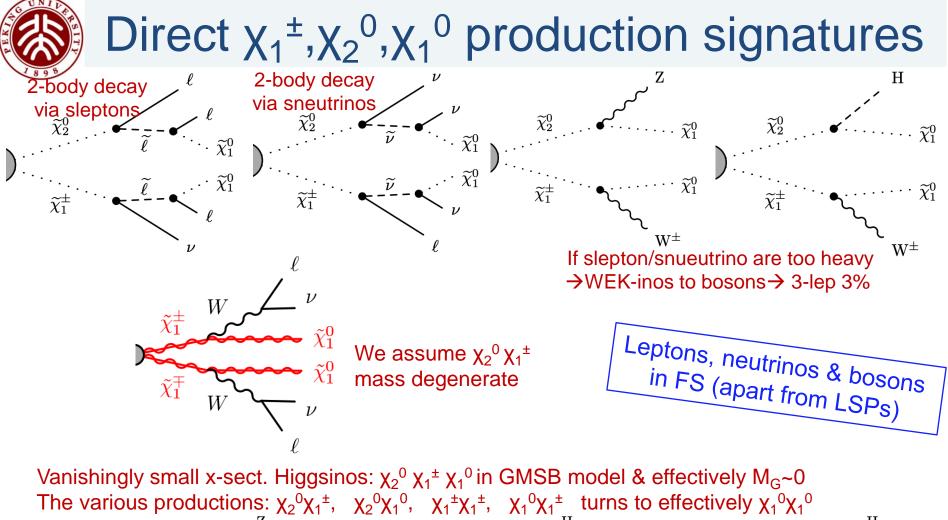

Multiple

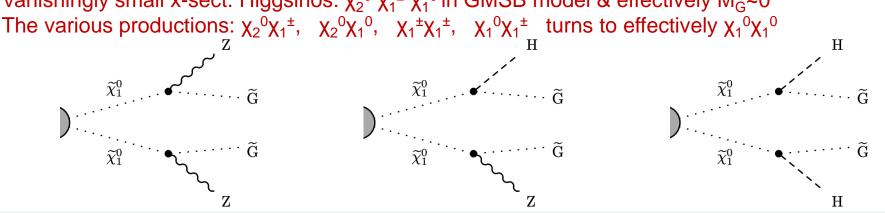
2 jets + 2 b

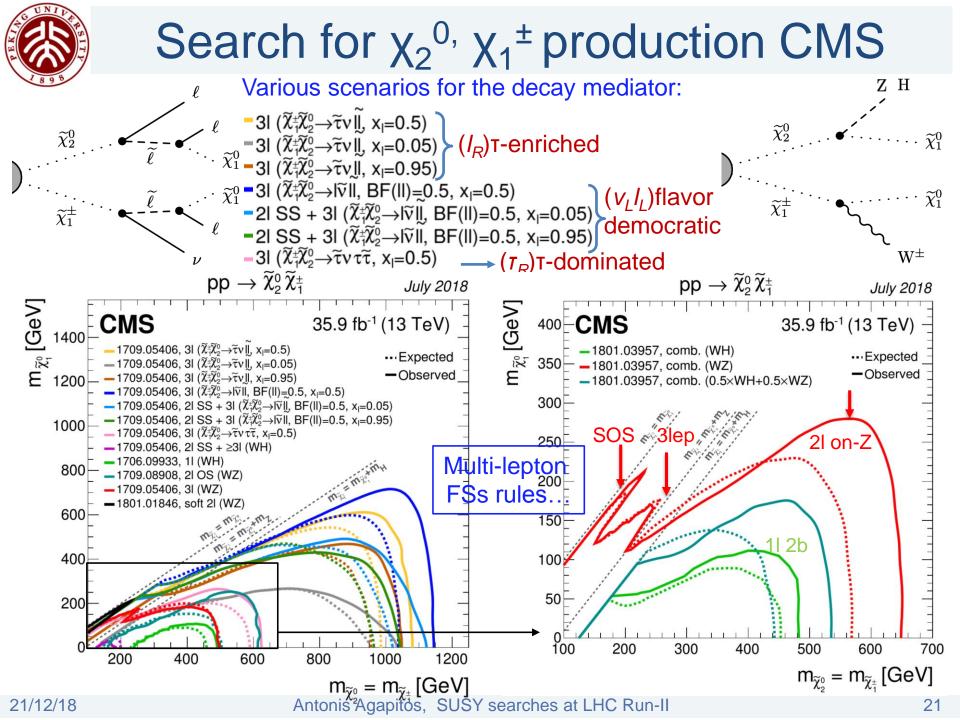
2 b

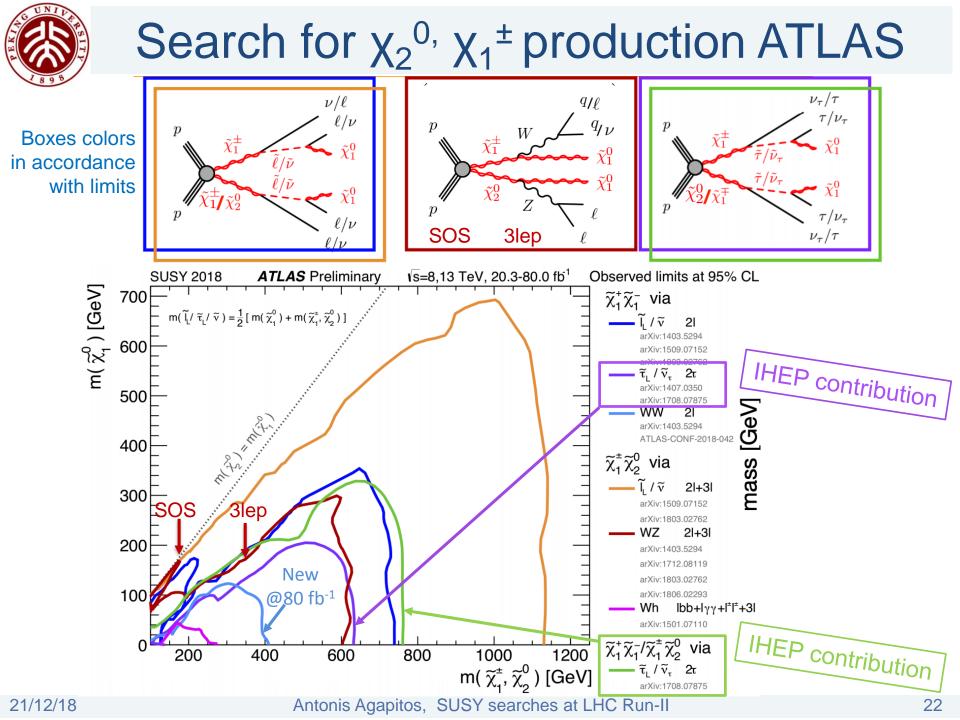

2) "EWK" SUSY Production




If colored sparticles are much heavier than EWK partners,


→ EWK production will be the dominant





Compressed W-inos (SOS)

CMS: 1801.01846

-- TChi150/20

M

M(ll)[GeV]

 \blacksquare Observed $\pm 1 \sigma_{theory}$ Expected ± 1 σ_{experiment}

 $pp \to \widetilde{\chi}^0_2 \, \widetilde{\chi}^{\scriptscriptstyle \pm}_1, \, \widetilde{\chi}^0_2 \to Z^{\star} \, \widetilde{\chi}^0_1, \, \widetilde{\chi}^{\scriptscriptstyle \pm}_1 \to W^{\star} \, \widetilde{\chi}^0_1$

CMS

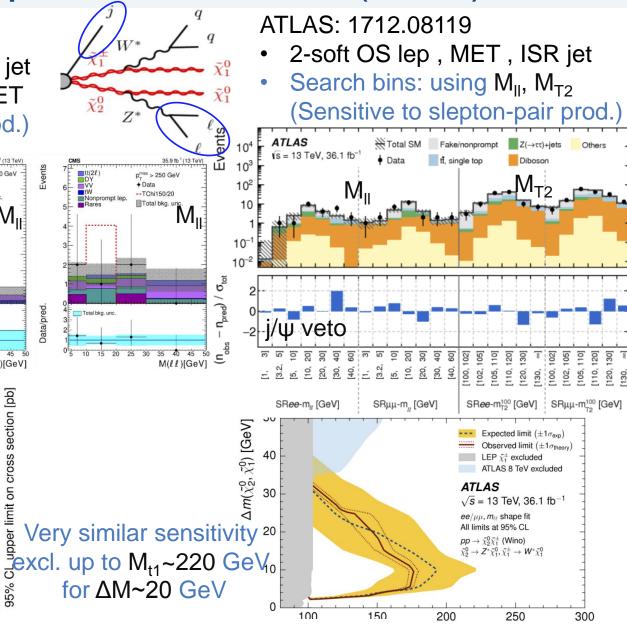
 Δ m ($\widetilde{\chi}_2^0, \widetilde{\chi}_1^0$) [GeV]

21/12/18

15

- 2-soft OS lep, MET, ISR jet
- Search bins: using M_{II}, MET (Sensitive to stop-pair prod.)

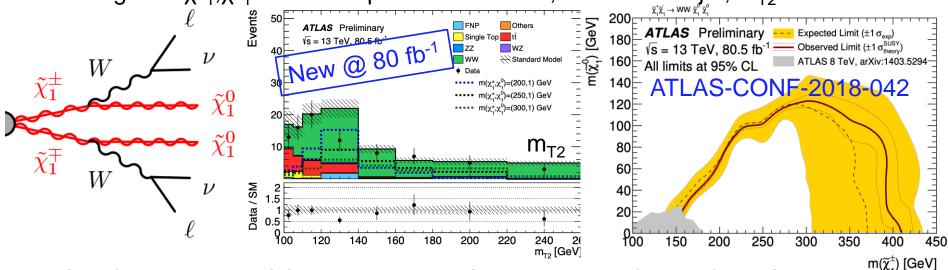
Data/pred.

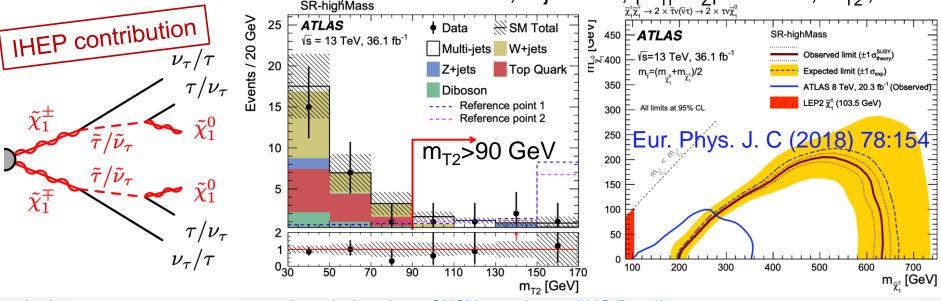

Total bkg. unc.

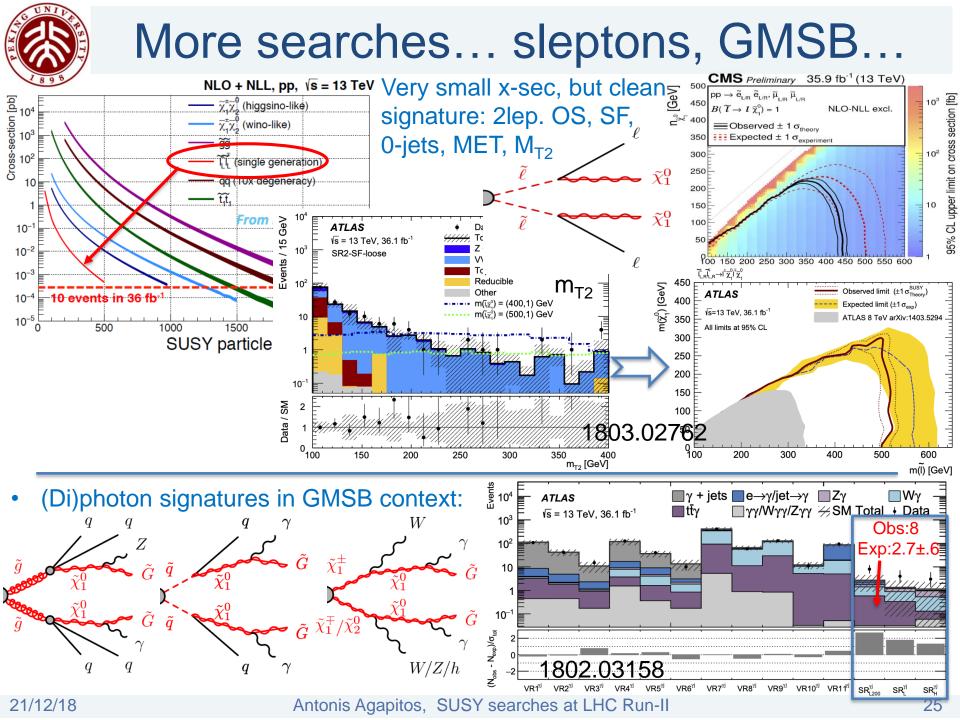
33.2-35.9 fb⁻¹ (13 TeV)

-- TChi150/20

Data/pred.


M(ll)[GeV]

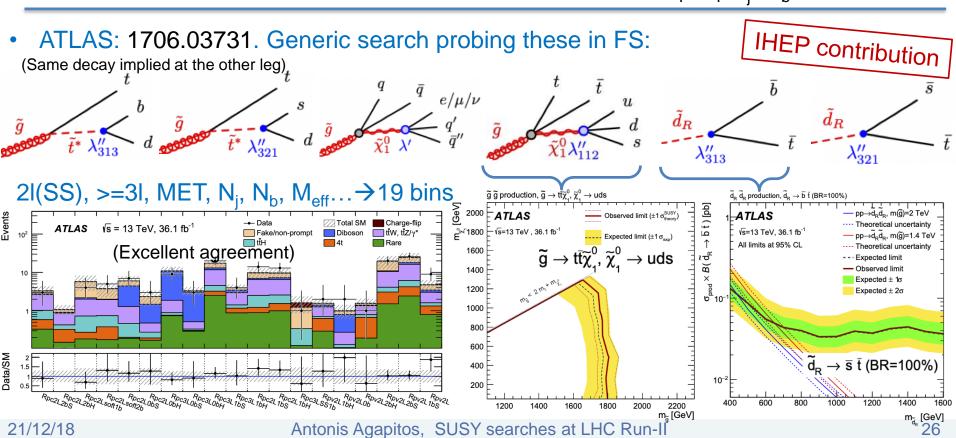



$\chi_1^{\pm}, \chi_1^{\pm}$ pair production (ATLAS)

• Charginos: $\chi^{\pm}_{1}, \chi^{\pm}_{1} \rightarrow 2$ OS-lep. MET>110 GeV, 0 or 1 non-b jet, $M_{T2} > 100$ GeV

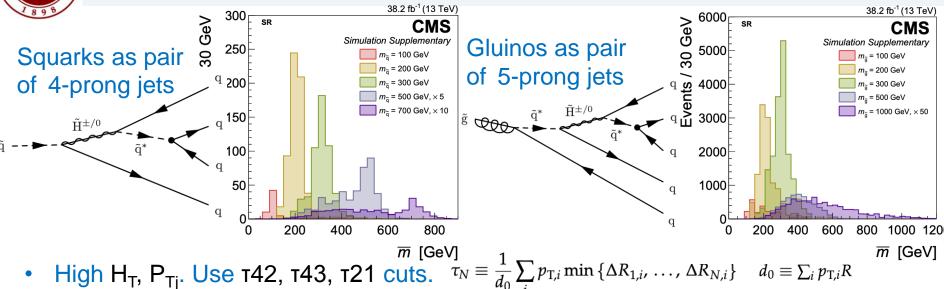
Stau/snueutrino: 2 OS-tau, MET>150 GeV, b-jet veto, M_T-M_Z<10 GeV, M_{T2}

RPV SUSY searches (Huge chapter)

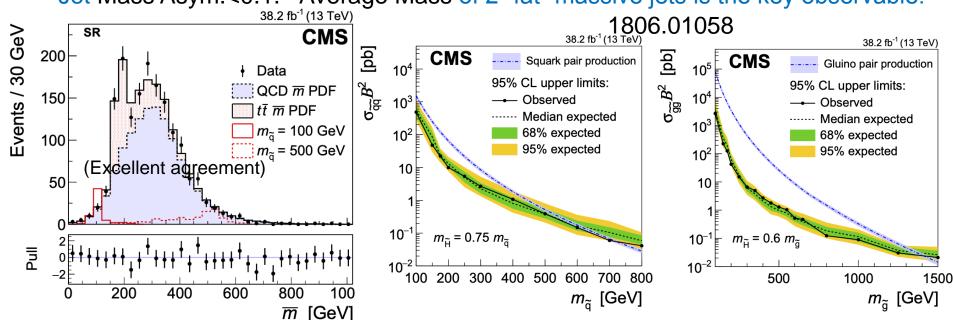

Atoms
4.9%
Dark
Matter
26.8%

R-parity: $P_R = (-1)^{2S+3(B+L)}$ not conserved \rightarrow

- LSP unstable → SUSY decays to SM finally →No DM candidate
- No MET from LSPs at SFs→ SM-like signatures (ie: multi-jet)


Searches Machinery:

- Boosted/merged jets with substructure (N-subjetinness)
- Resonances at jet masses
- Extra discrimination with std "tools": H_T, S_T N_j, N_b,...



RPV SUSY, with "bump" of massive jets

• Jet Mass Asym.<0.1. Average Mass of 2 "fat" massive jets is the key observable:

Summary & conclusion

- There are really many more (uncovered here) results.
- ATLAS & CMS are searching for SUSY in every possible combination
- We haven't found evidence of SUSY (yet)
- New results with x4 higher stat (140 fb⁻¹) will come soon
- If full Run-2 results provide no evidence... perhaps we'll be allowed to "speak bad" about Natural SUSY... →

14:00	Beyond Standard Model (until 16:00) (Science Hall 101)
14:00	SUSY Search activities at IHEP - Da Xu (IHEP, Beijing)
14:15	Inclusive and Electroweakino SUSY search with leptons - Yang LIU (IHEP)
14:30	Electroweakino SUSY search with Wh - Huajie Cheng (高能所)
14:45	Search for direct stau production with the ATLAS detector - ChenZheng Zhu (S)

More SUSY results and details on experiments' public pages:

- → https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
- → https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Overview of SUSY results: gluino pair production $36 \text{ fb}^{-1} (13 \text{ TeV})$ BACK UP STUFF $\begin{array}{c} \mathbf{pp} \to \tilde{\mathbf{g}}\tilde{\mathbf{g}} \\ \mathbf{0}\ell: \ \mathrm{arXiv:} 1710.11188; 1704.07781, 1705.04650, 1802.02110 \end{array}$ 1l: arXiv:1705.04673;1709.09814

 2ℓ same-sign: arXiv:1704.07323

 $\geq 3\ell$: arXiv:1710.09154

 $\tilde{\mathbf{g}} \to \mathbf{t}\tilde{\mathbf{t}} \to \mathbf{t}\mathbf{t}\tilde{\chi}_1^0$ 0 ℓ : arXiv:1710.11188

1 ℓ : arXiv:1705.04673

 2ℓ same-sign: arXiv:1704.07323

 $\tilde{\mathbf{g}} \to \mathbf{t}\tilde{\mathbf{t}} \to \mathbf{t}\mathbf{c}\tilde{\chi}_1^0$ 0 ℓ : arXiv:1710.11188

 2ℓ same-sign: arXiv:1704.07323

 $\tilde{\mathbf{g}} \to \mathbf{tb} \tilde{\chi}_1^{\pm} \to \mathbf{tbff}' \tilde{\chi}_1^{\mathbf{0}}$ 0ℓ : arXiv:1704.07781 2ℓ same-sign: arXiv:1704.07323 $\tilde{\mathbf{g}} \to (\mathbf{t}\mathbf{t}\tilde{\chi}_1^0/\mathbf{b}\mathbf{b}\tilde{\chi}_1^0/\mathbf{t}\mathbf{b}\tilde{\chi}_1^\pm \to \mathbf{t}\mathbf{b}\mathbf{f}\mathbf{f}'\tilde{\chi}_1^0) \boxed{\mathbf{0}\ell: \text{arXiv:}1710.11188}$

 $\tilde{\mathbf{g}} \to \mathbf{b} \mathbf{b} \tilde{\chi}_1^0$ 0 ℓ : arXiv:1705.04650;1704.07781,1802.02110 $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_1^0$ 0 ℓ : arXiv:1705.04650;1704.07781,1802.02110

 $\tilde{\mathbf{g}} \to \mathbf{q}\mathbf{q}(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{\mathbf{0}}) \to \mathbf{q}\mathbf{q}(\mathbf{W}/\mathbf{Z})\tilde{\chi}_1^{\mathbf{0}}$ 0ℓ : arXiv:1704.07781 $\geq 3\ell$: arXiv:1710.09154

 $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_1^{\pm} \to \mathbf{q} \mathbf{q} \mathbf{W} \tilde{\chi}_1^0$ 1 ℓ : arXiv:1709.09814 2ℓ same-sign: arXiv:1704.07323

 2ℓ same-sign: arXiv:1704.07323

 $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_2^0 \to \mathbf{q} \mathbf{q} \mathbf{H} \tilde{\chi}_1^0$ 0 ℓ : arXiv:1712.08501 $\tilde{\mathbf{g}} \to \mathbf{q}\mathbf{q}\tilde{\chi}_{\mathbf{2}}^{0} \to \mathbf{q}\mathbf{q}\mathbf{H}/\mathbf{Z}\tilde{\chi}_{\mathbf{1}}^{0}$ 0 ℓ : arXiv:1712.08501

0

250 500 750 1000 1250

 $BF(\tilde{\chi}_1^{\pm}; \tilde{\chi}_2^0) = 2:1, \ x = 0.5$

mass scale [GeV]

BF $(\tilde{\chi}_1^{\pm}; \tilde{\chi}_2^0) = 2:1, x = 0.5$ x = 0.5x = 0.5

1500

 $\Delta M_{\tilde{\chi}_{1}^{\pm}} = 20 \text{ GeV}$

 $\Delta M_{\tilde{t}} = M_t, M_{\tilde{\chi}_1^0} = 400 \text{ GeV}$

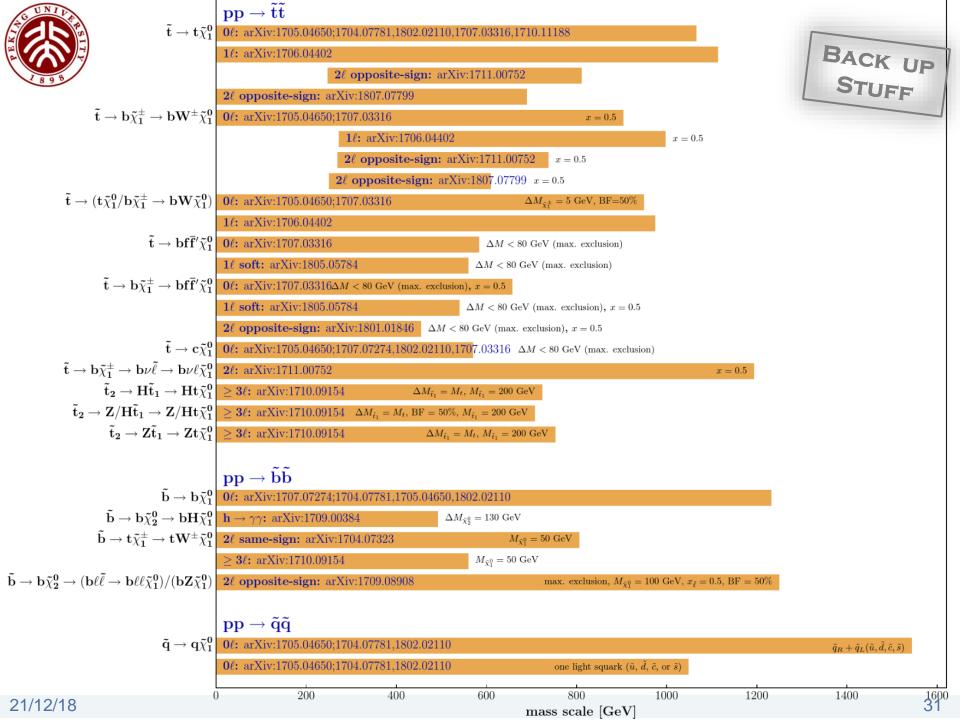
 $\Delta M_{\tilde{t}} = M_t, M_{\tilde{\chi}_1^0} = 400 \text{ GeV}$

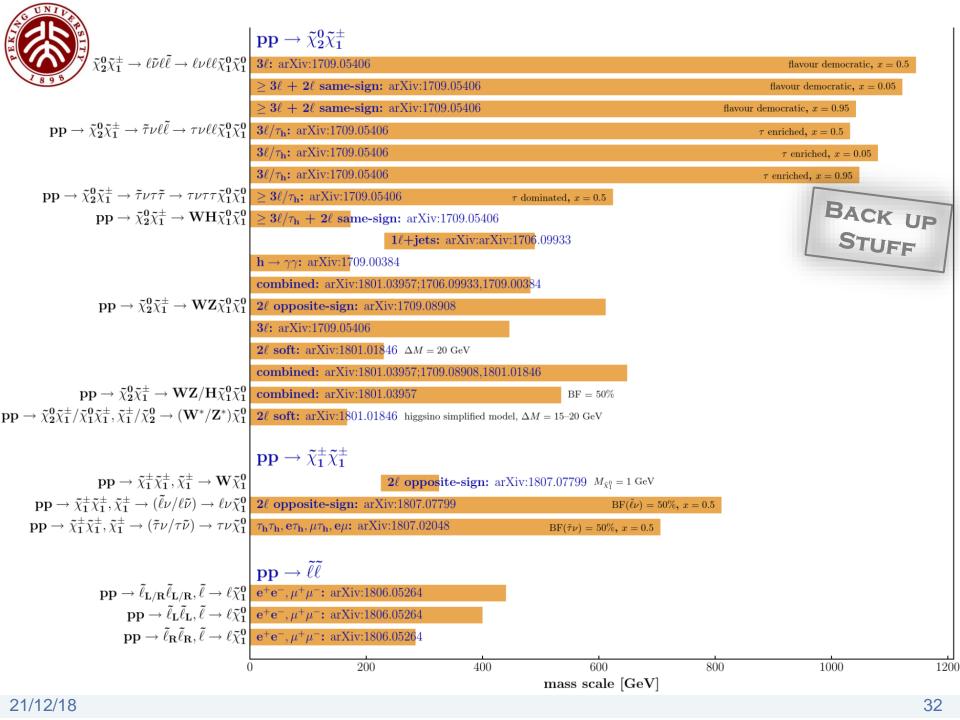
 $\Delta M_{\tilde{t}} = M_t, M_{\tilde{\chi}_1^0} = 400 \text{ GeV}$

 $\Delta M_{\tilde{t}} = 20 \text{ GeV}$

 $\Delta M_{\tilde{\chi}_1^\pm}=5~\mathrm{GeV},\,M_{\tilde{\chi}_1^0}=200~\mathrm{GeV}$

 $\Delta M_{\tilde{\chi}_{i}^{\pm}} = 5 \text{ GeV}$


 $\Delta M_{\tilde{\chi}_{1}^{\pm}} = 5 \text{ GeV, BF(tt:bb:tb)} = 1:1:2$


 $\Delta M_{\bar{t}} = 20 \text{ GeV}$

BF = 50%

1750

2000

$$\tilde{\mathbf{g}} \rightarrow \mathbf{q} \mathbf{q} \tilde{\chi}_{1}^{0} \rightarrow \mathbf{q} \mathbf{q} \gamma \tilde{\mathbf{G}}$$

$$\tilde{\mathbf{g}} \rightarrow \mathbf{q} \mathbf{q} \tilde{\chi}_{1}^{0} \rightarrow \mathbf{q} \mathbf{q} \gamma \tilde{\mathbf{G}}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1711.08008}$$

$$\gamma + \mathbf{H}_{\mathbf{T}} : \operatorname{arXiv:1707.06193}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1707.06193}$$

$$\gamma + \mathbf{H}_{\mathbf{T}} : \operatorname{arXiv:1707.06193}$$

$$\gamma + \ell + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1707.06193}$$

$$\gamma + \ell + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{sUS-17-012}$$

$$\mathbf{g} \rightarrow \mathbf{q} \mathbf{q} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \mathbf{Z} \tilde{\mathbf{G}}$$

$$\tilde{\mathbf{q}} \rightarrow \mathbf{q} \tilde{\chi}_{1}^{0} \rightarrow \mathbf{q} \gamma \tilde{\mathbf{G}}$$

$$\tilde{\mathbf{q}} \rightarrow \mathbf{q} \tilde{\chi}_{1}^{0} \rightarrow \mathbf{q} \gamma \tilde{\mathbf{G}}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1711.08008}$$

$$\gamma + \mathbf{H}_{\mathbf{T}} : \operatorname{arXiv:1707.06193}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1707.06193}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1711.08008}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1711.08008}$$

$$\gamma + \mathbf{M} \mathbf{E}_{\mathbf{T}} : \operatorname{arXiv:1711.08008}$$

$$ilde{\mathbf{q}} o \mathbf{q} ilde{\chi}_1^0 o \mathbf{q} \gamma ilde{\mathbf{G}}$$

$$ightarrow \mathbf{q} \gamma \mathbf{\tilde{G}}/\mathbf{q} \mathbf{\tilde{\chi}_1^{\pm}}
ightarrow \mathbf{q} \mathbf{W} \mathbf{\tilde{G}})$$

$$\mathbf{pp} \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0} \to \gamma \tilde{\mathbf{G}}, \tilde{\chi}_{1}^{\pm} \to \mathbf{W} \tilde{\mathbf{G}}$$

$$\begin{array}{c} \mathbf{pp} \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0} \to \gamma \tilde{\mathbf{G}}, \tilde{\chi}_{1}^{\pm} \to \mathbf{W} \tilde{\mathbf{G}} \\ \hline \gamma + \text{ME}_{\mathbf{T}}: \text{ arX} \\ \gamma + \ell + \text{ME}_{\mathbf{T}}: \text{ SUS-17-012} \\ \hline \mathbf{pp} \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} \to 2 \times [(\mathbf{Z}/\mathbf{h}/\gamma)\tilde{\mathbf{G}}] + \mathbf{X}_{\text{soft}} \\ \hline \gamma + \text{ME}_{\mathbf{T}}: \text{ arXiv:1711.08008} \end{array}$$

$$\mathbf{pp}
ightarrow ilde{\chi}_{\mathbf{i}}^{\mathbf{0},\pm} ilde{\chi}_{\mathbf{j}}^{\mathbf{0},\pm}
ightarrow \mathbf{hh ilde{G} ilde{G}} + \mathbf{X}_{\mathrm{soft}}$$

$$\mathbf{pp} o ilde{\chi}_{\mathbf{i}}^{\mathbf{0},\pm} ilde{\chi}_{\mathbf{i}}^{\mathbf{0},\pm} o (\mathbf{h}/\mathbf{Z}) (\mathbf{h}/\mathbf{Z}) ilde{\mathbf{G}} ilde{\mathbf{G}} + \mathbf{X}_{\mathrm{soft}}$$

 $\mathbf{pp} o ilde{\chi}_{\mathbf{i}}^{\mathbf{0},\pm} ilde{\chi}_{\mathbf{j}}^{\mathbf{0},\pm} o \mathbf{ZZ} ilde{\mathbf{G}} ilde{\mathbf{G}} + \mathbf{X}_{\mathrm{soft}}$

 $|\mathbf{pp} \to \tilde{\chi}_1^0 \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$

 $\mathbf{pp} \to (\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_1^0)(\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_1^0)$

 $\geq 3\ell/\tau_{\rm h}$: arXiv:1709.05406 $h \to bb$: arXiv:1709.04896

 $\mathbf{h} \rightarrow \gamma \gamma$: arXiv:1709.00384 **combined:** arXiv:1801.03957 **2** ℓ opposite-sign: arXiv:1709.08908 BF = 50%

 $\geq 3\ell/\tau_h$: arXiv:1709.05406 BF = 50% $h \to \gamma \gamma$: arXiv:1709.00384 BF = 50%

combined: arXiv:1801.03957 BF = 50% 2ℓ opposite-sign: arXiv:1709.08908

 $\geq 3\ell/\tau_{\rm h}$: arXiv:1709.05406

250

(max. exclusion) (max. exclusion)

(max. exclusion) (max. exclusion)

(max. exclusion)

(max. exclusion)

(max. exclusion) (max. exclusion) (max. exclusion) (max. exclusion)

combined: arXiv:1801.03957 1250 500 1000 1500 1750 2000 750

(max. exclusion)

(max. exclusion)

 $BF(Z:H:\gamma) = 1:1:2$

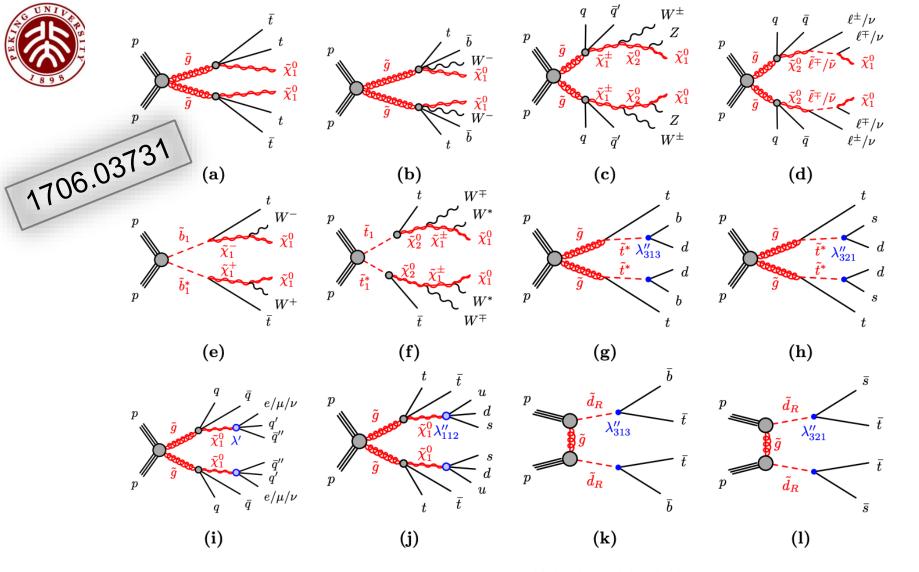
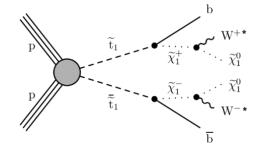
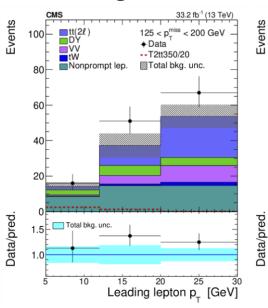
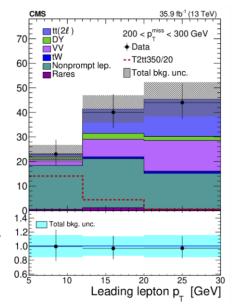
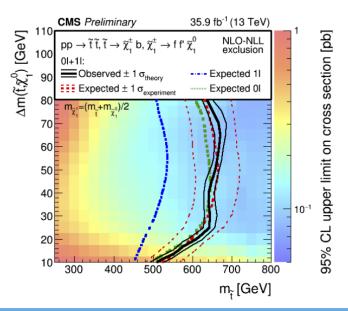



Figure 1. RPC SUSY processes featuring gluino ((a), (b), (c), (d)) or third-generation squark ((e), (f)) pair production studied in this analysis. RPV SUSY models considered are gluino pair production ((g), (h), (i), (j)) and t-channel production of down squark-rights ((k), (l)) which decay via baryon- or lepton-number violating couplings λ'' and λ' respectively. In the diagrams, $q \equiv u, d, c, s$ and $\ell \equiv e, \mu, \tau$. In figure 1d, $\tilde{\ell} \equiv \tilde{e}, \tilde{\mu}, \tilde{\tau}$ and $\tilde{\nu} \equiv \tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau$. In figure 1f, the W^* labels

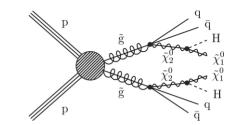
indicate largely off-shell W bosons — the mass difference between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ is around 1 GeV.

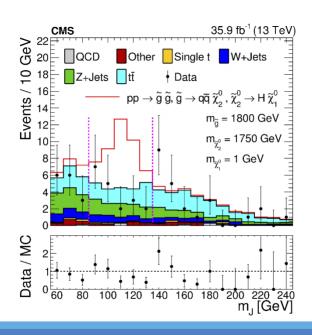

Compressed stops

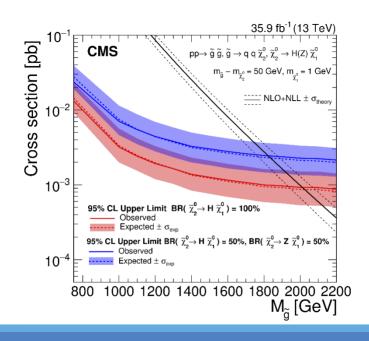

Compressed scenario with small Δm (\tilde{t} , LSP) proceeds through an off-shell W, resulting in low- p_T decay products.


Rely on large ISR boost for sizeable E_T^{miss}

Searches with 11 and 21,

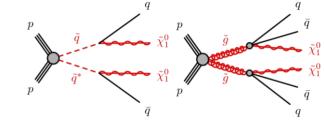

Backgrounds from MC normalized to data in control regions.

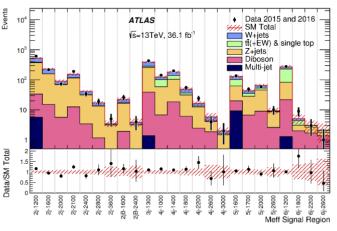


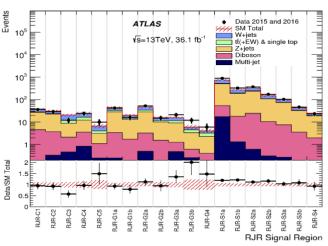


Boosted Higgs search

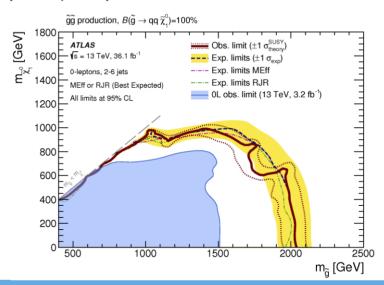
High $p_T H \to b \bar b$ decay with small opening angle. Use large angle jets to capture full Higgs decay. Identify Higgs tags by presence of two displaced sub-jets. Jet mass shows clear peaking structure


Select events with 1 or 2 Higgs tags and large missing energy. Backgrounds predicted from mass and bb-tag sidebands in data.




arXiv:1712.08501

OL search for squarks and gluinos



Events with 0-leptons and 2-6 jets. Signal regions defined using:

• $m_{eff} = \sum_{jet} p_T^{jet} + E_T^{miss}$ or the Recursive Jigsaw Reconstruction (RJR)

Using the **best** SR of the two approaches.

Masses of up to 2 TeV (gluinos) and 1.5 TeV (squarks) are probed.

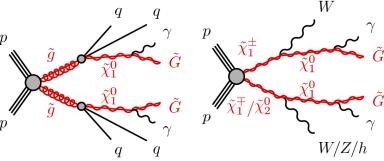
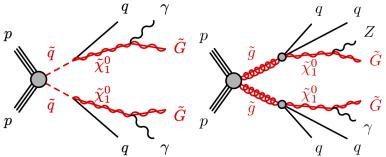
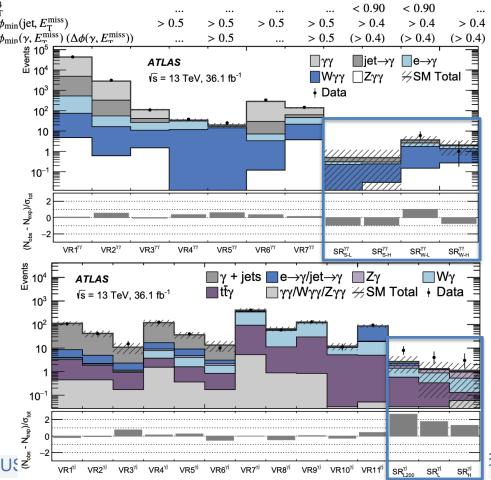
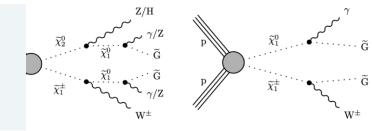


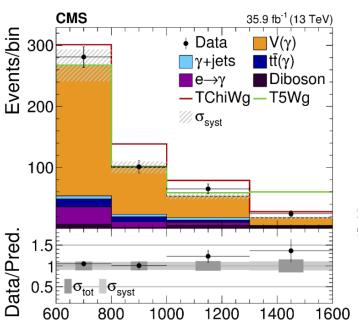
Table 1: The requirements defining the seven SRs for the diphoton and photon+jets searches. All symbols are defined in the text. An ellipsis is entered when no such requirement is made in the given signal region.

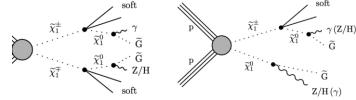
 $SR_{W-H}^{\gamma\gamma}$ $SR_{S-H}^{\gamma\gamma}$ $SR_{W-L}^{\gamma\gamma}$ $SR_{L200}^{\gamma j}$ $SR_H^{\gamma j}$ Signal region Number of photons ≥ 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 $E_{\rm T}^{\gamma}$ [GeV] > 75 > 75 > 75 > 75 > 145 > 145 > 400 Number of jets ≥ 5 ≥ 5 ≥ 3 Number of leptons 0 0 0 $E_{\rm T}^{\rm miss}$ [GeV] > 150 > 250 > 150 > 250 > 300 > 200 > 400 $H_{\rm T}$ [GeV] > 1500 > 2750> 2000> 1000 $m_{\rm eff}$ [GeV] > 2000 > 2000> 2400 < 0.90< 0.90 $\Delta \phi_{\min}(\text{jet}, E_{\text{T}}^{\text{miss}})$ > 0.5> 0.5> 0.5> 0.5 > 0.4> 0.4 $\Delta \phi_{\min}(\gamma, E_{\scriptscriptstyle T}^{\text{miss}}) (\Delta \phi(\gamma, E_{\scriptscriptstyle T}^{\text{miss}}))$ > 0.5> 0.5(>0.4)(> 0.4)

Figure 1: Typical production and decay processes for the (left) gluino-production and (right) electroweak-production instances of the GGM model for which the NLSP is a binolike neutralino. These models are referred to in the text as the gluino-bino and wino-bino models, respectively.

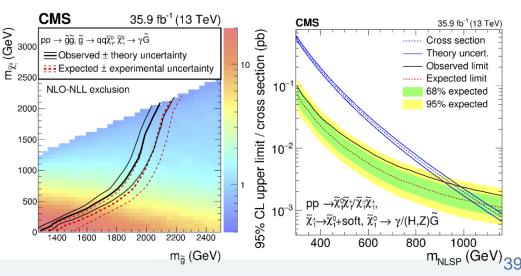




Figure 2: Typical production and decay processes for (left) the squark-production instance of the GGM model for which the NLSP is a binolike neutralino, and (right) the gluino-production instance of the GGM model for which the NLSP is a higgsino-bino neutralino admixture. These models are referred to in the text as the squark-bino and higgsino-bino models, respectively.

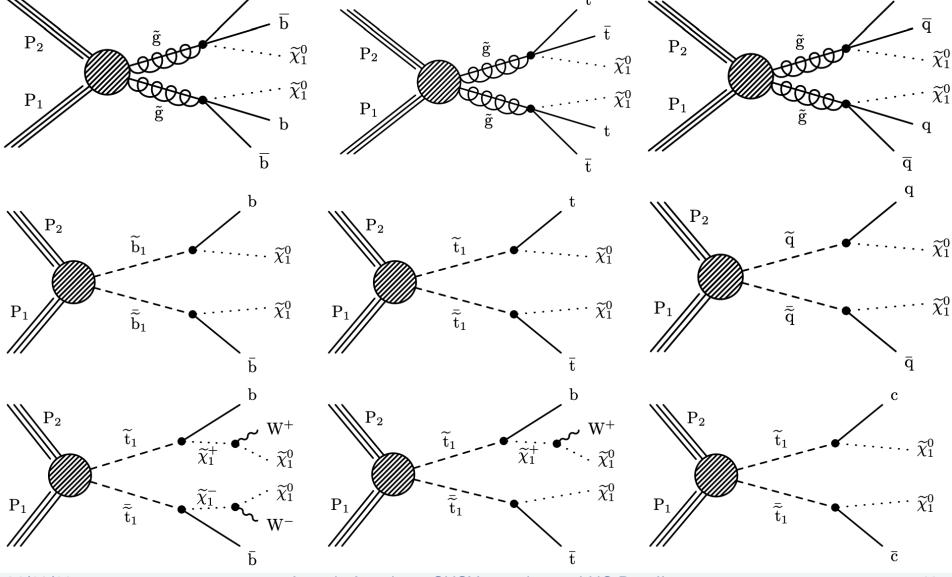



CMS 1711.08008, GMSB, >=1γ

S_τ (GeV)


This analysis sets the most stringent limits for the studied models.

At least one photon and large E_T^{miss}


Signal regions defined in bins of $S_T^{\gamma} = E_T^{miss} + \sum_{\gamma_i} p_T(\gamma_i)$

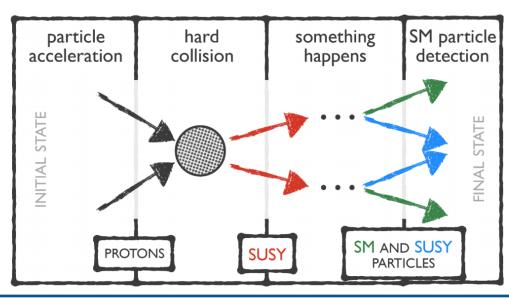
Gaugino masses up to 950 GeV and gluino masses up to 2100 GeV are probed.

More Signatures from M_{T2} 1705.04650

Simplified Models of SUSY Signals

We can categorise SUSY signals in terms of production and decay modes:

SUSY Production:


- Typically pair-produced (MSSM; assuming R-parity conservation)
- Production modes →
 choice guided by cross-sections

SUSY Decay:

- Decay into SUSY and SM particles → final states
- Mass splitting Δm (final initial SUSY particles) dictates possible decay modes and kinematics

Production modes:

- Strong: squarks, gluinos
- EWK: charginos, neutralinos, sleptons

Final states:

- Hadronic $(0\ell) = \mathbf{jets}$
- Single-**leptonic** (1ℓ)
- Multi-leptonic (2^{+})
- MET in the form of LSPs (neutralinos) and neutrinos

SM: Successes & Shortcomings

7 TeV CMS measurement (L ≤ 5.0 fb⁻¹)

7 TeV Theory prediction

8 TeV Theory prediction

CMS 95%CL limit

8 TeV CMS measurement (L ≤ 19.6 fb⁻¹)

- SM: Very successful theory:
- Precisely pred.: $\sigma \sim [10^{11} 10^{-3}] \text{ pb}$
- Successful pred. of Higgs BRs.
- No evidence for deviation from SM.
- But SM seams not a "final theory":
- "Hierarchy/Naturalness" problem?
- **GUT Unification?**
- Gravity QFT?
- Dark Matter & Dark Energy?

 $m_{Higgs}^2 = m_{bare}^2 - [\pm \lambda \Lambda_{cut}^2 \pm ...] = 125^2 \, GeV^2$

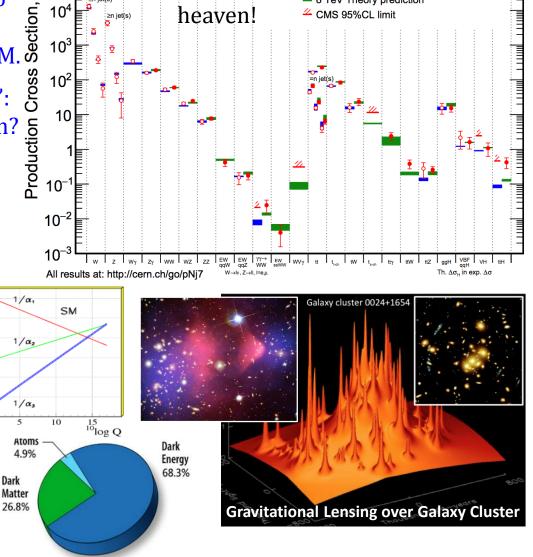
New Physics at:

$$\Lambda_{\text{cut}} \sim 10^2 - 10^{18} \text{GeV}$$

Higgs bare mass squared Gauge

 $(0.125 \text{ TeV})^2$
 m_H^2

Higgs bare mass squared Gauge

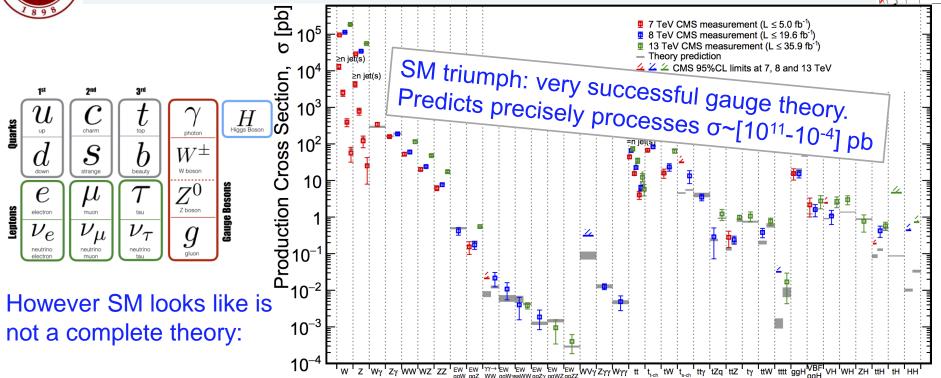

 M_H^2

Higgs Higgs Higgs

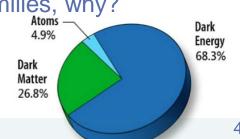
 M_H^2
 M_H^2

30

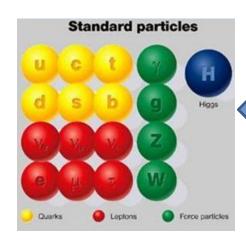
20 10


Stairway to

New Physics

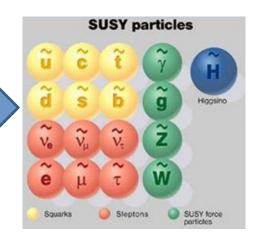


SM: successes & shortcomings



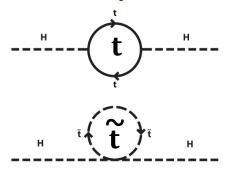
- m_{Higgs} : renormalizable $\rightarrow m_{Higgs}^2 = m_{bare}^2$ $[\pm \lambda \Lambda_{cut}^2 \pm ...] = 125^2 \text{ GeV}^2$ Quantum corrections up to $\Lambda_{cut} \sim 10^2 - 10^{18} \text{ GeV}$
 - $\Lambda_{\text{cut}} \sim 10^{18} \,\text{GeV}$, Pl.-scale: $125^2 = \frac{1234567890123456789012345678901234567890123456789012345678996720}{123456789012345678901234567890123456789012345678996720}$
 - → "Hierarchy" or "Naturalness" Problem
- Unification GUT? Gravity QFT? 25 free param., 3 fermion families, why?
- Also shortcomings in Cosmology: Dark Matter, Dark Energy
 - → SM looks "effective" rather than fundamental theory...

SUperSYmmetry: SUSY

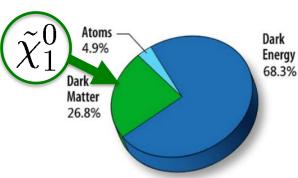

New Principle of Nature Δ spin = $\frac{1}{2}$

Spin Based Symmetry

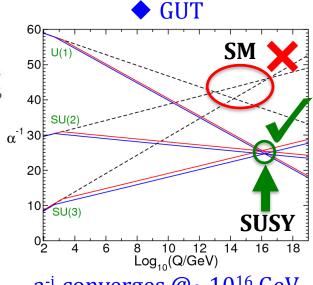
Fermion ←→ Boson


M_{SM-particle} < or << M_{SUSY-Sparticle}

Same couplings as in SM


SUSY proposes solutions to SM problems:

Hierarchy Problem



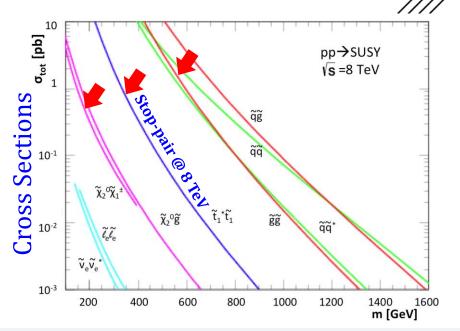
Sparticle loops cancel out corrections (if $\Lambda_{cut} \sim < 1 \text{ TeV}$)

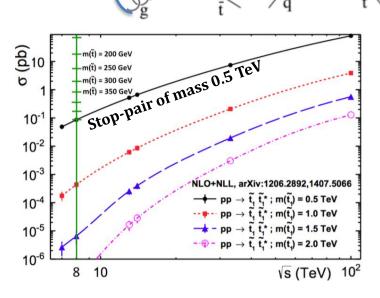
Dark Matter

LSP \rightarrow DM candidate (if "R-parity" conserved) $P_R = (-1)^{2s+3(B+L)}$

a-i converges @~1016 GeV

MSSM: couplings, production




- ◆ MSSM: main framework (124 par.), cMSSM (5 par.), pMSSM (19 par.).
- ◆ SUSY inherits SM couplings but: Flavor mixing → Mass eigenstates. Unknown mixing → unknown couplings, BR...

$$\tilde{B}, \tilde{W}^0, \tilde{h}^0, \tilde{H}^0 \longrightarrow \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$$

$$\tilde{W}^{\pm} \tilde{H}^{\pm} \longrightarrow \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$$

◆ LHC can produce →& probe SUSY with x-sec:

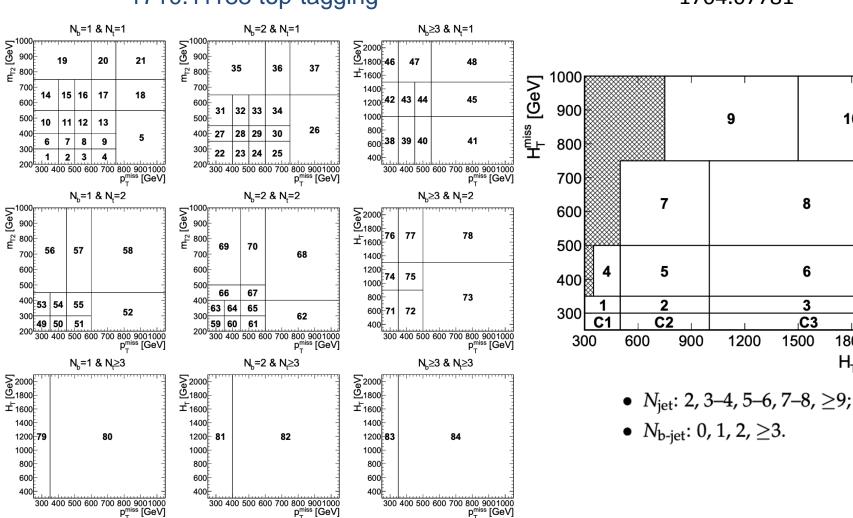
0954-3899

Reconstructing *R*-parity conserving supersymmetric events will be difficult at the large hadronic collider (LHC) because of the following factors which limit our knowledge of the event:

- two massive particles have escaped undetected;
- the masses of these particles are unknown;
- the masses of their 'parent' particles are unknown;
- the centre-of-mass energy of the collision is not known, and
- the boost along the beam axis of the collision centre-of-mass is not known either.

Full hadronic search SR-bins

1710.11188 top-tagging


1704.07781

10

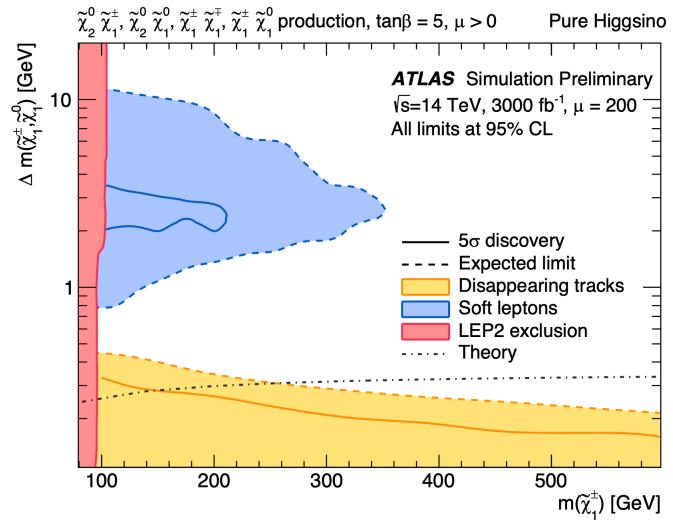
1800

H_⊤ [GeV]

2100

1-Lep ΔΦ search SR-bins

11.	11.	L_{T}	Δφ	H_{T}	Bin	Signal T1tttt $(m_{\widetilde{g}}, m_{\widetilde{\chi}^0})$ [TeV]		Predicted	Observed
$n_{ m jet}$	$n_{\rm b}$	[GeV]	[rad]	[GeV]	name	(1.9, 0.1)	$(\tilde{1}.4, 1.1)$	background	data
[6, 8]	=1	[250, 450]	1.0	[500, 1000]	A01	< 0.01	3.02 ± 0.24	206 ± 15	194
				[1000, 1500]	A02	0.03 ± 0.01	0.37 ± 0.08	52.5 ± 8.2	48
				≥1500	A03	0.07 ± 0.01	0.05 ± 0.03	18.0 ± 4.2	19
		[450, 600]	0.75	[500, 1000]	A04	0.03 ± 0.01	0.66 ± 0.11	13.1 ± 2.7	10
				[1000, 1500]	A05	0.05 ± 0.01	0.27 ± 0.07	4.5 ± 1.7	6
				≥1500	A06	0.09 ± 0.01	0.03 ± 0.02	1.7 ± 1.0	5
		[600, 750]	0.5	[500, 1000]	A07	0.04 ± 0.01	0.08 ± 0.04	4.0 ± 1.6	4
				[1000, 1500]	A08	0.08 ± 0.01	0.35 ± 0.08	2.8 ± 1.3	5
				≥1500	A09	0.17 ± 0.02	0.02 ± 0.02	1.8 ± 1.2	2
		≥750	0.5	≥500	A10	1.01 ± 0.04	0.28 ± 0.07	2.6 ± 1.1	2
	=2	[250, 450]	1.0	[500, 1000]	B01	0.01 ± 0.01	2.06 ± 0.20	147 ± 11	143
				[1000, 1500]	B02	0.04 ± 0.01	< 0.01	43.5 ± 7.5	37
				≥1500	B03	0.13 ± 0.01	< 0.01	10.9 ± 2.8	12
		[450, 600]	0.75	[500, 1000]	B04	0.02 ± 0.01	0.54 ± 0.10	9.4 ± 2.2	10
				[1000, 1500]	B05	0.10 ± 0.01	0.17 ± 0.06	3.4 ± 1.7	9
				≥1500	B06	0.19 ± 0.02	< 0.01	1.39 ± 0.82	2
		[600, 750]	0.5	[500, 1000]	B07	0.03 ± 0.01	< 0.01	2.4 ± 1.3	3
				[1000, 1500]	B08	0.10 ± 0.01	0.26 ± 0.07	1.16 ± 0.90	1
				≥1500	B09	0.24 ± 0.02	0.03 ± 0.02	1.05 ± 0.78	0
		≥750	0.5	≥500	B10	1.50 ± 0.05	0.32 ± 0.08	0.42 ± 0.34	3
	≥3	[250, 450]	1.0	[500, 1000]	C01	0.01 ± 0.01	1.03 ± 0.14	32.9 ± 3.3	34
				[1000, 1500]	C02	0.06 ± 0.01	< 0.01	10.6 ± 2.1	5
				≥1500	C03	0.13 ± 0.01	< 0.01	2.93 ± 0.91	3
		[450, 600]	0.75	[500, 1000]	C04	0.03 ± 0.01	0.29 ± 0.07	1.38 ± 0.50	2
				[1000, 1500]	C05	0.09 ± 0.01	0.20 ± 0.06	0.72 ± 0.39	1
				≥1500	C06	0.20 ± 0.02	< 0.01	0.66 ± 0.45	0
		≥600	0.5	≥500	C07	1.85 ± 0.05	0.23 ± 0.06	1.66 ± 0.69	2
≥9	=1	[250, 450]	1.0	[500, 1500]	D01	0.01 ± 0.01	0.90 ± 0.12	7.9 ± 1.1	7
				≥1500	D02	0.03 ± 0.01	0.02 ± 0.02	2.15 ± 0.67	1
		≥450	0.75	[500, 1500]	D03	0.13 ± 0.01	0.72 ± 0.11	1.08 ± 0.39	0
				≥1500	D04	0.38 ± 0.02	0.10 ± 0.04	0.50 ± 0.27	1
	=2	[250, 450]	1.0	[500, 1500]	E01	0.02 ± 0.01	1.15 ± 0.14	7.26 ± 0.97	9
				≥1500	E02	0.08 ± 0.01	< 0.01	2.81 ± 0.89	4
		≥450	0.75	[500, 1500]	E03	0.23 ± 0.02	0.83 ± 0.12	0.71 ± 0.26	2
				≥1500	E04	0.72 ± 0.03	0.20 ± 0.05	0.59 ± 0.31	1
	≥3	[250, 450]	1.0	[500, 1500]	F01	0.03 ± 0.01	0.79 ± 0.11	3.55 ± 0.72	3
				≥1500	F02	0.13 ± 0.01	< 0.01	0.83 ± 0.35	0
	<3	≥450	0.75	[500, 1500]	F03	0.31 ± 0.02	0.26 ± 0.06	0.33 ± 0.17	0
				≥1500	F04	1.04 ± 0.04	0.17 ± 0.05	0.05 ± 0.05	0


1709.09814

Compressed and Displaced SUSY

Higgsinos expected sensitivity

