Recent SM EW results from LHC

Rustem Ospanov for the ATLAS and CMS collaborations

University of Science and Technology of China

December 21, 2018

Introduction

- SM is a relativistic renormalizable quantum theory of 12 fermions with 3 forces mediated by spin-1 gauge bosons
- $SU(2) \times U(1)$ gauge symmetry is spontaneously broken \rightarrow massive W^{\pm} and Z bosons
- All SM parameters are measured experimentally (except for some of neutrino parameters):
 - α_{QCD}
 - fermion masses and mixing
 - $-m_H, m_Z, G_F$, fine structure constant
- SM predictions ~agree with data
- SM is self-consistent but not complete

Image by Flip Tanedo

SM EW measurements

Long history of EW measurements at colliders:

- SPS, SLC, LEP, Tevatron
- LEP still provides most precise measurements of W and Z parameters

Some of LHC unique capabilities:

- Higgs boson properties
- More precise measurements of top quark properties
- Observation of rare processes in pp collisions
- Test perturbative SM calculations at the EW scale

This presentation:

- Highlights of recent ATLAS and CMS EW measurements
- Focus on new results released since the previous CLHCP

N(experimental observables) >> N(SM parameters)

Outline of this presentation

Di-boson production measurements

- Probe gauge structure of SM with high precision
- Sensitive to gauge boson triple coupling
- **•** Results at 13 TeV: $Z\gamma$ and WZ cross sections

Vector Boson Scattering

- Sensitive to gauge boson quartic coupling
- ▶ Results at 13 TeV: electroweak production of WZ and same sign WW

Z boson differential cross sections

• Effective leptonic weak mixing angle $\sin\theta'_{eff}$ with 8 TeV data

Neutral gauge boson self-couplings are absent at tree level in SM: \blacktriangleright ZZ γ , ZZZ, ZZ $\gamma\gamma$, ZZZZ...

 $Z\gamma
ightarrow
u
u \gamma$ production at LHC is possible via initial state radiation

• Measure $Z\gamma \rightarrow \nu\nu\gamma$ cross section to probe for neutral self-couplings

Experimental final state:

• Photon with $p_T > 150$ GeV plus high missing transverse momentum greater than 150 GeV

•
$$\mathcal{B}(Z \to \nu \nu) = 20\%$$
 - more events at high p_T^Z compared to $Z\gamma \to l^+ l^- \gamma$

Recent SM EW results from LHC

$Z\gamma ightarrow u u \gamma$ cross section

• Measured fiducial cross section: $\sigma_{Data}^{\text{ext.fid.}} = 83.7^{+3.6}_{-3.5} \text{ (stat.)}^{+6.9}_{-6.2} \text{ (syst.)}^{+1.7}_{-2.0} \text{ (lumi.) fb}$

- NNLO in QCD MCFM prediction: $\sigma_{MCFM}^{
 m ext. fid.}$ = 78.1 \pm 0.2 \pm 4.4 fb
- Dominant uncertainty due to mismodelling of photon efficiency and energy scale
- Presented yesterday by Dimitrii Krasnopevtsev
- Also measured differential cross sections: inclusive and $N_{\rm jet} = 0$
- Set limits on anomolous ZZ γ ($h_{3,4}^Z$) and $Z\gamma\gamma$ ($h_{3,4}^\gamma$) couplings factor of 3-7 improvements

Charged gauge boson self-couplings are present at tree level in SM:

- Quartic couplings: WWZZ, WWWW, WWZ γ , WW $\gamma\gamma$
- Triple couplings: WWZ, $WW\gamma$

$W^{\pm}Z$ cross section and gauge boson polarisation

- Sensitive to anomalous triple gauge boson couplings
- Select leptonic decays for clean experimental detection: $W^{\pm}Z \rightarrow I^{\pm}\nu I^{+}I^{-}$

$W^{\pm}Z$ cross section

▶ W[±]Z total cross section measured by CMS:

- Measured: $\sigma_{W\pm Z} = 48.09^{+1.00}_{-0.96} (\text{stat})^{+0.44}_{-0.37} (\text{theo})^{+2.39}_{-2.17} (\text{syst}) \pm 1.39 (\text{lumi}) \text{ pb}$
- MATRIX: $\sigma_{W\pm z} = 49.98^{+1.1}_{-1.0}$ pb (NNLO in perturbative QCD)
- Also measure precise fiducial and differential cross sections
- Experimental uncertainty is reduced for W^+Z/W^-Z ratio comparable to NNLO accuracy

Measure W^+Z/W^-Z ratio ATLAS-CONF-2018-034

$W^{\pm}Z$: limits on anomalous couplings

- CMS set limits on anomalous couplings using Effective Field Theory approach: $\delta \mathcal{L}_{AC} = c_{WWW} \times Tr[W_{\mu\nu}W^{\nu\rho}W^{\rho}_{\rho}] + c_W \times (D_{\mu}H)^{\dagger}W^{\mu\nu}(D_{\nu}H) + c_b \times (D_{\mu}H)^{\dagger}B^{\mu\nu}(D_{\nu}H)$
- Test m_{WZ} distribution for deviations from SM predictions

W and Z polarisation measurement

- Measure W/Z polarisation using lepton angular distributions
- f₀, f_L and f_R define the longitudinal, transverse-left handed and transverse-right handed helicity fractions at Born level
- Observed (expected) significance of 4.2σ (3.8σ) for longitudinally polarised W bosons

Sensitive to new broad resonances not seen by direct searches

Recent SM EW results from LHC

Di-boson measurements from both experiments agree with SM predictions

Recent SM EW results from LHC

Electroweak production of $W^{\pm}Z$ and same sign $W^{\pm}W^{\pm}$ bosons

- Also referred to as Vector Boson Scattering
- Sensitive to self-interactions of gauge bosons
- Unitarity at high energies requires presence of the SM Higgs boson

Vector Boson Scattering experimental signature:

- 2 jets with rapidity gap and large di-jet invariant mass
- Summary of VBS analyses at LHC presented yesterday by Elena Yatsenko

Recent SM EW results from LHC

Rustem Ospanov for the ATLAS and CMS collaborations

Phenomenology highlights for $W^{\pm}W^{\pm}jj$ VBS

- $W^{\pm}W^{\pm}jj$ electroweak production at LO α^{6} : VBS signal
 - 2 jets with rapidity gap and large invariant mass
 - Same sign requirement suppresses high rate SM background processes
- $W^{\pm}W^{\pm}jj$ QCD production at LO $\alpha^4 \alpha_s^2$: dominant background
- Interference between VBS and QCD processes at LO $\alpha^5 \alpha_S$: ~percents in VBS signal region
- $W^{\pm}W^{\pm}jj$ has the largest electroweak to strong production cross section ratio
 - Complete NLO correction in signal region is -17.1% 1708.00268
 - At NLO, cannot unambiguously separate EW VBS and QCD background processes

Observation of $W^{\pm}W^{\pm}jj$ electroweak production

• Both experiments reported observation of $W^{\pm}W^{\pm}jj$ electroweak production

- Enhancement of data events at high m_{jj} values classical VBS signature
- Measurement uncertainty is dominated by statistical data uncertainty
- Mis-identified leptons are important experimental background

Measurements of $W^{\pm}Zjj$ electroweak production

• CMS performs 2d fit using m_{jj} and $\Delta \eta_{jj}$ variables

 $-~W^{\pm}\textit{Zjj}$ QCD background process normalised from data: $\mu_{W^{\pm}\textit{Zjj}}^{QCD} \sim 1$

ATLAS performs multi-variate analysis - 15 kinematic variables to select $W^{\pm}Zjj$ VBS signal

 $-~W^{\pm}\textit{Zjj}$ QCD background process normalised from data: $\mu_{W^{\pm}\textit{Zjj}}^{QCD}=0.60\pm0.25$

Effective leptonic weak mixing angle

- Measure $sin^2 \theta_{eff}^{f}$ via fermion spin correlations in $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+ l^-$ process - $sin^2 \theta_{eff}^{f} = \kappa_f \times sin^2 \theta_W$, where κ_f includes EW corrections
- ► Experiments measure Forward-Backward asymmetry: $A_{FB} = \frac{3}{8}A_4 = \frac{\sigma_F \sigma_B}{\sigma_F \sigma_B}$ forward and backward hemispheres defined in Collins-Soper frame of the dilepton system
- At LO for given m_{ll} value: $\frac{d\sigma}{d(\cos\theta^*)} \propto 1 + \cos^2\theta^* + A_4\cos\theta^*$
- Different u/d quark PDF contributions and couplings to EW bosons generate A_{FB}

Effective leptonic mixing angle: results

Perform measurements using two dimensional bins of dilepton rapidity and invariant mass

- CMS fit constrains systematic uncertainty due to Parton Density Functions
- ATLAS includes forward electrons with 2.5 $<|\eta|<$ 4.9 that enhance sensitivity
- ATLAS result is checked with triple-differential Z/γ^* cross section measurements
- PDF is dominant systematic uncertainty comparable to statistical uncertainty
- Using ~20 fb⁻¹ recorded at 8 TeV factor of ~7 more data recorded at 13 TeV Z differential measurements at 13 TeV were presented yesterday by Qun Wang

 $\begin{array}{l} {\sf ATLAS: \ } \theta^{I}_{eff} = 0.23140 \pm 0.00021 \ ({\rm stat.}) \pm 0.00024 \ ({\rm PDF}) \pm 0.00016 \ ({\rm syst.}) \\ {\sf CMS: \ } \theta^{I}_{eff} = 0.23101 \pm 0.00036 \ ({\rm stat.}) \pm 0.00031 \ ({\rm PDF}) \pm 0.00018 \ ({\rm syst.}) \pm 0.00016 \ ({\rm theo.}) \\ \end{array}$

Recent SM EW results from LHC

Rustem Ospanov for the ATLAS and CMS collaborations

Summary and conclusions

Presented recent LHC results probing EW sector of the SM

- ▶ $Z\gamma \rightarrow \nu \nu \gamma$ cross section measurement and anomalous coupling tests
- $W^{\pm}Z$ cross section and gauge boson polarisation measurements
- Measurements of electroweak production of same-sign WW
- Measurements of electroweak production of WZ bosons
- Measurements of effective leptonic mixing angle
- So far, measurements agree with SM predictions at NNLO or NLO
- These and other measurements will be improved with full Run 2 dataset
- More measurements in pipeline other diboson states, triboson, etc
- Thank you and stay tuned for more results!