

Search for BSM Higgs

Speaker:

Muhammad Ahmad

on behalf of CMS & ATLAS collaborations

Institute of High Energy Physics, Chinese Academy of Sciences Beijing, China

The 4th China Large Hadron Collider Physics Workshop CCNU, Wuhan

20 December, 2018

Challenging the SM Searching for another Higgs boson

20 December, 2018

M. Ahmad (IHEP)

ATLAS: arxiv 1806.00425

Theory motivation

Extended phenomenology from theo. models (Higgs SM sector + scalar, doublet, triplet ...)

 ◆ Direct searches @ collider complementary to indirect constraints (b → sγ, g-2) and connected to BSM (i.e. dark matter)

Scalar singlet

They are not charged under the SM symmetries Direct production of light or from the h₁₂₅ decay

2HDM + scalar

 Theories for light Dark Matter with scalar mediator

20 December, 2018

Doublet

Two-Higgs Doublet Models (2HDM)

extend the SM by adding one Higgs doublets, lead to 5 Higgs bosons H^+ , H^- , A (CP-odd), H and h (CP-even)

4 types according to couplings of two Higgs doublets with fermion sector:

Type-I:only one doublet couples to fermions Type-II: up vs. down Lepton Specific: quark vs lepton Flipped Coupling: b enhanced т suppressed

Triplet

Fermiophobic $H^{\pm}, H^{\pm\pm}$ bosons appear in Higgs sectors extended by a scalar triplet Φ

- ➡ couplings to W and Z bosons at tree level
- e.g. Georgi-Machacek (GM) model

Exotic Higgs Sector

- ✦ Full mass coverage is needed to enhance the sensitivity to variety of models
 - ◆ Extended phenomenology from theoretical models (higgs SM sector+scalar, doublet, triplet ...)
 - Direct searches @ collider complementary to indirect constraints (b->s γ, g-2) and connected to BSM (i.e. dark matter)
 - Multiple analysis techniques (i.e. boosted objects, soft triggers, high p_T b-tagging, mva ...)
 - General enhancement of production xsection from PDF at 13TeV
 i.e. exploit different production modes: gluon fusion, VBF, bb/tt radiation, W/Z associated

No golden channel important to cast a wide net

20 December, 2018

Run 2 major upgrade of the L1 trigger system increases the $\tau_{\rm h}$ collection efficiency.

Low and high pT bTagging play a key role to suppress the ttbar background.

MET triggers suffers threshold dictated by the rate

https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/MissingEtTriggerPublicResults

<u>HIGG-2017-01</u>

Efficienc

0.8

0.6

0.4

0.2

ATLAS Preliminary

200

150

√s = 13 TeV, 135 pb⁻¹

data16 lepton triggered

<u> = 21.5

L1_XE50

250

HLT xe80 tc lcw L1XE50

HLT xe90 tc mht L1XE50

 E_{τ}^{miss} (offline, no muons, no soft term) [GeV]

350

400

HLT xe100 L1XE50

300

M. Ahmad (IHEP)

HIG-17-026

20 December, 2018

Additional Higgs like scalars

<u>Link</u>

Indirect constraints in BSM model imposed by h₁₂₅

Low tanβ, high mass generally unexplored One analysis dominates in one case but not a general statement Direct search limits on a heavy CP even neutral scalar H as a function of mass in the alignment limit $cos(\beta - \alpha) = 0$ in a Type II 2HDM

20 December, 2018

Higgs \rightarrow 3rd generation fermions

Not imposed by a fundamental symmetry \rightarrow searches exist in other decay modes

 $A/H \rightarrow \mu\mu, H^{\pm} \rightarrow cs, cb$

20 December, 2018

$t(t) A/H \rightarrow tt$

Eur. Phys. J. C 77 (2017) 578

Same Sign leptons

signature helps to kill the overwhelming background. O(100) search regions binned in N_j , N_b , H_T , MET, m_T , and lepton p_T .

Statistics limited, expect continued progress in future 20 December, 2018 M. Ahmad (IHEP)

$A/H \rightarrow bb$

JHEP 08(2018) 113

Flipped Model Unique Coupling to down-type fermion

QCD multijet is the main background Three subranges to reduce bias from the choice of the background model Signal shape for different signal hypothesis

Statistics limited, expect continued progress in future 20 December, 2018 M. Ahmad (IHEP)

g

(b)tH^{\pm} \rightarrow (b)ttb

g

0000000

JHEP 11 (2018) 085

 H^+

TTbar + HF production the major background. Analysis categorized in jet and bjet multiplicity. MVA discriminant used to separate the small signal respect to the background.

$\mathsf{H}^{\pm} \rightarrow \tau v$

<u>CMS-PAS-HIG-18-014</u> JHEP 09 (2018) 139

Heavy Higgs \rightarrow diboson

This talk

	W	Z	γ	H/A/h ₁₂₅
W	$\label{eq:WW} \begin{array}{l} & \rightarrow 2l2\nu\\ & CMS-HIG-16-023,2015\\ & ATLAS-HIGG-2016-31\\ & WW \rightarrow lvqq \ ATLAS \ EXOT-2016-28\\ & H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \ CMS-PAS-SMP-17-004 \end{array}$			
Z	$H^{\pm} \rightarrow W^{\pm} Z \rightarrow 3 Iv CMS-HIG-16-027,2016$ $H^{\pm} \rightarrow W^{\pm} Z \rightarrow Ivqq ATLAS$ EXOT-2016-28	$\label{eq:22} \begin{array}{l} \text{ZZ} \to 2l2q, \ 2l2v, \ 4l \\ \text{CMS-HIG-17-012,2016 \ 36fb^{-1}} \\ \text{ZZ} \to 2l2v, \ 4l \ \text{ATLAS-HIGG-2016-19} \\ \text{Z} \ \text{W/Z} \to 2q2v \ \text{B2G-17-004} \end{array}$	9	
γ	Zγ→(2l,2q)+γ CMS-EXO-17-005, 2016 36 W/Z/h ₁₂₅ (→qq) +γ ATLAS-HIGG-2016-19		YY CMS-EXO-16-027,2016 36fb (* ATLAS PLB 775 (2017) 105	*)
H/A/ h ₁₂₅	W/Z(→Iv,2I,2v)+h ₁ B2G-17-004 W/Z+h ₁₂₅ Z CMS-HIG EXOT-20	25 ^{→bb} Z(→2I)+H/A(→bb) CMS-HIG-16-010(**) +H -16-010, 2015 16-10, EXOT-2016-34		h125h125

(*) also mass X→γγ 80-125 8TeV HIG-14-037 (**) also Z(→2I) + AH/A(→ττ) 8TeV HIG-14-034

20 December, 2018

$H \rightarrow ZZ \rightarrow 2I2q, 2I2v, 4I$

arxiv:1804.01939

Largest BR

explored both the boosted and resolved Z \rightarrow qq ggH, VBF Search over Mzz and

$$\mathcal{D}_{bkg}^{Zjj} = \left[1 + \frac{\mathcal{P}_{Zjj}(\vec{\Omega}^{X \to 2\ell 2q} | m_{ZZ})}{\mathcal{P}_{X \to 2\ell 2q}(\vec{\Omega}^{X \to 2\ell 2q} | m_{ZZ})}\right]^{-1}$$

20 December, 2018

$H \rightarrow W/Z h \rightarrow IIbb, Ivbb, vvbb JHEP 03 (2018) 174$

20 December, 2018

$H^{\pm} \rightarrow W^{\pm}Z$

Eur.Phys.J. C78 (2018) 199

Only electron and muon channels

CMS-PAS-HIG-16-036

Both statistics limited, expect continued progress in Future

20 December, 2018

Invisible decay of Higgs

Summary

A rich program of searches for Higgs bosons in the context of models beyond the SM being pursued since Run-1

Direct search of new physics exploits:

- * Production of extra higgs decaying in Standard Model particles
- * Exotic decays of the h₁₂₅

BSM Higgs bosons are still hiding

More decay channels being explored, more statistics to come

* So far analyzed mainly (36 fb-1) , expected new results with 5 times large Run2 dataset