Measurements of charmonium production in p+p collisions at STAR

Zhen Liu

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

The 4th China LHC Physics Workshop, CCNU, 19th -22th Nov. 2018

Quarkonium in p+p collisions

- Quarkonium production can be factorized into:
 - Perturbative: production of heavy $q \overline{q}$ pair
 - Non-perturbative: quarkonium formation; involves long distances and soft momentum scales

Charmonium production mechanism

Charmonium production mechanism in elementary collisions is not fully understood

- Models differ in the treatment of hadronization
 - Color Singlet Model
 - Color Evaporation Model
 - NRQCD approach (CGC+NRQCD)
- Measurements of charmonium polarization provide further constraints on production models

PAR

J/ ψ polarization measurement

• J/ ψ polarization can be analyzed via the angular distribution of the positively charged final-state lepton, which can be expressed as:

 $W(cos\theta,\varphi) \propto 1 + \lambda_\theta cos^2\theta + \lambda_\varphi sin^2\theta cos2\varphi + \lambda_{\theta\varphi} sin2\theta cos\varphi$

- quarkonium rest frame production plane y x ()production plane b₁ \mathbf{b}_2 collision Q centre of mass frame
- θ polar angle between momentum of a positive lepton in the J/ ψ rest frame and the polarization axis z
- φ corresponding azimuthal angle

b₂

auarkonium

rest

frame

- Polarization axis z
 - Helicity (HX) frame: along the J/ ψ momentum in the center-of-mass frame of the colliding beams
 - Collins-Soper (CS) frame: bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ ψ rest frame

The Solenoid Tracker At RHIC (STAR)

• Mid-rapidity detector: $|\eta| < 1$, $0 < \varphi < 2\pi$

- **TPC**: measure momentum and energy loss
- **TOF**: measure time of flight
- **BEMC**: trigger on and identify electrons
- MTD (45% in φ , $|\eta|$ <0.5) : trigger on and identify muons
 - Timing measurement (σ~100 ps) and spatial resolution (~1 cm)
 - Reduced bremsstrahlung radiation compared to electrons

Inclusive J/ ψ cross section at 200 GeV

- The CEM model (direct J/ ψ) and NLO NRQCD (prompt J/ ψ) describe the data reasonably well for the applicable p_T ranges
- The data are close to the lower uncertainty boundary of the CGC+NRQCD calculations

Inclusive J/ ψ cross section at 500 GeV

- Measurement at low p_T from dimuon channel and high p_T from dielectron channel
- Models describe the J/ ψ production cross-section reasonably well

ψ (2S)/ ψ (1S) ratio

- Measured ψ (2S)/J/ ψ ratio in 200 GeV p+p collisions is consistent with world-wide data
- The ICEM model describes the increasing trend

Inclusive J/ ψ polarization at 200 GeV

• λ_{θ} and λ_{φ} parameters are consistent with 0 in HX and CS frames

Frame invariant quantity

• Frame invariant quantity:

$$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

- Any arbitrary choice of the experimental observation frame will give the same value of this quantity
- Good cross-check on measurements performed in different frames

• λ_{inv} as a function of p_T are consistent between HX and CS frames

J/ψ polarization parameters vs. models

- J/ψ polarization parameters compared with NRQCD calculations using two sets of Long Distance Matrix Elements (LDMEs)
- NRQCD calculations are consistent with data within uncertainties
- J/ ψ polarization at low p_T can be used to constrain the LDMEs

NRQCD1: Hong-Fei Zhang et al. Phys. Rev. Lett 114 (2015) 092006 NRQCD2: Bin Gong et al. Phys. Rev. Lett 110 (2013) 042002

Summary

- Inclusive J/ ψ cross section is measured in p+p collisions
 - Models describe the J/ ψ production cross-section reasonably well
- Inclusive J/ ψ polarization is measured in the HX and CS frames for 0 < $p_{\rm T}$ < 5 GeV/c
 - Both $\lambda_{ heta}$ and λ_{arphi} parameters are consistent with 0 in the both frames
 - J/ ψ polarization at low p_T can be used to constrain the LDMEs

Thank you!