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q  Drell-Yan: transverse energy (cf pT), beam thrust  
q  jet substructures: jet mass, angularity, n-subjettiness, … 

Many observables are sensitive to UE/PU 
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the hard process and partonic initial and final state showers are through models implemented

in Monte Carlo simulations.

In experimental and Monte Carlo studies a class of observables known as MPI sensitive

observables are used to probe the underling event activity in hadronic colliders. Transverse

energy, ET , is such an observable and is defined as

ET (⌘cut) =
X

i

p(i)
T
⇥(⌘cut � |⌘(i)|) , (1.1)

where p(i)
T

is the scalar transverse momentum of particle i and ⌘(i) is its pseudo-rapidity. For

the CMS and ATLAS experiments at the large hadron collider (LHC) the cuto↵ parameter,

⌘cut, is typically chosen to be ⇠ 2 � 2.5 (see, for example, Refs. [1–5]). Other examples of

such observables are the beam thrust [3, 6–8] and the transverse thrust [9] but in this paper

we will focus on transverse energy.

MPI sensitive observables take large contributions from spectator-spectator interactions

and it was shown in Refs. [10–12] that these contributions are related to the violation of the

traditional factorization due to Glauber gluon exchanges. In this paper we do not attempt to

prove a factorization formula but we rather adopt an alternative approach where we include

multiparton interactions through a model function convolved with the perturbative calcula-

tion from the collinear and soft factorization. We study the dependence of the model on the

hard scale of the process using Pythia simulations and we find that (for the LHC) below

the TeV scale the MPI distribution is independent of the hard scale. The same result was

found in Ref. [13] using Herwig++ by studying di↵erent primary processes (Higgs, Z, and W±

production). The e↵ect of MPI in Higgs transverse energy distributions was also studied in

Ref. [14].

In Ref. [15] it was shown that the factorization of the cross section depends on the region

of phase-space under study, even for relatively large rapidity cuto↵. Particularly, two regions

of phase-space are identified,

Region I : Qr ⌧ ET ⌧ Q

Region II : ET . Qr ⌧ Q , (1.2)

where r = exp(�⌘cut) is the cuto↵ “radius” and Q the partonic center-of-mass energy. In

this work we review the analysis of Ref. [15] and we illustrate how within the framework

of soft-collinear e↵ective theory [16–19] (SCET) we can study the e↵ects of rapidity cuto↵

on resummed transverse energy distributions measured in hadronic collisions. We use the

factorization of Ref. [15] and demonstrate that in the limit ET � Qr and with the appropriate

choice of dynamical scales, this factorization reduces to the one introduced in Refs. [13, 20]

for global measurements of transverse energy. In this limit the cross section is independent

of the rapidity cuto↵ up to power corrections of O(Qr/ET ). To simplify the discussion we

focus on the Drell-Yan process pp ! �⇤(! `+`�) + X, where the measurement of transverse

energy is imposed on X.
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Figure 2. The NLL-prime resumed distributions evaluated from Eq.(2.35) and convolved with the
half Gaussian model function (blue dashed) and the Pythia simulations (ISR+MPI) (orange solid).
We also included the purely perturbative result (black dot-dashed) compared against the result from
Pythia partonic distributions (MPI-only) (red solid). In each plot all curves are arbitrarily normalized
to the same area.

where, hEn

T
(Q)i is the nth moment at the hard scale Q and is defined by the following

hEn

T (Q)i =

Z
1

0

dET En

T

d�(ET , Q)

dET

.Z
1

0

dET

d�(ET , Q)

dET

(3.8)

where �(ET , Q) refers to the di↵erential cross section in ET and Q. Assuming the MPI

contribution can be modeled by a function fMPI(ET ) convoluted with the perturbative cross

section in Eq. (2.15) we have,

�(ET , Q) =

Z
dE0

T fMPI(ET � E0

T )✓(ET � E0

T )�
pert(E0

T , Q) (3.9)

The numerator in Eq. (3.8) can be written as

Z
1

0

dETEn

T

Z
dE0

T fMPI(ET � E0

T )✓(ET � E0

T )�
pert(E0

T , Q) ,

=

Z
dE0

T �pert(E0

T , Q)

Z
dET (E

0

T + !)nfMPI(!)✓(!) ,

=
nX

k=0

nCk

Z
dE0

T (E0

T )
k�pert(E0

T , Q)⇥

Z
d! !n�kfMPI(!)✓(!) (3.10)
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FIG. 1. Jet invariant mass distributions simulated in Pythia
at parton level (red), hadron level with underlying events
(black), pile-up with hNPUi = 7.5 (green) and 50 (magenta).

uncertainties, the calculation agrees well with the simu-
lations even for a large number of PU events.

The NLL0+NLO result is obtained by matching the
resummed and fixed order results,

d�NLL
0
+NLO

d⌧dpT d⌘
=

d�NLL
0

d⌧dpT d⌘
+

d�NLO

d⌧dpT d⌘
�

d�NLO-sing.

d⌧dpT d⌘
,

(11)
where d�NLL

0
, d�NLO, and d�NLO-sing. are the resummed,

fixed-order, and fixed-order singular cross sections, re-
spectively. The NLO result is obtained using MadGraph
5 [35]. For the simulation, we use Pythia 8 [1, 36] with
the ATLAS-A14-variation-2+ tune. We study the ef-
fect of MPI on subtracted cumulants by switching on
and off its contribution in Pythia. PU events are simu-
lated by soft QCD processes and added on top of signal
events, and the PU event number follows a Poisson dis-
tribution with the mean hNPUi. Here we present results
for hNPUi = 7.5 and 50. Jets are reconstructed using the
anti-kt algorithm [37] implemented in FastJet [38].

We first show in FIG. 1 the contributions of MPI and
PU to the mJ/pT distributions. Both MPI and PU af-
fect the peak position of the distribution significantly,
especially for lower pT jets with a large hNPUi. FIG. 2
then shows the results of subtracted jet mass cumu-
lants. The blue band is the theoretical uncertainty of the
NLL0+NLO calculation estimated by varying character-
istic energy scales with a factor of two. Remarkably, the
simulation results from Pythia for different cases with
and without MPI or PU contributions all agree with the
analytic calculation of the signal distribution within the-
oretical uncertainty. This clearly demonstrates that the
proposed subtracted cumulants largely mitigate contri-
butions from UE and PU.
Modification for high luminosity collisions–For the
situation with large background contamination from PU
at HL-LHC or UE in HIC, the jet pT is significantly al-

FIG. 2. Subtracted jet mass cumulants �jk
⌧ from pertur-

bative calculation (blue band) and Pythia simulations
without MPI (red), as well as with MPI (black) and
pile-up with hNPUi = 7.5 (green) and 50 (magenta).
The following transverse momentum bins are used: pT 2
{[126, 158], [158, 199], [199, 258], [258, 316], [316, 398], [398, 500]}.

tered by SUEs and the jet mass is no longer an additive
observable from jet constituents. Therefore, we instead
consider the observable, ⌧̂ , defined in Eq.(5) which is ex-
plicitly additive. Note that the jet direction ~n is assumed
to be only mildly affected by a large but approximately
uniform background, or one can use a recoil-free axis
[39]. On the other hand, since SUE contamination al-
ters the value of jet pT significantly, in order to compare
subtracted cumulants between experiment and theory we
need to correct for the jet pT bin migration. This can be
effectively achieved using the area subtraction method
[9, 40], and we refer to the corrected pT as p̂T . The sub-
tracted cumulants for ⌧̂ are defined as follows,

�jk
⌧̂ = h⌧̂i

[j]
� h⌧̂i

[k] = h⌧̂corri
[j]

� h⌧̂corri
[k] , (12)

where the indices j, k label the p̂T bins. Note that the
subtracted cumulant of ⌧̂ above is different from Eq. (10)
in pT -weighting factor.

In FIG. 3 we demonstrate the robustness of �jk
⌧̂

against large SUEs by comparing the Pythia partonic
result to the one including MPI and PU with hNPUi =
200, which is typical at HL-LHC and can give an indica-
tion of how this observable removes SUEs in HIC. Note
the remarkable agreement between the two results. In
practice, we use the approximation ⌧̂ ' m2

J/pT which is
in terms of the well studied invariant mass. For this rea-
son and in contrast to the previous plots, we choose to
subtract the highest, instead of the lowest, p̂T bin where
this approximation is more accurate.
Sensitivity to quark/gluon jet fraction–We discuss
the sensitivity of subtracted cumulants to quark and
gluon jet fractions, fq = 1 � fg and fg, respectively. As-
suming that the fractions vary slowly within each pT bin
j, the ⌧ distribution is a weighted sum of the correspond-



q  No first principle approach is available for UE. 

q  Large source of uncertainties in theory predictions. 

q  Several options to handle: 
q  tuned models MPI/soft QCD in Monte Carlo Simulation 
q  useful robust observables: pT (over ET), small jet radius 
q  removing soft particles from jet using grooming 

algorithms 
q  new statistical approach: subtracted cumulants 
 

Many observables are sensitive to UE/PU 
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q  An excellent agreement between a simple model and Pythia MPI. 
 

q  A single parameter is constant in wide range of hard scales and 
rapidities. 

 
q  Similar observations in jet mass: inclusive jet, H/Z + jet process, 

top-quark jet 

q  discuss moment and subtraction of moment 
UE contribution is un-correlated to hard scale Q while 
perturbative contribution is correlated. The subtraction at 
different Q cancels uncorrelated contribution. 

A lesson with a simple model in Drell-Yan 
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developed. The subject of MPI and how our formalism can be used to study its e↵ect is

discussed in the next section.

3 Multiparton interactions

The origin of MPI is from secondary interactions of the beam remnants through Glauber

exchanges. These interactions are known to break factorization in measurements of global

observables but cancel in inclusive cross-sections. A variety of MPI sensitive observables are

used in experimental studies for understanding the properties of underlying event (UE) but

a comparison to the theory is currently impossible. In this paper we propose a prescription

to describe MPI contributions to transverse energy with a rapidity cuto↵. In experimental

measurements of UE common choices for the rapidity cuto↵ parameter are ⌘cut = 2 and

⌘cut = 2.5 (for example, see Refs. [1–5]). Our prescription is based on the following two

conjectures:

• Contributions to underlying event from MPI can be modeled by a convolution of a

model function with perturbative results,

• The MPI model function is insensitive to hard scale Q.

These assumptions lead to the following expression for the transverse energy spectrum in-

cluding MPI,
d�pert+MPI

dET

=
d�pert

dET

⌦ fMPI(ET , ⌘cut) , (3.1)

where fMPI(ET , ⌘cut) is the model function that needs to be fitted to the experiment. Similar

approach was used in Refs. [38, 40, 41] in order to incorporate for contribution from UE to

jet substructure observables. We allow the model function to depend on ⌘cut to properly

incorporate the change in phase-space for di↵erent experiments. The dependence on ⌘cut
can give us useful information regarding the pseudo-rapidity distribution of MPI in hadronic

collisions.

Note that the second conjecture can be relaxed allowing the model function to vary slowly

with the hard scale. Then instead of Eq.(3.1), the transverse energy spectrum is given by

d�pert+MPI

dET

=

Z
dQ

d�pert

dETdQ
⌦ fMPI(ET , Q, ⌘cut) , (3.2)

This approach might be more appropriate in studies over an extended range of Q. In this

work we consider Q 2 (100, 1000) GeV and in this region it is su�cient to use the model

of Eq.(3.1). For the parameterizations of the MPI model function we used the half normal

distribution,

fMPI(ET , ⌘cut) = N exp
h
�

⇣ ET

↵(⌘cut)
p

⇡

⌘2i
⇥(ET ), (3.3)
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where N = 2/(↵(⌘cut)⇡) fixes the normalization of the model function to unity and ↵(⌘cut)

controls the first moment of the model function,

↵(⌘cut) = hET if =

Z
1

0

dET ET fMPI(ET , ⌘cut). (3.4)

If the conjectures above can be shown to be true up to power corrections, within the e↵ective

theory, then ↵(⌘cut) can be written in terms of universal non-perturbative functions such

as multiparton distribution functions. Here ↵(⌘cut) can be fixed directly from experimental

measurements using,

↵(⌘cut) = hET iexp. � hET ipert. . (3.5)

Since no experimental data are available for this measurement (see Refs. [1–5] for relevant

experimental studies) we use Monte Carlo simulation data. We find that in the region 1.5 <

⌘cut < 3.5, ↵(⌘cut) can be well described by a linear fit,

↵(⌘cut) = A ⌘cut , (3.6)

where A is a parameter that describes the mean transverse energy deposited in the central

region from MPI, and depends on the hadronic invariant mass,
p

s. Since in this work we are

considering only
p

s = 13 TeV we treat A as a constant. Fitting to the simulation data, we

find A = 22.7 GeV.

In Figure 2, we illustrate the e↵ect of MPI interactions to measurements of transverse en-

ergy within a pseudo-rapidity region, as described by Pythia. Once MPI e↵ects are included,

the transverse energy distribution di↵ers significantly from the perturbation calculation. On

the other hand, by includingthe contribution in Eq.(3.1) with the model in Eq.(3.3) we were

able to accurately describe the simulation data.

We emphasize here that the aim of this section is to illustrate that a relatively simple

model can describe the contribution of MPI for a large spectrum of the partonic invariant

mass. More flexible models can achieve even better agreement, for example one can deviate

from the linear fit in Eq.(3.6) allowing A to depend on ⌘cut. Also we could deviate from he

functional from of fMPI of Eq.(3.3) (see also the work in Ref. [13] where the dependence of

fMPI on s for fixed ⌘cut = 4.5 is discussed).

3.1 MPI-insensitive observables

In this section we show how we can use measurements of transverse energy to construct

observables independent of MPI. Our proposal depends on the conjunctures above Eq.(3.1)

thus the observables we propose can be used either in order to validate these conjunctures or

for phenomenological studies, e.g., one can test the conjectures in Drell-Yan and use them in

phenomenological studies of Higgs production.

We define the subtracted moments as follows

�E(n)

T
(Q, Q0) ⌘ hEn

T (Q)i � hEn

T (Q0)i (3.7)
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where N = 2/(↵(⌘cut)⇡) fixes the normalization of the model function to unity and ↵(⌘cut)

controls the first moment of the model function,
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Z
1
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s. Since in this work we are

considering only
p

s = 13 TeV we treat A as a constant. Fitting to the simulation data, we
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the other hand, by includingthe contribution in Eq.(3.1) with the model in Eq.(3.3) we were

able to accurately describe the simulation data.

We emphasize here that the aim of this section is to illustrate that a relatively simple

model can describe the contribution of MPI for a large spectrum of the partonic invariant
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from the linear fit in Eq.(3.6) allowing A to depend on ⌘cut. Also we could deviate from he

functional from of fMPI of Eq.(3.3) (see also the work in Ref. [13] where the dependence of

fMPI on s for fixed ⌘cut = 4.5 is discussed).

3.1 MPI-insensitive observables

In this section we show how we can use measurements of transverse energy to construct

observables independent of MPI. Our proposal depends on the conjunctures above Eq.(3.1)

thus the observables we propose can be used either in order to validate these conjunctures or

for phenomenological studies, e.g., one can test the conjectures in Drell-Yan and use them in

phenomenological studies of Higgs production.
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�E(n)

T
(Q, Q0) ⌘ hEn

T (Q)i � hEn
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Figure 2. The NLL-prime resumed distributions evaluated from Eq.(2.35) and convolved with the
half Gaussian model function (blue dashed) and the Pythia simulations (ISR+MPI) (orange solid).
We also included the purely perturbative result (black dot-dashed) compared against the result from
Pythia partonic distributions (MPI-only) (red solid). In each plot all curves are arbitrarily normalized
to the same area.

where, hEn

T
(Q)i is the nth moment at the hard scale Q and is defined by the following

hEn

T (Q)i =

Z
1

0

dET En

T

d�(ET , Q)

dET

.Z
1

0

dET

d�(ET , Q)

dET

(3.8)

where �(ET , Q) refers to the di↵erential cross section in ET and Q. Assuming the MPI

contribution can be modeled by a function fMPI(ET ) convoluted with the perturbative cross

section in Eq. (2.15) we have,

�(ET , Q) =

Z
dE0

T fMPI(ET � E0

T )✓(ET � E0

T )�
pert(E0

T , Q) (3.9)

The numerator in Eq. (3.8) can be written as

Z
1

0

dETEn

T

Z
dE0

T fMPI(ET � E0

T )✓(ET � E0

T )�
pert(E0

T , Q) ,

=

Z
dE0

T �pert(E0

T , Q)

Z
dET (E

0

T + !)nfMPI(!)✓(!) ,

=
nX

k=0

nCk

Z
dE0

T (E0

T )
k�pert(E0

T , Q)⇥

Z
d! !n�kfMPI(!)✓(!) (3.10)
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q  The model is un-correlated to hard scale Q, while the 
perturbative contribution is correlated.  

q  The model UE contribution is additive in the moments 

 

q  Uncorrelated model contributions are cancelled in the 
subtraction between moments at Q and Q0 

Subtraction of moments 
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developed. The subject of MPI and how our formalism can be used to study its e↵ect is

discussed in the next section.

3 Multiparton interactions

The origin of MPI is from secondary interactions of the beam remnants through Glauber

exchanges. These interactions are known to break factorization in measurements of global

observables but cancel in inclusive cross-sections. A variety of MPI sensitive observables are

used in experimental studies for understanding the properties of underlying event (UE) but

a comparison to the theory is currently impossible. In this paper we propose a prescription

to describe MPI contributions to transverse energy with a rapidity cuto↵. In experimental

measurements of UE common choices for the rapidity cuto↵ parameter are ⌘cut = 2 and

⌘cut = 2.5 (for example, see Refs. [1–5]). Our prescription is based on the following two

conjectures:

• Contributions to underlying event from MPI can be modeled by a convolution of a

model function with perturbative results,

• The MPI model function is insensitive to hard scale Q.

These assumptions lead to the following expression for the transverse energy spectrum in-

cluding MPI,
d�pert+MPI

dET

=
d�pert

dET

⌦ fMPI(ET , ⌘cut) , (3.1)

where fMPI(ET , ⌘cut) is the model function that needs to be fitted to the experiment. Similar

approach was used in Refs. [38, 40, 41] in order to incorporate for contribution from UE to

jet substructure observables. We allow the model function to depend on ⌘cut to properly

incorporate the change in phase-space for di↵erent experiments. The dependence on ⌘cut
can give us useful information regarding the pseudo-rapidity distribution of MPI in hadronic

collisions.

Note that the second conjecture can be relaxed allowing the model function to vary slowly

with the hard scale. Then instead of Eq.(3.1), the transverse energy spectrum is given by

d�pert+MPI

dET

=

Z
dQ

d�pert

dETdQ
⌦ fMPI(ET , Q, ⌘cut) , (3.2)

This approach might be more appropriate in studies over an extended range of Q. In this

work we consider Q 2 (100, 1000) GeV and in this region it is su�cient to use the model

of Eq.(3.1). For the parameterizations of the MPI model function we used the half normal

distribution,

fMPI(ET , ⌘cut) = N exp
h
�

⇣ ET

↵(⌘cut)
p

⇡

⌘2i
⇥(ET ), (3.3)

– 13 –hET (Q)i = hET (Q)ipert + hET iMPI

�ET (Q,Q0) ⌘ hET (Q)i � hET (Q0)i
= �ET,pert(Q,Q0)



q  The cumulant is excellent quantity to generalize this idea 
q  defined by a generating function 
q  one-to-one with the moments for an observable e: 

q  Additivity if eB and eS are independent 
 

q  At any n-th order the subtracted cumulants is insensitive to the 
uncorrelated contributions (eB=UE, PU) 

q   What observables work? 
Individual particle contributions are added in total. 
transverse energy, beam thrust, jet angularity, ≈jet mass, … 

Subtracted Cumulants 
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2

individual particles within a jet, we have

e =
X

i2jet

ê(i) , (1)

where ê(i) depends on the four-momenta of the i-th par-
ticle in the jet. In the presence of SUEs, because of the
additivity, the observable can be decomposed into two
terms,

e =
X

i2signal

ê(i) +
X

i2SUEs

ê(i) ⌘ eS + eB , (2)

where “S” refers to the signal contributions which are cor-
related with the hard process and “B” to the background
from SUEs. Here eB is background contribution statis-
tically independent of eS. Its probability density does
not depend on the kinematics and details of the hard
process, such as the jet energy, angular direction, and
the flavor of the initiating parton. Let PS(eS), PB(eB),
and P (e) denote probability densities of the observables
eS, eB, and e, respectively. Since SUEs are uncorrelated
with the signal, the probability density at the values eS

and eB is simply a product of uncorrelated distributions
P (eS, eB) = PS(eS)PB(eB). Then, P (e) is given by

P (e) =

Z
deS deB �(e � eS � eB)P (eS, eB)

=

Z
deB PS(e � eB)PB(eB) , (3)

which has a convolution form. The cumulants n(e) are
defined using the cumulant-generating function K(t),

K(t) =
1X

n=1

n
tn

n!
= loghexp(te)i , (4)

where h· · · i denotes the expectation value. Note the ad-
ditivity of cumulants: n(e) = n(eS)+n(eB) which will
allow us to cancel uncorrelated contributions in the sub-
traction between cumulants. Also, cumulants are in one-
to-one correspondence with moments hen

i: 1(e) = hei,
2(e) = he2i � hei2, 3(e) = he3i � 3he2ihei + 2hei3, etc.

We define the jet substructure observable ⌧̂ which is
closely related to the jet invariant mass and receives ad-
ditive contributions from signal and background,

⌧̂ = 2 cosh(⌘)
X

i2jet

p+i = ⌧̂S + ⌧̂B =
m2

J

pT


1 + O

⇣m2
J

p2T

⌘�
,

(5)
where pT and ⌘ are the jet transverse momentum and
pseudorapidity with respect to the beam axis, and p+ =
p0 � ~n · ~p is the small light-cone component of the con-
stituent’s momentum with respect to the jet axis ~n. Then
for the dimensionless observable ⌧ = ⌧̂/pT , up to correc-
tions suppressed by (pSUE

T R2/pT )2, Eq.(3) becomes

d�

d⌧dpT d⌘
(⌧, pT ) =

Z
d⌧̂B

d�corr

d⌧dpT d⌘

⇣
⌧ �

⌧̂B

pT
, pT

⌘
f(⌧̂B) ,

(6)

where the function f is the normalized probability dis-
tribution of the SUE contribution to the observable ⌧̂ .
It was shown that this convolutional expression with
a simple model for f well describes the MPI contribu-
tion in Monte Carlo simulations [19, 26, 27] and exper-
imental measurements [28]. Note that the expression in
Eq. (6) resembles the factorization of hadronization con-
tributions derived using operator product expansion [29],
and hadronization is correlated with the hard process.
Here, f only includes SUEs and is observed to be inde-
pendent of the jet pseudorapidity in the plateau region.
Due to similar convolution structure for hadronization
effects, hadronization effects are also largely removed in
subtracted cumulant we define below for proton-proton
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The model function dependence vanishes and we are left
with purely signal-correlated contributions. Note that we
do not have to assume any specific form for the model
function, f(⌧̂B).
Removal of soft uncorrelated emissions–We discuss
and demonstrate using Pythia simulations that sub-
tracted cumulants are indeed insensitive to MPI and PU
contributions in proton-proton collisions. We compare
the results with the perturbative calculation performed
in [28] at next-to-leading logarithmic and next-to-leading
order accuracy (NLL0+NLO) using SCET. (See also [30–
34] for previous jet mass calculations.) Within theoretical
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ê(i) ⌘ eS + eB , (2)

where “S” refers to the signal contributions which are cor-
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from SUEs. Here eB is background contribution statis-
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a simple model for f well describes the MPI contribu-
tion in Monte Carlo simulations [19, 26, 27] and exper-
imental measurements [28]. Note that the expression in
Eq. (6) resembles the factorization of hadronization con-
tributions derived using operator product expansion [29],
and hadronization is correlated with the hard process.
Here, f only includes SUEs and is observed to be inde-
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Due to similar convolution structure for hadronization
effects, hadronization effects are also largely removed in
subtracted cumulant we define below for proton-proton
collisions.

For the first ⌧ cumulant (the first moment, equiva-
lently), which is denoted by h⌧i and is a function of jet
pT and ⌘,

h⌧i =

✓
d�

dpT d⌘

◆�1 Z
d⌧ ⌧

d�

d⌧dpT d⌘
= h⌧corri +

⌦f

pT
, (7)

where h⌧corri is the first cumulant in the absence of SUEs
and ⌦f =

R
d⌧̂B ⌧̂Bf(⌧̂B) is independent of hard scale pT .

Therefore one can define SUE-independent observable by
taking the derivative of pT -weighted cumulant.

d

dpT
pT h⌧i =

d

dpT
pT h⌧corri . (8)

For a binned cross section �[i,j] of the i-th bin in ⌧ and
j-th bin in jet pT , the ⌧ cumulant of the j-th pT bin is
the following,

h⌧i
[j] =

P
i ⌧ [i]�[i,j]

P
i �[i,j]

= h⌧corri
[j] + ⌦f hp�1

T i
[j] , (9)

where ⌧ [i] is the central value of the i-th ⌧ bin and
hp�1

T i
[j] = (

R
bin j p�1

T d�)/
P

i �[i,j]. We then define the
subtracted cumulant with the same mass dimension as
⌧ ,

�jk
⌧ = h⌧i

[j]
�h⌧i

[k] hp
�1
T i

[j]

hp�1
T i[k]

= h⌧corri
[j]

�h⌧corri
[k] hp

�1
T i

[j]

hp�1
T i[k]

.

(10)
The model function dependence vanishes and we are left
with purely signal-correlated contributions. Note that we
do not have to assume any specific form for the model
function, f(⌧̂B).
Removal of soft uncorrelated emissions–We discuss
and demonstrate using Pythia simulations that sub-
tracted cumulants are indeed insensitive to MPI and PU
contributions in proton-proton collisions. We compare
the results with the perturbative calculation performed
in [28] at next-to-leading logarithmic and next-to-leading
order accuracy (NLL0+NLO) using SCET. (See also [30–
34] for previous jet mass calculations.) Within theoretical
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The model function dependence vanishes and we are left
with purely signal-correlated contributions. Note that we
do not have to assume any specific form for the model
function, f(⌧̂B).
Removal of soft uncorrelated emissions–We discuss
and demonstrate using Pythia simulations that sub-
tracted cumulants are indeed insensitive to MPI and PU
contributions in proton-proton collisions. We compare
the results with the perturbative calculation performed
in [28] at next-to-leading logarithmic and next-to-leading
order accuracy (NLL0+NLO) using SCET. (See also [30–
34] for previous jet mass calculations.) Within theoretical
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where the function f is the normalized probability dis-
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function, f(⌧̂B).
Removal of soft uncorrelated emissions–We discuss
and demonstrate using Pythia simulations that sub-
tracted cumulants are indeed insensitive to MPI and PU
contributions in proton-proton collisions. We compare
the results with the perturbative calculation performed
in [28] at next-to-leading logarithmic and next-to-leading
order accuracy (NLL0+NLO) using SCET. (See also [30–
34] for previous jet mass calculations.) Within theoretical
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FIG. 1. Jet invariant mass distributions simulated in Pythia
at parton level (red), hadron level with underlying events
(black), pile-up with hNPUi = 7.5 (green) and 50 (magenta).

uncertainties, the calculation agrees well with the simu-
lations even for a large number of PU events.

The NLL0+NLO result is obtained by matching the
resummed and fixed order results,

d�NLL
0
+NLO

d⌧dpT d⌘
=

d�NLL
0

d⌧dpT d⌘
+

d�NLO

d⌧dpT d⌘
�

d�NLO-sing.

d⌧dpT d⌘
,

(11)
where d�NLL

0
, d�NLO, and d�NLO-sing. are the resummed,

fixed-order, and fixed-order singular cross sections, re-
spectively. The NLO result is obtained using MadGraph
5 [35]. For the simulation, we use Pythia 8 [1, 36] with
the ATLAS-A14-variation-2+ tune. We study the ef-
fect of MPI on subtracted cumulants by switching on
and off its contribution in Pythia. PU events are simu-
lated by soft QCD processes and added on top of signal
events, and the PU event number follows a Poisson dis-
tribution with the mean hNPUi. Here we present results
for hNPUi = 7.5 and 50. Jets are reconstructed using the
anti-kt algorithm [37] implemented in FastJet [38].

We first show in FIG. 1 the contributions of MPI and
PU to the mJ/pT distributions. Both MPI and PU af-
fect the peak position of the distribution significantly,
especially for lower pT jets with a large hNPUi. FIG. 2
then shows the results of subtracted jet mass cumu-
lants. The blue band is the theoretical uncertainty of the
NLL0+NLO calculation estimated by varying character-
istic energy scales with a factor of two. Remarkably, the
simulation results from Pythia for different cases with
and without MPI or PU contributions all agree with the
analytic calculation of the signal distribution within the-
oretical uncertainty. This clearly demonstrates that the
proposed subtracted cumulants largely mitigate contri-
butions from UE and PU.
Modification for high luminosity collisions–For the
situation with large background contamination from PU
at HL-LHC or UE in HIC, the jet pT is significantly al-
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FIG. 2. Subtracted jet mass cumulants �jk
⌧ from pertur-

bative calculation (blue band) and Pythia simulations
without MPI (red), as well as with MPI (black) and
pile-up with hNPUi = 7.5 (green) and 50 (magenta).
The following transverse momentum bins are used: pT 2
{[126, 158], [158, 199], [199, 258], [258, 316], [316, 398], [398, 500]}.

tered by SUEs and the jet mass is no longer an additive
observable from jet constituents. Therefore, we instead
consider the observable, ⌧̂ , defined in Eq.(5) which is ex-
plicitly additive. Note that the jet direction ~n is assumed
to be only mildly affected by a large but approximately
uniform background, or one can use a recoil-free axis
[39]. On the other hand, since SUE contamination al-
ters the value of jet pT significantly, in order to compare
subtracted cumulants between experiment and theory we
need to correct for the jet pT bin migration. This can be
effectively achieved using the area subtraction method
[9, 40], and we refer to the corrected pT as p̂T . The sub-
tracted cumulants for ⌧̂ are defined as follows,

�jk
⌧̂ = h⌧̂i

[j]
� h⌧̂i

[k] = h⌧̂corri
[j]

� h⌧̂corri
[k] , (12)

where the indices j, k label the p̂T bins. Note that the
subtracted cumulant of ⌧̂ above is different from Eq. (10)
in pT -weighting factor.

In FIG. 3 we demonstrate the robustness of �jk
⌧̂

against large SUEs by comparing the Pythia partonic
result to the one including MPI and PU with hNPUi =
200, which is typical at HL-LHC and can give an indica-
tion of how this observable removes SUEs in HIC. Note
the remarkable agreement between the two results. In
practice, we use the approximation ⌧̂ ' m2

J/pT which is
in terms of the well studied invariant mass. For this rea-
son and in contrast to the previous plots, we choose to
subtract the highest, instead of the lowest, p̂T bin where
this approximation is more accurate.
Sensitivity to quark/gluon jet fraction–We discuss
the sensitivity of subtracted cumulants to quark and
gluon jet fractions, fq = 1 � fg and fg, respectively. As-
suming that the fractions vary slowly within each pT bin
j, the ⌧ distribution is a weighted sum of the correspond-
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FIG. 3. Subtracted cumulants �⌧̂ obtained using Pythia
simulations at parton level (red) and hadron level with large
PU contaminations of hNPUi = 200 (green).

ing quark and gluon distributions,

d�[j]

d⌧
= f [j]

g
d�[j]

g

d⌧
+ (1 � f [j]

g )
d�[j]

q

d⌧
, (13)

and similarly for h⌧i,

h⌧i
[j] = f [j]

g h⌧i
[j]
g + (1 � f [j]

g ) h⌧i
[j]
q , (14)

Since 0 < fg < 1 and h⌧i
[j]
g > h⌧i

[j]
q , we have h⌧i

[j]
q <

h⌧i
[j] < h⌧i

[j]
g . The subtracted cumulants are

�jk
⌧ = �jk

⌧,q +
h
f [j]

g (h⌧ig � h⌧iq)
[j]

�f [k]
g (h⌧ig � h⌧iq)

[k] hp
�1
T i

[j]

hp�1
T i[k]

i
. (15)

We use Pythia to simulate pure quark and gluon jets,
and we mix the samples manually using the parame-
terized function fg(pT ; a, b) (See Appendix for details).
Within the pT range of interest we examine two scenar-
ios in which the gluon jet fraction is larger (model-1) or
smaller (model-2) than the expected value in pp colli-
sions.

FIG. 4 shows the gluon jet fraction and subtracted cu-
mulant as a function of jet pT for model-1 and model-2,
as well as theoretical predictions at NLL0 accuracy for
pp collisions. We find that a change of quark-gluon jet
fraction can induce a significant change of the subtracted
cumulant distinguishable with the theoretical precision.
Precise measurements of subtracted cumulants of inclu-
sive jets (gluon-enriched) and photon-tagged jets (quark-
enriched) will then give useful information about the dif-
ferent quark-gluon jet fractions as well as subtracted cu-
mulants of pure quark and gluon jet samples. Since quark
and gluon jets are initiated by partons with different color
charges, one expects that the two are quenched differently
and thus their fractions may change from proton-proton
to HIC [41, 42]. The fraction change can induce modifi-
cations of jet substructure which should be disentangled

FIG. 4. Top: Gluon jet fractions for the two models in this
analysis (see text and Appendix ). Bottom: Results of sub-
tracted cumulants from analytic calculation (blue band) and
Pythia simulations with the gluon fractions from models 1
and 2, as well as pure quark and gluon jets.

from the jet-by-jet modification, for which subtracted cu-
mulants can be very useful.

Comparison with experimental data–We compare
our analytic calculation and simulation to subtracted cu-
mulants calculated from the experimental data measured
by the ATLAS collaboration at the LHC with the colli-
sional center of mass energies 7 TeV [43] and 5.02 TeV
[44].

FIG. 5 shows the results for the NLL0+NLO calcu-
lation (blue band) and Pythia simulations with (black)
or without (red) MPI effect and hadronization. The data
points are calculated from ATLAS measurements of jet
mass distributions. The error bars include only the sta-
tistical uncertainty and are calculated from the variance
of h⌧i

[j]:
p

Var[⌧ ][j]/N [j], where Var[⌧ ][j] is the variance
of the ⌧ distribution and N [j] is the total number of jets
estimated from the integrated luminosity: Lint. ⇥ d�[j].
The statistical error in these experiments is small result-
ing in the small error bars in the plots. Including the
systematic uncertainty requires experiment details and
is beyond the scope of this work. For the 7 TeV case,
only the differential distributions in jet mass are avail-
able rather than ⌧ = m2

J/p2T thus we redefine � in term



q  We use ATLAS data for mass distributions at 5 TeV and at 7 TeV 
and compute subtracted cumulants.  

 
 
 
 
q  two curves are different:                  (left)              (right)   
q  Error bars only include statistical uncertainties. 
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FIG. 5. Comparison of the subtracted cumulant results from
NLL0+NLO calculation (blue band) with Pythia simulations
with (black) and without (red) MPI and hadronization, as
well as subtracted cumulants calculated from the experimen-
tal data measured by the ATLAS [43, 44]. The top and bot-
tom panels correspond to the collisional center of mass energy
at

p
s = 7 TeV and

p
s = 5.02 TeV, respectively.

of cumulant of s = m2
J as follows,

�jk
s = hsi[j] �hsi[k]

hpT i
[j]

hpT i[k]
= hscorri

[j]
�hscorri

[k] hpT i
[j]

hpT i[k]
.

(16)
This redefinition is only necessary due to the large pT

bin sizes in the experiment. The average values hpT i
[j]

are not given in [43] and we use the ones generated by
Pythia including hadronization and underlying event
contributions since these quantities are well described by
simulations.

For both the 7 TeV and 5.02 TeV cases, we find that
the results of analytic calculations and simulations are in
good agreement with the experimental data.
Conclusions–In this paper, we extend the work in [19]
to jet substructure observables and introduce the new
method of comparing theoretical calculation of jet sub-
structure observables to data using subtracted cumulant.
The method makes the comparison insensitive to soft un-
correlated emissions such as multiparton interactions and
pile-up using neither background subtraction algorithms
to correct each jet nor having to model uncorrelated ef-
fects. Our theoretical prediction at NLL0+NLO accuracy

using SCET shows an excellent agreement with the sub-
tracted cumulants calculated from two independent AT-
LAS jet mass measurements and those from Pythia sim-
ulations. We also demonstrate that subtracted jet sub-
structure cumulants remove large background contami-
nations up to 200 pile-up events. Its robustness makes
subtracted cumulants useful for jet studies at the high-
luminosity LHC and in the heavy-ion collisions, where
the identification of signal jets is challenged by a large
background. We also show that subtracted cumulants
are sensitive to the change of quark-gluon jet fraction.
This could allow for precise determination of the fraction
and its modification in heavy-ion collisions, which will
be useful for discriminating possible medium effects and
contributions. The mitigation of UE with flow modula-
tion in HIC will be studied in future work.
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The method makes the comparison insensitive to soft un-
correlated emissions such as multiparton interactions and
pile-up using neither background subtraction algorithms
to correct each jet nor having to model uncorrelated ef-
fects. Our theoretical prediction at NLL0+NLO accuracy

using SCET shows an excellent agreement with the sub-
tracted cumulants calculated from two independent AT-
LAS jet mass measurements and those from Pythia sim-
ulations. We also demonstrate that subtracted jet sub-
structure cumulants remove large background contami-
nations up to 200 pile-up events. Its robustness makes
subtracted cumulants useful for jet studies at the high-
luminosity LHC and in the heavy-ion collisions, where
the identification of signal jets is challenged by a large
background. We also show that subtracted cumulants
are sensitive to the change of quark-gluon jet fraction.
This could allow for precise determination of the fraction
and its modification in heavy-ion collisions, which will
be useful for discriminating possible medium effects and
contributions. The mitigation of UE with flow modula-
tion in HIC will be studied in future work.

The authors would like to thank Yongsun Kim, Yen-Jie
Lee, Christopher Lee, Duff Neill, Felix Ringer, Iain Stew-
art, Jesse Thaler and Ivan Vitev for useful conversations
during the completion of this work. YTC is supported by
the LHC Theory Initiative Postdoctoral Fellowship un-
der the National Science Foundation grant PHY-1419008.
DK is supported by the National Natural Science Foun-
dation of China under Grant No. 11875112. KL is sup-
ported by the National Science Foundation under Grants
No. PHY-1316617 and No. PHY-1620628. YM is sup-
ported by the DOE Office of Science under Contract DE-
AC52-06NA25396, the Early Career Program (Christo-
pher Lee, P.I.) and the LDRD Program at LANL.

⇤ ytchien@mit.edu
† dkang@fudan.edu.cn
‡ kunsu.lee@stonybrook.edu
§ yiannis@lanl.gov

[1] T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput.
Phys. Commun. 178, 852 (2008), arXiv:0710.3820 [hep-
ph].

[2] J. Bellm et al., Eur. Phys. J. C76, 196 (2016),
arXiv:1512.01178 [hep-ph].

[3] A. J. Larkoski, I. Moult, and B. Nachman, (2017),
arXiv:1709.04464 [hep-ph].

[4] H. A. Andrews et al., (2018), arXiv:1808.03689 [hep-ph].
[5] S. Voloshin and Y. Zhang, Z. Phys. C70, 665 (1996),

arXiv:hep-ph/9407282 [hep-ph].
[6] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C58,

1671 (1998), arXiv:nucl-ex/9805001 [nucl-ex].
[7] J. D. Bjorken, (1982), FERMILAB-PUB-82-059-T.
[8] M. Connors, C. Nattrass, R. Reed, and S. Salur, Rev.

Mod. Phys. 90, 025005 (2018), arXiv:1705.01974 [nucl-
ex].

[9] M. Cacciari and G. P. Salam, Phys. Lett. B659, 119
(2008), arXiv:0707.1378 [hep-ph].

[10] I. Feige, M. D. Schwartz, I. W. Stewart, and J. Thaler,
Phys. Rev. Lett. 109, 092001 (2012), arXiv:1204.3898
[hep-ph].

[11] A. J. Larkoski and J. Thaler, Phys. Rev. D90, 034010



q  excellent performance of a simple UE model observed. 
q  subtracted cumulants for DY and for jet substructure:  

mitigating large background such as UE, PU 
a simple way to compare theory calculations to measurement 

q  example: jet mass shows a good agreement with ATLAS data 

q  higher-order cumulants, more jet substructure observables 
q  precision predictions beyond NLL’+NLO are available for several 

jet substructure and can be tested using our method. 
q  application to heavy-ion collisions with hard scattering 

Summary and outlook 

9 

1803.04413 DK, Makris, Mehen 

1812.06977,  Chien, Lee, DK, Makris	



Backup 

10 



q  Medium effect in heavy-ion collisions changes q/g jet fraction. 

 
 
q  visible change in subtracted cumulant 

Sensitivity to quark/gluon jet fraction 

11 

4

FIG. 3. Subtracted cumulants �⌧̂ obtained using Pythia
simulations at parton level (red) and hadron level with large
PU contaminations of hNPUi = 200 (green).
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We use Pythia to simulate pure quark and gluon jets,
and we mix the samples manually using the parame-
terized function fg(pT ; a, b) (See Appendix for details).
Within the pT range of interest we examine two scenar-
ios in which the gluon jet fraction is larger (model-1) or
smaller (model-2) than the expected value in pp colli-
sions.

FIG. 4 shows the gluon jet fraction and subtracted cu-
mulant as a function of jet pT for model-1 and model-2,
as well as theoretical predictions at NLL0 accuracy for
pp collisions. We find that a change of quark-gluon jet
fraction can induce a significant change of the subtracted
cumulant distinguishable with the theoretical precision.
Precise measurements of subtracted cumulants of inclu-
sive jets (gluon-enriched) and photon-tagged jets (quark-
enriched) will then give useful information about the dif-
ferent quark-gluon jet fractions as well as subtracted cu-
mulants of pure quark and gluon jet samples. Since quark
and gluon jets are initiated by partons with different color
charges, one expects that the two are quenched differently
and thus their fractions may change from proton-proton
to HIC [41, 42]. The fraction change can induce modifi-
cations of jet substructure which should be disentangled

FIG. 4. Top: Gluon jet fractions for the two models in this
analysis (see text and Appendix ). Bottom: Results of sub-
tracted cumulants from analytic calculation (blue band) and
Pythia simulations with the gluon fractions from models 1
and 2, as well as pure quark and gluon jets.

from the jet-by-jet modification, for which subtracted cu-
mulants can be very useful.

Comparison with experimental data–We compare
our analytic calculation and simulation to subtracted cu-
mulants calculated from the experimental data measured
by the ATLAS collaboration at the LHC with the colli-
sional center of mass energies 7 TeV [43] and 5.02 TeV
[44].

FIG. 5 shows the results for the NLL0+NLO calcu-
lation (blue band) and Pythia simulations with (black)
or without (red) MPI effect and hadronization. The data
points are calculated from ATLAS measurements of jet
mass distributions. The error bars include only the sta-
tistical uncertainty and are calculated from the variance
of h⌧i
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Var[⌧ ][j]/N [j], where Var[⌧ ][j] is the variance
of the ⌧ distribution and N [j] is the total number of jets
estimated from the integrated luminosity: Lint. ⇥ d�[j].
The statistical error in these experiments is small result-
ing in the small error bars in the plots. Including the
systematic uncertainty requires experiment details and
is beyond the scope of this work. For the 7 TeV case,
only the differential distributions in jet mass are avail-
able rather than ⌧ = m2
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