

Strangeness production in jets and underlying events in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Pengyao Cui

(for the ALICE Collaboration)

Central China Normal University

12/21/2018

Outline

- Motivation
- > ALICE setup and data sample
- Analysis strategy
- Results and discussion
- ➤ Summary

The 4th China LHC Physics Workshop

CLHCP 2018

Motivation

- Enhancement of Λ/K_S^0 ratio observed at intermediate p_T at high multiplicity in pp, p-Pb and Pb-Pb collisions w. r. t that at low multiplicity
- Production of (multi)-strange particles increases with multiplicity
 - Similar behavior among different systems

Strangeness production in jets and the UE

Nature Phys. 13 (2017) 535-539

10

 $2K_S^0$

Ш

 $\Lambda + \overline{\Lambda}$ (×2)

ФЩŗ

• Enhancement of Λ/K_S^0 ratio observed at intermediate p_T at high multiplicity in pp, p-Pb and Pb-Pb collisions w. r. t that at low multiplicity

Nature Phys. 13 (2017) 535-539

Strangeness production in jets and the UE

ALICE setup and data sample

• Data samples

- > pp collisions at $\sqrt{s} = 13$ TeV with 260 million MB events collected in 2016
- Strangeness reconstruction
 - $\succ K_{\rm S}^0 \rightarrow \pi^+ + \pi^- ({\rm BR}\; 69.2\%)$
 - $\succ \Lambda \rightarrow p + \pi^{-} (BR 63.9\%)$
 - $\succ \Xi^- \rightarrow \Lambda + \pi^- \rightarrow p + \pi^- + \pi^- (BR 63.9\%)$

CLHCP 2018

Strangeness production in jets and the UE

• Tag hard scatterings with charged particle jets ($p_T^{jet} > 10 \text{ GeV}/c$)

• Jet reconstruction

- > Charged track selection: $|\eta| < 0.9$, $p_{\rm T} > 0.15 \text{ GeV}/c$
- > Jet finder: anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$

- Tag hard scatterings with charged particle jets ($p_T^{jet} > 10 \text{ GeV}/c$)
- Signal: reconstructed V⁰s (Λ and K⁰_S) and Ξ in the "jet region"
 - $> \mathbf{R}(V^0/\Xi, jet) < \mathbf{R}_{match}$

• Jet reconstruction

- > Charged track selection: $|\eta| < 0.9$, $p_T > 0.15 \text{ GeV}/c$
- > Jet finder: anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$

CLHCP 2018

Strangeness production in jets and the UE

- Tag hard scatterings with charged particle jets ($p_T^{jet} > 10 \text{ GeV}/c$)
- Signal: reconstructed V⁰s (Λ and K⁰_S) and Ξ in the "jet region"
 - $> \mathbf{R}(V^0/\Xi, jet) < \mathbf{R}_{match}$
- UE background: reconstructed V⁰s and Ξ in the UE region
 - **PC:** cones in perpendicular direction of jet axis
 - > OC: outside the jet cone
 - > NJ : events without jet with p_T larger than a given threshold JE = JC - UE

Jet reconstruction

- > Charged track selection: $|\eta| < 0.9$, $p_{\rm T} > 0.15 \text{ GeV}/c$
- > Jet finder: anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$

CLHCP 2018

Strangeness production in jets and the UE

- Tag hard scatterings with charged particle jets ($p_T^{jet} > 10 \text{ GeV}/c$)
- Signal: reconstructed V⁰s (Λ and K⁰_S) and Ξ in the "jet region"
 - $> \mathbf{R}(V^0/\Xi, jet) < \mathbf{R}_{match}$
- UE background: reconstructed V⁰s and Ξ in the UE region
 - PC: cones in perpendicular direction of jet axis
 - > OC: outside the jet cone
 - > NJ : events without jet with p_T larger than a given threshold JE = JC UE

• Normalization

$$\frac{d\rho}{dp_{\rm T}} = \frac{1}{N_{ev}} \times \frac{1}{\langle \text{Area} \rangle} \times \frac{dN/dp_{\rm T}}{\langle \text{Area} \rangle}$$

- Efficiency correction
- Feed-down correction (for $\Lambda(\overline{\Lambda})$)

• Jet reconstruction

- > Charged track selection: $|\eta| < 0.9$, $p_{\rm T} > 0.15 \text{ GeV}/c$
- > Jet finder: anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$

CLHCP 2018

Strangeness production in jets and the UE

Production of strangeness

$$\frac{d\rho}{dp_{\rm T}} = \frac{1}{N_{ev}} \times \frac{1}{\langle \text{Area} \rangle} \times \frac{dN}{dp_{\rm T}}$$

- The p_T spectra of strange hadrons in jets (JE) is harder than in the underlying event (UE)
- UE distributions is harder than in inclusive bias in events with the presence of jets

CLHCP 2018

Strangeness production in jets and the UE

- The Λ/K_S^0 in UE is consistent with the ratio of inclusive V⁰s
- The ratio in jets is clearly different with the ratio of inclusive V⁰s at low and intermediate $p_{\rm T}$

CLHCP 2018

Compare to 7 TeV

- The Λ/K_S^0 in UE is consistent with the ratio of inclusive V⁰s
- The ratio in jets is clearly different with the ratio of inclusive V^0s at low and intermediate p_T
- Results at $\sqrt{s} = 7$ TeV are consistent with that at $\sqrt{s} = 13$ TeV within uncertainties
- Measurements at $\sqrt{s} = 7$ TeV: a hint of R_{jet} (V⁰, jet) dependence
 - Caveat: the potential residual UE background effect (?)

CLHCP 2018

Strangeness production in jets and the UE

Compare to p-Pb system

• The Λ/K_S^0 in UE is consistent with the inclusive ratio

- The ratio in jets is clearly different from the inclusive ratio at low and intermediate $p_{\rm T}$
- Results at $\sqrt{s} = 7$ TeV are consistent with that at $\sqrt{s} = 13$ TeV within uncertainties
- Measurements at $\sqrt{s} = 7$ TeV: a hint of R_{jet} (V⁰, jet) dependence
- The Λ/K_S^0 in JE in pp consistent with p-Pb within uncertainties

CLHCP 2018

Strangeness production in jets and the UE

Compare to Pb-Pb system

• The ratio in jets in Pb-Pb collisions is compatible within combined systematic and statistic errors with that in pp collisions

CLHCP 2018

Strangeness production in jets and the UE

- Exploration of production mechanisms in jets and UE with multi-strange particles
- Ξ/Λ is almost p_T independent in JE

CLHCP 2018

- Production of V⁰s (K⁰_S and Λ) and Ξ has been investigated in jets and the UE in pp collisions at $\sqrt{s} = 13$ TeV
- Λ/K_S^0 ratio enhancement is not present when the particles are within an energetic jet in pp, p-Pb and Pb-Pb collision systems
- The Ξ/Λ has been investigated, at the first time, in jet and the UE in pp collisions with ALICE
- Provide a new constrain on Ξ production mechanism

Thanks

Strangeness production in jets and the UE

Backup

CLHCP 2018

Strangeness production in jets and the UE

V⁰s and E reconstruction

● Channels

- $\succ K_{\rm S}^0 \rightarrow \pi^+ + \pi^- ({\rm BR}\ 69.2\%)$
- $\succ \Lambda \rightarrow p + \pi^{-} (BR 63.9\%)$

 $\succ \Xi^- \rightarrow \Lambda + \pi^- \rightarrow p + \pi^- + \pi^- (BR 63.9\%)$

•Strategy: based on decay topology selections

•Acceptance: $|\eta| < 0.75$

ALI-PERF-131104

Strangeness production in jets and the UE

Results of p-Pb collisions

CLHCP 2018

ALICE

Strangeness production in jets and the UE

Pengyao Cui

Results of Pb-Pb collisions

 $p_{\rm T}^{\rm jet,ch} > 20 \ {
m GeV}/c$ $p_{\rm T}^{\rm jet,ch} > 10 \ {\rm GeV}/c$ 1/($N_{
m jets}\pi R^2$) dN/d $ho_{
m T}$ (c/GeV) 1/($N_{
m jets}\pi R^2$) dN/d $p_{
m T}$ (c/GeV) $(\Lambda + \overline{\Lambda})/2K_{S}^{0}$ Pb–Pb, $\sqrt{s_{NN}}$ = 2.76 TeV, 0–10 % stat. unc.. (x 1.5) Pb-Pb, $\sqrt{s_{NN}}$ = 2.76 TeV, 0-10 % ALICE $(\Lambda + \Lambda)/2$, stat. unc. $(\Lambda + \Lambda)/2$, stat, unc 1.8⊢ Preliminary svst. unc **ALICE** Preliminary ALICE Preliminary In jets, p^j ' > 10 GeV/*c* open markers $(\Lambda + \Lambda)/2$ markers $(\Lambda + \Lambda)/2$ 1.6 - in jets, $p_{\tau}^{\text{jet,ch}} > 20 \text{ GeV}/c$ YTHIA 8 - tune Monasl THIA 8 - tune Monasł YTHIA 6 - tune Perugia 2011 THIA 6 - tune Perugia 2011 YTHIA 6 - tune Perugia NoCR YTHIA 6 - tune Perugia NoCR feed-down uncertainty smeared with true $\sigma(\delta p)$ smeared with true $\sigma(\delta p)$ 1.4 inclusive Λ/K_s^0 , ALICE, > 10 GeV/c> 20 GeV/c 10 1.2 $(0-5\%, |y_{y^0}| < 0.5)$ 10 $|\eta_{v^0}| < 0.7$ anti- $k_{+}, R = 0.2$ 0.8 $|\eta_{\rm jet,ch}|<0.5$ $^{\text{leading track}} > 5 \text{ GeV}/c$ 10⁻² 0.6 10 $|\eta_{y^0}| < 0.7$ $|\eta_{y_0}| < 0.7$ $p^{\text{track}} > 150 \text{ MeV}/c$ anti- $k_{+}, R = 0.2$ anti- $k_{\rm +}, R = 0.2$ 0.4 $|\eta_{\rm jet.ch}| < 0.5$ | < 0.5 $|\eta_{int}|$ leading track > 5 GeV/c pleading track > 5 GeV/c 0.2 $p^{\text{track}} > 150 \text{ MeV}/c$ > 150 MeV/c 10^{-3} 10^{-3} 9 10 10 2 6 8 10 p_{\perp} (GeV/c) $p_{_{T}}$ (GeV/c) $p_{\perp}(\text{GeV}/c)$ ALI-PREL-93799 ALI-PREL-112798 ALI-PREL-112802

- The different behavior from PYTHIA is seen in both K_S^0 and Λ at low p_T in Pb-Pb central
- The ratio in jets is far below the inclusive one in Pb–Pb collisions
- The ratio in jets is compatible within systematical and statistical errors to that in pp collisions