

Event activity dependent quarkonium production in pp collisions with ALICE at the LHC

Yanchun DING for the ALICE Collaboration Institute of Particle Physics, CCNU, Wuhan, China

- Physics motivation
- The ALICE Detector
- Results and discussion
- Conclusion

The 4th China LHC Physics Workshop (CLHCP 2018) Dec. 19-22, Wuhan, China

Physics motivation

Multiplicity dependence of quarkonium production in small systems

- Production mechanism
- Study the role of multiple parton interaction
- Interplay between soft and hard processes

J/ψ yield vs. multiplicity in pp at 13 TeV

Linear increase:

- Multiple parton interaction Faster than linear increase:
- Gluon saturation
- Color reconnection

Hint of hot-medium at high multiplicity?

ALI-PREL-128843

The ALICE Detector

Charged-particle multiplicity

is measured using the number of SPD (the first two layers of the ITS) tracklets in $|\eta| < 1$

Central barrel, $|\eta|$ < 0.9

- ITS:
- Tracking, vertexing, multiplicity
- TPC:
- Tracking, PID
- EMCal:
 - High- $p_{\rm T}$ electrons
 - Triggering
 - PID

$J/\psi \rightarrow e^+e^- (|y| < 0.9) \stackrel{\bigstar}{e^-}$

Smaller detectors

- V0, T0, ZDC...
- Event activity characterization

Quarkonia are studied at: Mid-rapidity: |y| < 0.9Forward rapidity: **2.5** < *y* < **4**

 $J/\psi(\Upsilon) \rightarrow \mu^{+}\mu^{-}(2.5 < y < 4)$

Muon Spectrometer, -4< η <-2.5

- Muon Tracker
- Muon Identifier (triggering)
- Open heavy flavours and quarkonia
- W/Z bosons
- Low mass resonances

Multiplicity estimation

Correction for detector inefficiency

- Data-driven method
 - → Equalize acceptance× efficiency along the zvertex direction

Multiplicity estimation

Correction for detector inefficiency

- Data-driven method
 - Equalize acceptanceefficiency along the zvertex direction

Tracklet-to-charged-particle conversion

 $< N_{ch}^{i} > = \alpha_{i} \times < N_{trk}^{cor, i} >$

• Based on simulations which reproduce the realistic detector transport

Signal extraction

ALI-PREL-131200

- Clear signal peak at both mid-rapidity and forward rapidity
- A combined fit is applied to disentangle signal and background

J/ψ production vs. event multiplicity

- Faster than linear scaling with multiplicity at mid-rapidity
 - w/o rapidity gap between signal and multiplicity estimator
- Linear increase at forward rapidity
 - → rapidity gap
- Hint of auto-correlation bias

J/ ψ production vs. event multiplicity

5.02 TeV vs. 13 TeV

• No colliding energy dependence

Y production vs. event multiplicity

- First measurement of Υ production vs. charged-particle multiplicity with ALICE
- Similar trend between $\Upsilon(1S)$ and $\Upsilon(2S)$: linear increase with the charged-particle multiplicity

$\Upsilon(1S)/J/\psi$ and $\Upsilon(2S)/\Upsilon(1S)$ vs. event multiplicity

- The double ratios of $\Upsilon(1S)/J/\psi$ and $\Upsilon(2S)/\Upsilon(1S)$:
 - The double ratio is found to be unity irrespective of charged-particle multiplicity
 - → The multiplicity dependence production is the same within uncertainties for J/ψ , $\Upsilon(1S)$ and $\Upsilon(2S)$

Yanchun DING

CLHCP2018, Wuhan, China

D mesons and muons from HF vs. event multiplicity

- Similar multiplicity dependence as J/ψ and $\Upsilon\,$ at low multiplicity
- Stronger than linear increase at high multiplicity
- The increase appears slightly faster at mid-rapidity than at forward, which is similar to what is observed in J/ψ
- Need to study the role of jet fragmentation in J/ψ production

Open heavy flavours:

• Enhancement at high multiplicity for both D-meson and muons from HF

Thank you

ALICE has measured the correlation of quarkonia and open heavyflavours production with charged particles in pp collisions

Quarkonia:

Conclusion

- J/ψ:
 - → Faster than linear increase at high multiplicity and mid-rapidity
 - → Linear increase observed at forward rapidity
 - → Indication of auto-correlation bias
 - → No colliding energy dependence
- Υ: Linear increase observed at forward rapidity
- $\Upsilon(1S)/J/\psi$ and $\Upsilon(2S)/\Upsilon(1S)$ ratios:
 - → Consistent with unity, for all multiplicities
 - → No dependence on quarkonium state

Back up

Analysis strategy

Mid-rapidity multiplicity estimation

1) Data-driven method:

$$\rightarrow$$
 Flatten $\langle N_{trk}(v_z) \rangle$ distribution
 $N_{trk}^{cor}(v_z) = N_{trk}(v_z) + Poisson(\Delta N)$
 $\Delta N = N_{trk}(v_z) \frac{\langle N_{trk}(v_z^0) \rangle - \langle N_{trk}(v_z) \rangle}{\langle N_{trk}(v_z) \rangle}$

 $< N_{trk}(v_z^{0}) >:$ reference value

Yanchun DING

CLHCP2018, Wuhan, China

Analysis strategy

- Data sample
 - → Minimum bias triggered events: baseline
 - → High multiplicity triggered events: $J/\psi \rightarrow e^+e^-$
 - → Di-muon triggered events: $J/\psi \rightarrow \mu^+ \mu^-$, $Y \rightarrow \mu^+ \mu^-$
- Multiplicity estimators
 - → Mid-rapidity: $1.4 < |\eta| < 2.0$
 - → Forward-rapidity: 2.8 < η < 5.1 , -3.7 < η < -1.7
- Observables:
 - → Relative charged-particle pseudo rapidity density:

 $\frac{\langle dN_{ch}/d\eta \rangle_{i}}{\langle dN_{ch}/d\eta \rangle} = \frac{\langle N_{ch}^{i} \rangle /\Delta\eta}{\langle dN_{ch}/d\eta \rangle} = \frac{f(N_{trk}^{cor,i})/\Delta\eta}{\langle dN_{ch}/d\eta \rangle_{INEL>0}}$

• Relative J/ψ or Y yield:

$$\frac{\langle dN_{s}/dy \rangle_{i}}{\langle dN_{s}/dy \rangle} = \frac{\langle Y_{s} \rangle_{i}}{\langle Y_{s} \rangle} = \frac{N_{s}^{i}}{N_{s}^{tot}} \times \frac{N_{MB}^{tot}}{N_{MB}^{i}} \times \frac{\varepsilon_{MB}^{i}}{\varepsilon_{MB}} \times \frac{\varepsilon_{s}}{\varepsilon_{s}^{i}} \quad \text{S: } J/\psi \text{ or } Y$$

CLHCP2018, Wuhan, China

• Independent of colliding energy

Υ production vs. multiplicity

Linear behavior measured for forward $E_{_{\rm T}}$ (with y-gap)

Qualitatively similar to what we observe for J/ψ and D mesons in similar rapidity region (without y-gap)

Υ excited to ground state ratio

