

Event-plane Dependence of Jet-like Correlations in Au+Au Collisions at 200 GeV in STAR

Kun Jiang

University of Science and Technology of China (USTC)

Motivation

- Energetic partons lose energy due to interactions in the dense medium
- Flow background removal is challenging in measurements of medium modifications of jets especially on the awayside
- All orders of v_n are possible and need to be subtracted
- Jet modification depends on path length (emission-angle dependent in non-central heavy-ion collisions)

More differentially: Event Shape Engineering

- Possibility to control the initial geometry / fluctuating v₂ by selecting the magnitude of flow vector q₂
- Combination of centrality selection and event shape engineering allows control of the initial geometry while keeping the average energy density (multiplicity) fixed
- Separation of volume effect and geometry effect

w_i : weighting factor

A.M.Poskanzer, S.A.Voloshin, PRC 58 (1998), 1671-1678

Kun Jiang

CLHCP2018, Wuhan, China

Event-plane Dependent Two-particle Jet-like Correlations

Enhanced Away-side Momentum Flow

Projection of away-side p_T onto trigger axis

$$P_x \mid_{\eta_1}^{\eta_2} = \sum_{\eta_1 < \eta < \eta_2, |\phi - \phi_{trig}| > \pi/2} p_T \cdot \cos(\phi - \phi_{trig}) \cdot \frac{1}{\varepsilon}$$

 ϵ : single-particle acceptance \times efficiency

 For each centrality, cut on the lowest 10% of events to enhance away-side momentum flow → "jet" = jet + jet-like hotspots

Methodology for Two-particle Correlations

Trigger particle $|\eta| < 1$

- Away-side: large recoil momentum region opposite to trigger particle
- Analyze correlations in close-region and far-region, respectively
- Flow contributions to close-region and far-region are equal → cancelled in their difference

close-region = flow + near-side "jet" + away-side "jet" * fraction_{close}
far-region = flow + near-side "jet" + away-side "jet" * fraction_{far}
diff = away-side "jet" * fraction

Away-side Jet-like Correlation Widths

- Moderate to high p_T assoc. particles: broadening with increasing centrality
- Shape for all p_T more similar in central than in peripheral collisions

- Large η gaps between BBCs and TPC
- Minimal non-flow between trigger particles and BBC

Raw Event-plane Dependent Correlations

Away-side Correlation Shape

Kun Jiang

Resolution-corrected Correlation Functions

Kun Jiang

CLHCP2018, Wuhan, China

Event-plane Dependent Two-particle Jet-like Correlations with Event Shape Engineering

Two-particle Correlations with ESE

- Background subtraction: assuming ZYAM with inclusive-triggered correlations
- v_2 , v_3 and v_4 contributions are subtracted

Polar Representation of Correlation Function

- Two axes: trigger axis and EP axis
- $\Delta \phi$ with starts from red line and rotate toward counter-clockwise direction
- Radius: the amplitudes of correlated yield

Kun Jiang

CLHCP2018, Wuhan, China

Flow Subtracted Correlation Functions

out-of-plane trigger 🗲

• Near-side

- Out-of-plane trigger: No difference between large-q₂ and small-q₂
- In-plane trigger: peak height difference is enhanced

Away-side

- Out-of-plane trigger: yields are almost fully suppressed both in large-q2 and small-q2
- Remnant yield in the EP direction has q₂ dependence
- In-plane trigger: peak height difference is enhanced

Indications of low-p_T particles preferentially escaping towards in-plane direction

in-plane trigger

Ryo Aoyama, APS-JPS

Conclusions

- Event-plane dependent two-particle jet-like correlations shape in 200 GeV Au+Au collisions are reported
 - Data-driven method to subtract away-side flow background of all harmonics
 - The width of the away-side jet-like peak is found to increase with ϕ_{s}
 - Consistent with in-medium path length dependence
- Event-plane dependent two-particle correlations with event shape engineering are measured.
 - Separation between large-q₂ and small-q₂ events enhances difference of correlation shape while preserving average multiplicity
 →new handle to differentially study partonic energy loss mechanisms
 - Low-p_T particles preferentially escape toward in-plane direction
 →path length dependent? escape mechanism?

Outlook :

- Centrality and p_T dependencies
- New data with Event Plane Detector

Thank you !

Kun Jiang

CLHCP2018, Wuhan, China

Back-up slides

v_2 with ESE

- \bullet v₂ is measured via event plane method with TPC-EP with taking 1.0 η gap
- ♦ 20% largest and smallest q₂ vectors are selected with the same region as TPC-EP
- ♦ Top 20% q₂ selection leads to ~10% larger v₂ events
- ♦ Bottom 20% q₂ selection leads to ~8% smaller v₂ events