Search for Exotics Physics at ATLAS and CMS

Liang Li
Shanghai Jiao Tong University
On Behalf of ATLAS and CMS Collaborations
Outline

- Motivation
- Resonances Search
- Dark Matter Search
- Long-lived Particles Search
- Summary
Why Exotics?

Finding new physics

- No one knows for sure where is the new physics
- Leave nothing untouched
- Go “exotic”!

How “exotic” can one go?

- New interactions and products: resonances
- Broad kinematic reach
 - Low to high masses
 - 28 GeV resonances not covered here, sorry!
- New signatures: long-lived particles, emerging jet
- Dark matter
- Model independent if possible

Not possible to cover all searches
- Only focus on recent results
- Personal taste
Resonances: Dijet Scan

Large kinematic range scan

- Limits on the universal coupling g'_q between a leptophobic Z' boson and quarks for various assumed Z' width
- More beyond simple dijets: b-jets, top quark jets...

95% CL exclusions

- $\Gamma_{Z'}/M_{Z'} \leq 100\%$
- $\Gamma_{Z'}/M_{Z'} \leq 30\%$
- $\Gamma_{Z'}/M_{Z'} \leq 10\%$
- $\Gamma_{Z'}/M_{Z'} \leq 5\%$

arXiv:1611.03568
Select events with dedicated double-b tagger and constrain main QCD backgrounds with control region using “pass-fail ratio”

- Soft-drop jet mass M_{SD} peaks at $\phi(bb)/A(bb)$ for signals (AK8/CK15)
- Background only fits show good agreement with data, with clear W and Z contributions
- No significant excess for signal masses between 50-350 GeV
- Exclusion limits: $\sigma X_{\phi(bb)}/A(bb) \sim 79(86)\text{pb}$, coupling $g_{q\phi}/g_{qA} \sim 3.9 (2.5)$
Resonances: Double b-jets (Boosted)

Select large-R jet for hadronically decaying resonance

- Data-driven estimation via fitting large-R jet mass distribution m_J in SR, validated by data in CR$_{QCD}$
- Boosted tt events constrained by MC template fitted to CR$_{tt}$ data
- Combined SM fit of V + jets, H + jets process and search for extra exotic signals in m_J distribution with the range of 70 and 230 GeV
Resonances: Top Quark Jets

Select same-sign leptons with b-jet to look for vector-like quark, four-top-quark, and same-sign top-quark pair production

- Fake lepton background estimated by matrix method, mis-charge ID estimated by Z->ee enriched data sample
- Use validation region (VR) to verify background modelling in SR
Resonances: Top Quark Jets

- **Select single or opposite-sign dileptons with jets**
- **Major tt+jets backgrounds modelled by TRF method**
- **VR and SR divided by #jets, #b-jets, #large-R jets**
- **Signal + background fit**
 - H_T^{had} distribution shows good agreement

Combined upper observed(expected) limit on μ (tttt): 5.3 (2.1)

Observed(expected) limit on BSM EFT (tttt) cross section: 21fb (15fb)
New Signatures: Long-lived Particles
New Signatures: Long-lived Particles

Long-lived particle signatures in a detector

- Neutral
- Charged
- Any charge

- HSCP
- Displaced dilepton
- Displaced lepton
- Displaced dijet
- Displaced vertex
- Displaced conversion
- Displaced photon
- Not pictured: stopped particles

J. Antonelli
New Signatures: Long-lived Particles

- Displaced objects: vertices, leptons, jets...
- Disappearing tracks, (Heavy/Multi-) Charged Particles...
New Signatures: Long-livedParticles

ATLAS Long-lived Particle Searches\(^*\) - 95% CL Exclusion

Status: July 2018

<table>
<thead>
<tr>
<th>Model</th>
<th>Signature</th>
<th>(\mathcal{L} dt) [fb(^{-1})]</th>
<th>Lifetime limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPV (\chi_i^0 \to ee/\mu\mu/\tau\tau)</td>
<td>displaced lepton pair</td>
<td>20.3</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 7.4) mm</td>
</tr>
<tr>
<td>GGM (\chi_i^0 \to ZZ)</td>
<td>displaced vertex</td>
<td>20.3</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 6.4) mm</td>
</tr>
<tr>
<td>GGM (\chi_i^0 \to Z)</td>
<td>displaced dimuon</td>
<td>32.9</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.02) mm</td>
</tr>
<tr>
<td>GMGSI (\chi_i^0 \to \chi_i^0 \chi_i^0)</td>
<td>non-pointing or delayed (\gamma)</td>
<td>20.3</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.05) mm</td>
</tr>
<tr>
<td>AMSIS (pp \to \chi_i^0 \chi_i^0 \chi_i^0)</td>
<td>disappearing track</td>
<td>36.1</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.1) mm</td>
</tr>
<tr>
<td>AMSIS (pp \to \chi_i^0 \chi_i^0)</td>
<td>large pixel drift</td>
<td>18.4</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.2) mm</td>
</tr>
<tr>
<td>Split SUSY</td>
<td>2 ID/MS vertices</td>
<td>19.5</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.3) mm</td>
</tr>
<tr>
<td>Split SUSY</td>
<td>large pixel drift</td>
<td>36.1</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.9) mm</td>
</tr>
<tr>
<td>Split SUSY</td>
<td>displaced vertex + (E_{\text{T}}^{\text{miss}})</td>
<td>32.8</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.03) mm</td>
</tr>
<tr>
<td>Split SUSY</td>
<td>0 (\ell), 2 - 6 jets + (E_{\text{T}}^{\text{miss}})</td>
<td>36.1</td>
<td>(\chi_i^0) lifetime</td>
<td>(\sim 0.2) mm</td>
</tr>
</tbody>
</table>

Higgs + Four \(H \rightarrow gg \) 2 low-EMF trackless jets

\(H \rightarrow gg \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.2 \) mm	1501.04020
\(H \rightarrow gg \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.3 \) mm	1504.09634
\(H \rightarrow gg \)	\(\sim 0 \) mm	\(\gamma \) lifetime	\(\sim 0.1 \) mm	1511.02542
\(H \rightarrow gg \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.02 \) mm	ATLAS-CONF-2016-342
\(H \rightarrow gg \)	\(\sim 0 \) mm	\(\gamma \) lifetime	\(\sim 0.11 \) mm	ATLAS-CONF-2016-342

Scalar \(H \rightarrow Z^0 \ Z^0 \)

\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.03 \) mm	CERN-EP-2018-173
\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.09 \) mm	1806.07255
\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.1 \) mm	1501.04020
\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.15 \) mm	1504.09634
\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.2 \) mm	ATLAS-CONF-2015-163
\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.4 \) mm	1504.09634
\((300 \text{ GeV}) \) \(\rightarrow \chi_i^0 \chi_i^0 \)	\(\sim 0 \) mm	\(\chi_i^0 \) lifetime	\(\sim 0.6 \) mm	1504.09634

Color

- \(V \rightarrow (1 \text{ TeV}) \rightarrow q\bar{q} \)
- \(V \rightarrow (2 \text{ TeV}) \rightarrow q\bar{q} \)

\[\chi_i^0 \text{ lifetime} \]

\[\gamma \beta = 1 \]

Notes

- *Only a selection of the available lifetime limits on new states is shown.*

- **Validated:**
 - Displaced objects: vertices, leptons, jets...
 - Disappearing tracks, (Heavy/Multi-) Charged Particles...
Long-lived Particles: Displaced Jets

- Displaced vertex associated with dijet, build discriminant from vertex track multiplicity, vertex L_{xy} significance and Cluster RMS
- Limits obtained for pair-produced LLPs, gluino and squark masses
Event signature: Z_d decaying within the TileCal and no charged tracks point to the primary vertex

- Define calorimeter-ratio jet (CRjet) with $\log_{10}(E_{\text{Tile}}/E_{\text{LAr}})>1.2$
- Data-driven method to estimate background using $W+$jets sample
Long-lived Particles: Multi-charged Particles

The significance variable of $S(dE/dx)$ is a powerful discriminator

- Use 2D $S(\text{TRT} \ dE/dx) \ S(\text{MDT} \ dE/dx)$ to define signal and control region, background estimation using ABCD method and sideband
- No observed events (<1 background expected)
- Multi-charged particles mass lower limit: 980–1220 GeV

arXiv:1812.03673
Dark Matter Searches

✓ (Mono-)X + MET
• X=jet, photon, W, Z, H, t…
• jet: most general and powerful
• photon: less powerful
• W/Z hadronic: large background
• W/Z leptonic: clean signature, small signal
• Higgs: Higgs portal
• Top: Yukawa-like coupling, more complex signature

✓ Di-X Resonance
• X=jet, photon, W, Z, H, t…
• Resonance scan

✓ Searches comparison
• Collider vs. direct/indirect searches
Dark Matter Searches

ATLAS-CONF-2018-051

- Use MET distribution to extract signal
- Different shape, although overwhelming background
- Background modelling important
Dark Matter Searches: Vector or Axial Vector Mediator

ATLAS-CONF-2018-051

ATLAS Preliminary

95% CL upper limits

- **Observed**
- **Expected**

- **Dijet 8 TeV**
 - ATL-PHYS-PUB-2016-070
- **Boosted dijet + ISR**
 - ATL-PHYS-PUB-2016-070
- **Resolved dijet + ISR (γ)**
 - ATL-PHYS-PUB-2016-070
- **Resolved dijet + ISR (γ)**
 - ATL-PHYS-PUB-2016-070
- **Dibjet**
 - Phys. Rev. D 95 (2017) 052006
- **Dijet TLA**
- **Higgs boson resonances**
 - ATL-PHYS-PUB-2016-070
- **Dijet angular**
 - Phys. Rev. D 95, 052004 (2017)

CMS Preliminary

Axial-vector mediator
Dirac DM
\(m_D = 1079 \text{ GeV/} c^2, g_1 = 1.0 \)

- \(|y_D| < 0.3 \)
- \(|y_D| < 0.6 \)

ICHEP 2018

- **DM + VVV** (5.9 fb⁻¹)
 - [arXiv:1711.02045]
- **DM + TV** (5.9 fb⁻¹)
- **DM + TV** (5.9 fb⁻¹)
 - [arXiv:1711.02045]

g_q = coupling to SM
g_{DM} = coupling to DM
\(M = \) mediator mass
\(\Gamma_{med} = \) mediator width

Legend

- **Dijet**
 - \(g_1 = 1.3 \text{ TeV} \), 36.1 fb⁻¹
 - Phy. Rev. D 96 (2017) 032001
- **Di-bjet trigger**
- **Jet trigger**
- **Di-jet angular**

ATLAS-CONF-2018-051

Dijet
- \(p_T > 30 \text{ GeV} \)
- **MET > 200 GeV**
- **Higgs boson resonances**
- ATL-PHYS-PUB-2016-070
Dark Matter Searches: Scalar or Pseudo-Scalar

ATLAS Preliminary

- \(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)
- All limits at 95% C.L.
- Scalar \(\phi, \phi \rightarrow \chi \chi \)
- \(g = g_\chi = g_\chi = 1 \)
- \(m_\chi = 1 \text{ GeV}, \) Dirac DM

CMS Preliminary

- \(\sigma / \sigma_{\text{theory}} \)
- **Scalar Mediator**
- Dirac DM
- \(g_\chi = 1.0 \)
- \(g_\chi = 1.0 \)
- \(m_{\text{DM}} = 1 \text{ GeV} \)

ATLAS Preliminary

- \(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)
- All limits at 95% C.L.
- Pseudo-scalar \(a, a \rightarrow \chi \chi \)
- \(g = g_\chi = g_\chi = 1 \)
- \(m_\chi = 1 \text{ GeV}, \) Dirac DM

CMS Preliminary

- \(\sigma / \sigma_{\text{theory}} \)
- **Pseudoscalar Mediator**
- Dirac DM
- \(g_\chi = 1.0 \)
- \(g_\chi = 1.0 \)
- \(m_{\text{DM}} = 1 \text{ GeV} \)
Dark Matter Searches Comparison: Spin Dependent
Dark Matter Searches Comparison: Spin Dependent

CMS Preliminary

ICHEP 2018

CMS observed exclusion 90% CL
- Axial-vector med., Dirac DM; $g_a = 0.25$, $g_{DM} = 1.0$

- Boosted dijet (35.9 fb$^{-1}$)
 [arXiv:1710.00159]

- Dijet (35.9 fb$^{-1}$)
 [arXiv:1806.00843]

- DM + $J/\psi(qq)$ (35.9 fb$^{-1}$)
 [arXiv:1712.02345]

- DM + γ (35.9 fb$^{-1}$)
 [EXO-16-053]

- DM + $Z(II)$ (35.9 fb$^{-1}$)
 [arXiv:1711.00431]

DD/MD observed exclusion 90% CL
- PICASSO
 [arXiv:1611.01499]

- PICO-60
 [arXiv:1702.07668]

- Super-K (b\bar{b})
 [arXiv:1503.04858]

- IceCube (b\bar{b})
 [arXiv:1612.05949]

- IceCube ($t\bar{t}$)
 [arXiv:1601.00653]
Dark Matter Searches Comparison:
Spin Dependent

ATLAS Preliminary

$\sigma_{\text{SD}}(\chi\text{-neutron})$ [cm2]

m_χ [GeV]

Dijet

Dijet $\sqrt{s} = 13$ TeV, 37.0 fb$^{-1}$
PRD 96, 052004 (2017)
Dijet TLA $\sqrt{s} = 13$ TeV, 29.3 fb$^{-1}$
PRL 121 (2018) 0818016
Dijet + ISR $\sqrt{s} = 13$ TeV, 15.5 fb$^{-1}$
ATLAS-CONF-2016-070

tt resonance

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
EPJC 78 (2018) 565

Dibjet

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
PRD 98 (2018) 032016

$E_T^{\text{miss}} + X$

Axial-vector mediator, Dirac DM
$g_q = 0.25, g_l = 0, g_\chi = 1$
ATLAS limits at 95% CL, direct detection limits at 90% CL

LUX

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
PRL 116, 021303 (2017)
Dark Matter Searches Comparison: Spin Independent
Dark Matter Searches Comparison: Spin Independent

CMS Preliminary

ICHEP 2018

CMS exclusion 90% CL
Vector med., Dirac DM; $g_q = 0.25$, $g_{\text{DM}} = 1.0$

- $\text{DM + tt (35.9 fb}^{-1})$: Observed
 [EXO-16-049]
- $\text{DM + tt (35.9 fb}^{-1})$: Expected
 [EXO-16-049]

DD observed exclusion 90% CL
- CRESST-II
 [arXiv:1509.01515]
- CDMSlite
 [arXiv:1509.02448]
- PandaX-II
 [arXiv:1708.06917]
- LUX
 [arXiv:1608.07648]
- XENON1T
 [arXiv:1805.12562]
- CDEX-10
 [arXiv:1802.09016]
Dark Matter Searches Comparison: Spin Independent

\[\sigma_{SI}(\chi-nucleon) \text{ [cm}^2\text{]} \]

\[\sqrt{s} = 13 \text{ TeV, 29.3-37.0 fb}^{-1} \]

ATLAS Vector Z'
Vector mediator, Dirac DM
\[g_q = 0.25, g_1 = 0, g_\chi = 1 \]
[ATLAS-CONF-2015-070]
[JHEP 01 (2018) 126]
[PLB 775 (2017) 319]
[arXiv:1807.11471 [hep-ex]]

ATLAS Z' baryonic
Z' baryonic, Dirac DM
\[\sin \theta = 0.3, g_q = 1/3, g_\chi = 1 \]

ATLAS Scalar
Scalar mediator, Dirac DM
\[g_q = 1, g_\chi = 1 \]

DarkSide-50
[arXiv:1802.06994]

CRESST III
[arXiv:1711.07692]

XENON1T
[arXiv:1805.12562]

PandaX

LUX
Extensive exotics searches done at LHC

- Most searches analyzed 36fb^{-1} data
 - Resonances scan
 - New signatures
 - Long-lived particles
 - Dark matter
- 150fb^{-1} already collected
- No new (exotic) physics found so far
- Continue the effort to search for all possible final states and signatures
 - Many more interesting ideas to test and search
 - No one knows when or where the new physics will appear