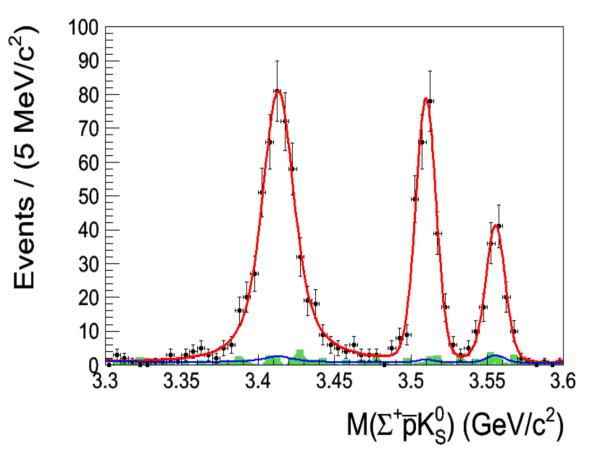
Update of "First measurement of $\chi_{cJ} \rightarrow \Sigma^+ \overline{p} K_S^0 + c. c(J=0, 1, 2)$ decays"

Shan Gu, Wencheng Yan, Chengping Shen

Beihang University


Event topology

$$\psi(3686) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \Sigma^+ \overline{p} K_S^0 + c.c$$

$$\downarrow p \pi^0$$

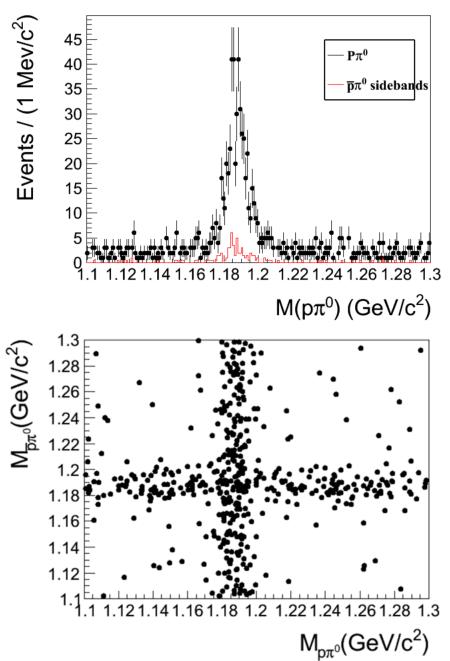
Final states of signal: γγγppπ⁺π⁻.
 In the next slides, the charge-conjugated channel is included by default.

Q1: If Ntrack>4?

> Charged tracks **≻**4C kinematic fit • With the smallest χ^2 • No |Rxy | and |Rz| requirements; $4 \leq Ngood \leq 6$ Obtain $\gamma\gamma\gamma p\bar{p}\pi^+\pi^-$ • $|\cos \theta| < 0.93;$ • Ngood = 4 & $\Sigma Q=0$; $> K_S$ is reconstructed by Second VertexFit >Neutral tracks $L/\sigma_1 > 2$ • E \geq 25 MeV for barrel ($|\cos\theta| < 0.8$); $\succ \pi^0$ and radiative γ_3 : • E \geq 50 MeV for endcap (0.86<|cos θ |< 0.92) $\chi^2 = \left(\frac{M(\gamma_1\gamma_2) - M(\pi^0)}{\sigma_{\pi^0}}\right)^2$ • $\theta \min(\gamma, \text{charge}) > 10^\circ$; • 0<TDC<14 (50ns); • Nγ≥3; The left γ_3 is as the radiative γ from $\psi(3686).$ >PID • PID for proton; \succ Suppress background with $\gamma\gamma$ or $\gamma\gamma\gamma\gamma$ in final states: $\chi^2 (\gamma \gamma \gamma \pi^+ \pi^-) < \chi^2 (\gamma \gamma \gamma \gamma \pi^+ \pi^-)$ && χ^2 (γγγπ⁺π⁻) < χ^2 (γγπ⁺π⁻)

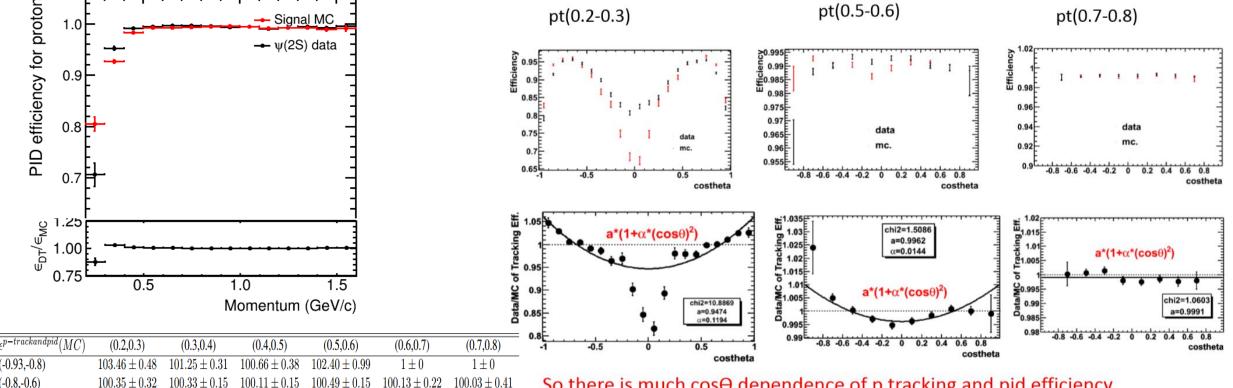
- The background is basically unchanged.
- Peaking Bkg: 10, 2.4, 7.4
 11, 2.9, 7.5

The comparison between the two results


Ngood = 4	Efficiency	Nsignal	Branching Fraction($\chi_{cJ} \rightarrow \Sigma^+ \bar{p}K_S + c.c$) (*10 ⁻⁴)
Xco	9.26%	491 ± 26	$3.36 \pm 0.18 \pm 0.21$
Xc1	10.88%	259 ± 17	$1.58 {\pm} 0.103 {\pm} 0.09$
X c 2	10.26%	129±13	$0.874 \pm 0.088 \pm 0.052$
4 ≤ Ngood ≤ 6	Efficiency	Nsignal	Branching Fraction($\chi_{cJ} \rightarrow \Sigma^+ \bar{p}K_S + c.c$) (*10 ⁻⁴)
Xco	9.56%	509 <u>+</u> 26	$3.37 \pm 0.17 \pm 0.19$
Xc1	11.23%	262±17	$1.55 \pm 0.10 \pm 0.08$
Xc2	10.57%	132 <u>+</u> 13	$0.868 \pm 0.085 \pm 0.047$

In the updated memo, we use the selection: $4 \leq Ngood \leq 6$

Q2:Why not perform 5C to $p\pi^0$?


Answer: We need to use the $\overline{p}\pi^0$ sidebands to estimate the background under the $p\pi^0$ mass.

So, we prefer not to do the 5C.

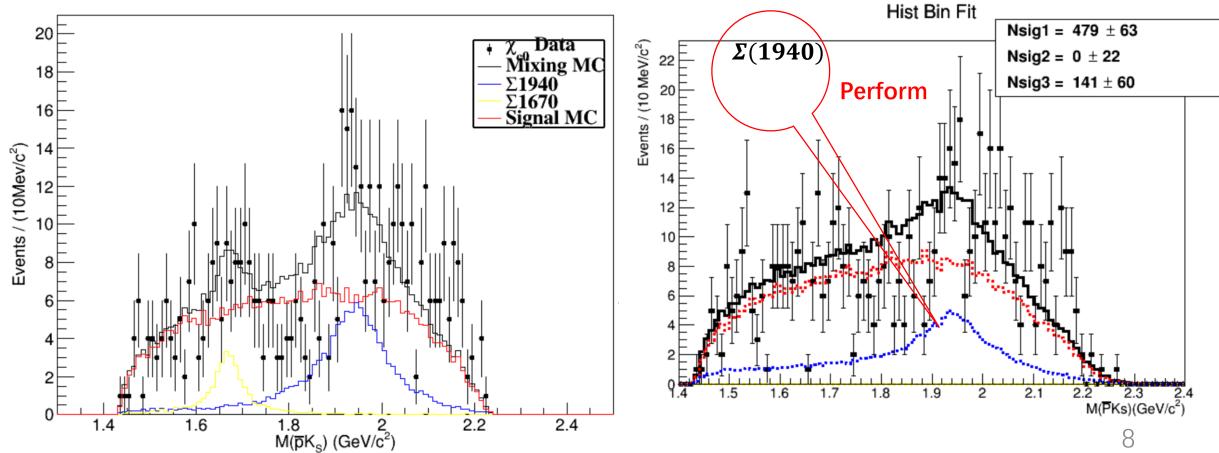
Q3:Systematic uncertainties of PID and tracking of $p(\overline{p})$

Using the control sample $\psi(3686) (J/\psi) \rightarrow \overline{P}P\pi^+ \pi^-$

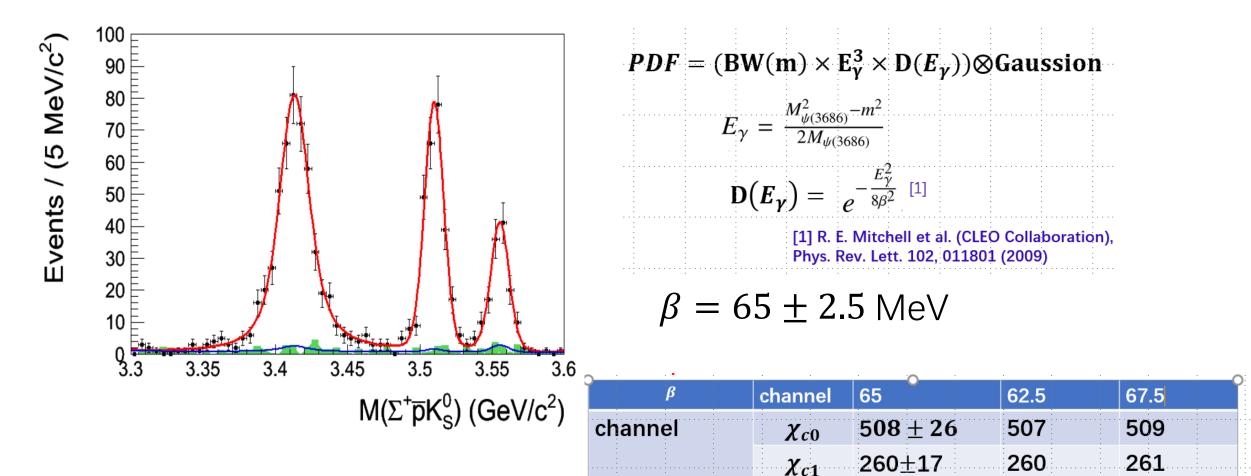
GeV

$\epsilon^{p-irackanapia}(MC)$	(0.2, 0.3)	(0.3, 0.4)	(0.4, 0.5)	(0.5, 0.6)	(0.6, 0.7)	(0.7, 0.8)
(-0.93,-0.8)	103.46 ± 0.48	101.25 ± 0.31	100.66 ± 0.38	102.40 ± 0.99	1 ± 0	1 ± 0
(-0.8,-0.6)	100.35 ± 0.32	100.33 ± 0.15	100.11 ± 0.15	100.49 ± 0.15	100.13 ± 0.22	100.03 ± 0.41
(-0.6,-0.4)	99.08 ± 0.53	100.02 ± 0.19	99.79 ± 0.14	100.03 ± 0.13	100.20 ± 0.14	100.08 ± 0.13
(-0.4,-0.2)	96.73 ± 0.86	99.68 ± 0.21	99.73 ± 0.14	99.71 ± 0.12	100.23 ± 0.13	100.14 ± 0.14
(-0.2,0)	87.62 ± 1.13	97.93 ± 0.28	99.14 ± 0.18	99.47 ± 0.15	99.76 ± 0.14	99.80 ± 0.14
(0,0.2)	85.33 ± 1.09	98.81 ± 0.26	99.55 ± 0.17	99.63 ± 0.13	99.84 ± 0.13	99.76 ± 0.14
(0.2,0.4)	98.07 ± 0.86	99.90 ± 0.21	100.04 ± 0.16	99.85 ± 0.12	100.04 ± 0.13	99.85 ± 0.13
(0.4,0.6)	98.41 ± 0.51	100.17 ± 0.18	99.88 ± 0.14	100.09 ± 0.14	100.14 ± 0.14	99.77 ± 0.17
(0.6,0.8)	100.71 ± 0.33	100.20 ± 0.15	100.59 ± 0.15	100.01 ± 0.16	99.81 ± 0.22	99.80 ± 0.30
(0.8,0.93)	102.46 ± 0.44	100.73 ± 0.30	100.56 ± 0.37	99.91 ± 0.71	1 ± 0	1 ± 0

So there is much cos Θ dependence of p tracking and pid efficiency between data and mc when the transverse momentum is less than 0.6


The systematic error of this item is reduced from 3.7%, 3.8%, 4.0% to 2.6%, 2.3%, 3.0%.

12


Q4:Systematic uncertainties of the intermediate resonances

We add $\Sigma(1940)$ and $\Sigma(1670)$. The uncertainty of the efficiency is 0.3%.

The uncertainty is 0.1%.

Q5:Systematic uncertainties of β

132±13

 χ_{c2}

132

133

Systematic uncertainties

	5001005		continoutit
Source	$\mathcal{B}(\chi_{c0})$	$\mathcal{B}(\chi_{c1})$	$\mathcal{B}(\chi_{c2})$
pion tracking	2.0	2.0	2.0
Photon detection	3.0	3.0	3.0
$P(\bar{P})$ Particle ID and tracking	2.6	2.3	3.0
4C kinematic fit	0.4	0.3	0.3
π^0 mass window	0.3	0.3	0.3
K_S^0 mass window	0.3	0.3	0.3
Σ^+ mass window	0.1	0.1	0.1
$\bar{\Sigma}^{-}(1940)$ structure	0.1		
Signal line shape	1.2	2.3	0.3
changeβ	0.2	0.4	0.8
Fit range	0.8	0.8	2.0
2D-sideband	0.4	0.1	0.8
Remaining background shape	3.1	0.7	1.5
Intermediate decay	0.4	0.4	0.4
Number of $\psi(3686)$	0.6	0.6	0.6
Total	5.7	5.1	5.5

Summary of systematic uncertainty sources and their contributions (in %).

Summary

 $\succ \chi_{cJ} \rightarrow \Sigma^+ \overline{p} K_S^0 + c. c$ is performed for the first time, the branching fractions of them are given.

$4 \leq Ngood \leq 6$	Efficiency	Nsignal	Branching Fraction($\chi_{cJ} \rightarrow \Sigma^+ \bar{p}K_S + c.c$) (*10 ⁻⁴)
Xco	9.56%	509 <u>+</u> 26	$3.37 \pm 0.17 \pm 0.19$
Xc1	11.23%	262±17	$1.55 \pm 0.10 \pm 0.08$
Xc2	10.57%	132 <u>+</u> 13	$0.868 \pm 0.085 \pm 0.047$

>The memo is ready and will be released very soon.