Search for $h_c \to \pi^0 J/\psi$ using XYZ data

Jielei Zhang¹ Limin Yuan^{1,2} Jingzhi Zhang²

¹Xinyang Normal University

²Insitute of High Energy Physics

- 1. Motivation
- 2. Data sets
- 3. Study of $h_c \rightarrow \pi^0 J/\psi$, $J/\psi \rightarrow e^+ e^-/\mu^+\mu^-$
- 4. Study of $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow p\bar{p}$
- 5./Results
- 6. Summary

- In 1992, E760 Collaboration reported the observation of h_c in the $\pi^0 J/\psi$ decay mode. However, such an observation was not confirmed by the successor E835 Collaboration with higher statistics in 2005. It needs more experiments to clarify it.
- Almost all theoretical calculations show the branching fraction $\mathcal{B}(h_c \to \pi^0 J/\psi)$ should be larger than 10^{-3} . While no experimental results to confirm it.
- The process $\psi' \to \pi^0 h_c$ is observed with branching fraction $\mathcal{B}(h_c \to \pi^0 J/\psi) = (8.6 \pm 1.3) \times 10^{-4}$, the process $h_c \to \pi^0 J/\psi$ should also exist.
- It is very hard to search for $h_c \to \pi^0 J/\psi$ using ψ' data, because there is large background $\psi' \to \pi^0 \pi^0 J/\psi$. However, it is very suitable to search for $h_c \to \pi^0 J/\psi$ using XYZ data through the process $e^+e^- \to \pi^+\pi^-h_c$.

Boss Version: 7.0.3

Data sets:

Data from \sqrt{s} = 4.178 to 4.416 GeV (4.178, 4.189, 4.199, 4.209, 4.219, 4.226, 4.236, 4.244, 4.258, 4.267, 4.278, 4.358, 4.416)

\$ignal MC:

$$e^+e^-/\rightarrow \pi^+\pi^-h_c$$
, $h_c\rightarrow\pi^0J/\psi$, $J/\psi\rightarrow e^+e^-/\mu^+\mu^-$

Normalized signal MC:

$$e^+e^- \rightarrow \pi^+\pi^-h_c$$
, $h_c \rightarrow \gamma\eta_c$, $\eta_c \rightarrow p\bar{p}$

The input line-shape for signal MC is from the measured results of $e^+e^- \rightarrow \pi^+\pi^-h_c$

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}h_{c}, h_{c} \rightarrow \pi^{0}J/\psi, J/\psi \rightarrow e^{+}e^{-}/\mu^{+}\mu^{-}$$

Event selections

6

Charged tracks

- $-|R_{xy}| < 1cm, |R_z| < 10cm$
- $-|\cos\theta| < 0.93$
- $-N = 4, \sum Q = 0$

Particle identification

 $-\pi: P_{mdc} < 0.8 \text{ GeV}$

 $-e: P_{mdc} > 0.8 \text{ GeV} \& E_{emc} > 1 \text{ GeV}$

 $-\mu: P_{mdc} > 0.8 \text{ GeV} \& E_{emc} < 0.4 \text{ GeV}$

Good photon

- $-0 \le TDC \le 14$
- Barrel:

$$E > 0.025 \text{ GeV}, |cos\theta| < 0.8$$

- Endcap:

$$E > 0.050 \text{ GeV}, 0.86 < |\cos\theta| < 0.92$$

- $-\Delta\theta > 20^{0}$
- $-N_{\gamma} \geq 2$

5C kinematic fit

- $M(\gamma\gamma)$ is constrained to $M(\pi^0)$
- Choose the photons with least χ^2
- $-\chi^2 < 40$

Other selections

- J/ψ mass window:(3.085, 3.115) GeV
- $-M(\pi^+\pi^-\pi^0) < 0.52||M(\pi^+\pi^-\pi^0) > 0.58$ GeV

 χ^2 distribution : $\chi^2 < 40$

Background: $e^+e^- \rightarrow \eta J/\psi$, $\eta \rightarrow \pi^+\pi^-\pi^0$

$$M(\pi^{+}\pi^{-}\pi^{0}) < 0.52||M(\pi^{+}\pi^{-}\pi^{0}) > 0.58 \text{ GeV}$$

Some plots from data

- $-J/\psi$ mass window : (3.085, 3.115) GeV
- Sideband regions :

$$3.02 \le M(l^+l^-) \le 3.05 \text{ GeV}/c^2 \text{ and}$$

 $3.15 \le M(l^+l^-) \le 3.18 \text{ GeV}/c^2$

Signal extraction from data

11

Signal/

MC-determined signal MC shape to describe

Background:

1st-order Polynomial function

$$N_{sig}^{\pi^0 J/\psi} = 0.2 \pm 2.2$$

 $N_{sig}^{\pi^0 J/\psi} < 5.3$ at 90% C.L.

$$e^+e^- \rightarrow \pi^+\pi^-h_c$$
, $h_c \rightarrow \gamma\eta_c$, $\eta_c \rightarrow p\bar{p}$

Charged tracks

- $-|R_{xy}| < 1cm, |R_z| < 10cm$
- $-|\cos\theta| < 0.93$
- -N=4, $\sum Q=0$

Particle identification

 $-\pi: P_{mdc} < 0.8 \text{ GeV}$

- $p: P_{mdc} > 0.8 \text{ GeV}$

Good photon

- $-0 \le TDC \le 14$
- Barrel:

 $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$

- Endcap:

 $E > 0.050 \text{ GeV}, 0.86 < |\cos\theta| < 0.92$

- $-\Delta\theta > 20^{0}$
- $-N_{\gamma} \geq 1$

4C kinematic fit

- Choose the photons with least χ^2
- $-\chi^2 < 40$

Other selections

- η_c mass window:(2.90, 3.05) GeV

The χ^2 of kinematic fit

15

 χ^2 distribution : $\chi^2 < 40$

Some plots from data

- η_c mass window : (2.90, 3.05) GeV
- Sideband regions :

$$2.65 \le M(p\bar{p}) \le 2.80 \text{ GeV}/c^2 \text{ and}$$

 $3.20 \le M(p\bar{p}) \le 3.35 \text{ GeV}/c^2$

Signal extraction from data

17

Signal/:

MC-determined signal MC shape to describe

Background:

1st-order Polynomial function

$$N_{sig}^{\gamma\eta_c} = 94.1 \pm 10.5$$

$$\begin{split} \sum_{i} \mathcal{L}_{i} \sigma_{i} (1+\delta)_{i} \varepsilon_{i}^{\pi^{0} J/\psi} \, \mathcal{B}(h_{c} \to \pi^{0} J/\psi) \mathcal{B}(\pi^{0} \to \gamma \gamma) \mathcal{B}(J/\psi \to l^{+} l^{-}) &= N_{sig}^{\pi^{0} J/\psi} \\ \sum_{i} \mathcal{L}_{i} \sigma_{i} (1+\delta)_{i} \varepsilon_{i}^{\gamma \eta_{c}} \, \mathcal{B}(h_{c} \to \gamma \eta_{c}) \mathcal{B}(\eta_{c} \to p \bar{p}) &= N_{sig}^{\gamma \eta_{c}} \\ & \\ \frac{\mathcal{B}(h_{c} \to \pi^{0} J/\psi)}{\mathcal{B}(h_{c} \to \gamma \eta_{c}) \mathcal{B}(\eta_{c} \to p \bar{p})} &= \frac{N_{sig}^{\pi^{0} J/\psi}}{N_{sig}^{\gamma \eta_{c}}} \frac{\sum_{i} \mathcal{L}_{i} \sigma_{i} (1+\delta)_{i} \varepsilon_{i}^{\gamma \eta_{c}}}{\sum_{i} \mathcal{L}_{i} \sigma_{i} (1+\delta)_{i} \varepsilon_{i}^{\pi^{0} J/\psi}} \frac{1}{\mathcal{B}(\pi^{0} \to \gamma \gamma) \mathcal{B}(J/\psi \to l^{+} l^{-})} \end{split}$$

Results

19

\sqrt{s}	4.178	4.258	4.358	4.416
$rac{arepsilon_i^{\pi^0 J/\psi}}{arepsilon_i^{\gamma\eta_c}}$	0.510	0.506	0.510	0.514

$$N_{sig}^{\pi^0 J/\psi} < 5.3$$
 at 90% C.L. $N_{sig}^{\gamma \eta_c} = 94.1 \pm 10.5$

$$N_{sig}^{\gamma\eta_c} = 94.1 \pm 10.5$$

$$\frac{\mathcal{B}(h_c \to \pi^0 J/\psi)}{\mathcal{B}(h_c \to \gamma \eta_c) \mathcal{B}(\eta_c \to p\bar{p})} = \frac{N_{sig}^{\pi^0 J/\psi}}{N_{sig}^{\gamma \eta_c}} \frac{\sum_{i} \mathcal{L}_{i} \sigma_{i} (1 + \delta)_{i} \varepsilon_{i}^{\gamma \eta_c}}{\sum_{i} \mathcal{L}_{i} \sigma_{i} (1 + \delta)_{i} \varepsilon_{i}^{\pi^0 J/\psi}} \frac{1}{\mathcal{B}(\pi^0 \to \gamma \gamma) \mathcal{B}(J/\psi \to l^+ l^-)}$$

$$= \frac{N_{sig}^{\pi^0 J/\psi}}{N_{sig}^{\gamma \eta_c}} \frac{1}{0.51} \frac{1}{\mathcal{B}(\pi^0 \to \gamma \gamma) \mathcal{B}(J/\psi \to l^+ l^-)}$$

$$< 0.94$$

 $\mathcal{B}(h_c \to \pi^0 I/\psi) < 0.73 \times 10^{-3}$

- 1. Using XYZ data samples from $\sqrt{s} = 4.178$ to 4.416 GeV, the process $h_c \to \pi^0 J/\psi$ is searched, no significant signals, the upper limits are $\frac{\mathcal{B}(h_c \to \pi^0 J/\psi)}{\mathcal{B}(h_c \to \gamma \eta_c)\mathcal{B}(\eta_c \to p\bar{p})} < 0.94$ and $\mathcal{B}(h_c \to \pi^0 J/\psi) < 0.73 \times 10^{-3}$.
- 2. The measured branching fraction for $h_c \to \pi^0 J/\psi$ is slightly inconsistent with the theoretical calculations.

Thanks for your attention!

BACK UP