Weekly Summary

- Higgs->invisible (Yuhang)
 - -- Arrange python selection code
- Higgs-> ZZ (Lingteng)
 - -- run the other channel (ZH/BGs/ ...)
- Ryuta: attend the Higgs analysis/LGAD meetings (reading documents related to the LGAD)

Yuhang's work:

- 1.Learn python.
- 2. Modified sel_events.py file. The following is my main process.

```
def run(self):
    #Cut eventflow and fill histrogram
    self.cut(self.t_in)
    #Fill root branches after cutting
    self.fill_root(self.t_in)
    #record the select efficiency
    self.out_eff(self.t_in,self.N,self.infile)
    #Write
    self.h_evtflw.Write()
    self.t_out.GetCurrentFile().Write()
    self.outfile.Close()
```

3. Prepared JC topic.

Some (scattering) topic on the Higgs analysis

From "internal" document

Higgs->ZZ* channel

Total number of events @ 5ab⁻¹ $^{\sim}$ 120 events (Higgs->Z->qq, Z*->vv) or 240 events (for both combination)

In my eye count, the signal has more than 180 events.

It is possible that both ZZ* decay combinations are used. Then, I also (as Kaili) feel that the background is low.

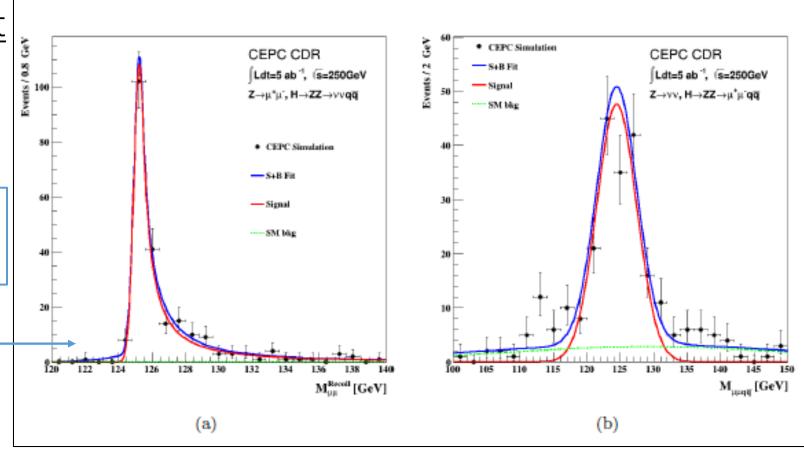
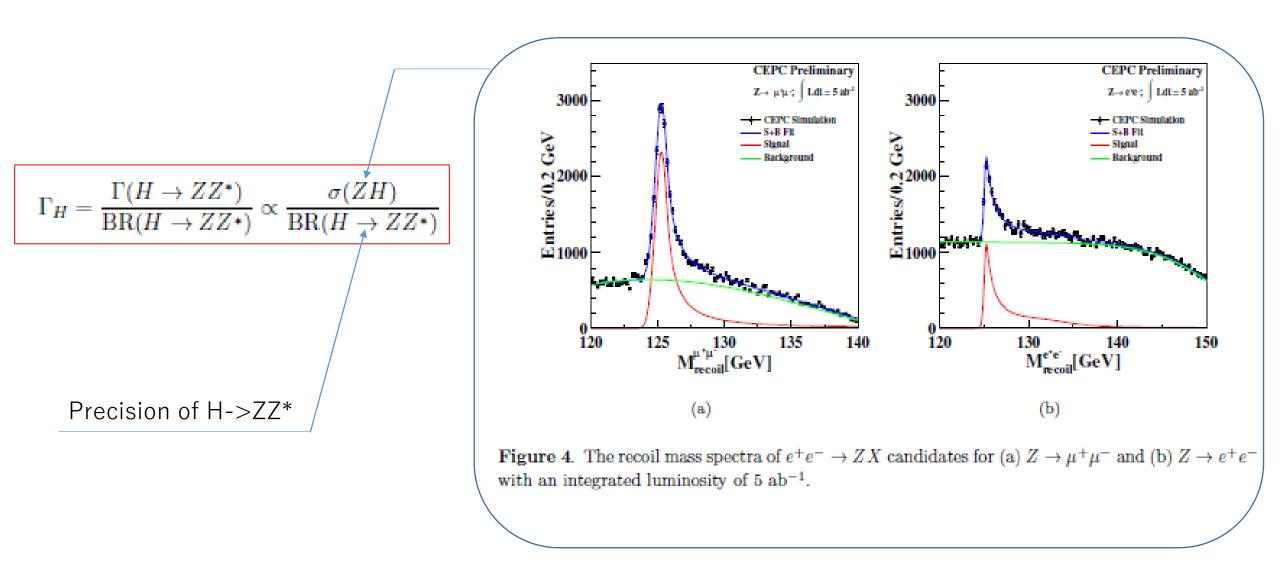



Table 6. Expected relative precision for the $\sigma(ZH) \times BR(H \to ZZ^*)$ measurement with an integrated luminosity 5 ab⁻¹.

ZH final state	Precision
$Z \to \mu^+ \mu^- H \to ZZ^* \to \nu \bar{\nu} q \bar{q}$	7.3%
$Z \to \nu \bar{\nu}$ $H \to ZZ^* \to \ell^+ \ell^- q \bar{q}$	7.9%
Combined	5.1%

Higgs width precision

... though I do not follow the exact formula of the relationship between the partial width and the cross section yet

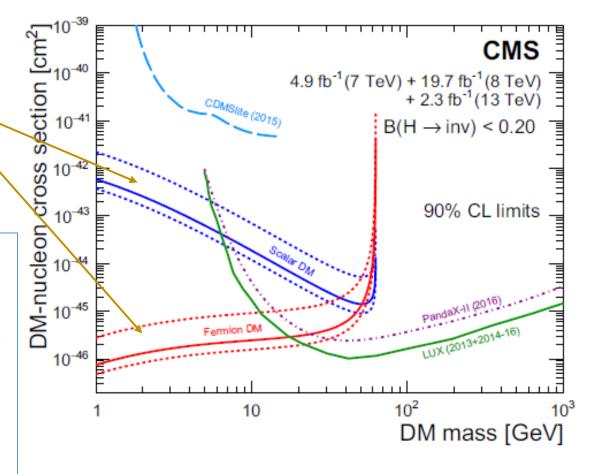
From "internal" document

bout the final e^{-}

How about the final result from Maogiang?

Figure 13. ZH production with the invisible $H \to ZZ^* \to \nu\bar{\nu}\nu\bar{\nu}$ decay in the SM.

Table 8. Precision and 95% CL upper limit on $BR(H \rightarrow inv)$ expected from a CEPC dataset of 5 ab⁻¹.


ZH fina	l state	Precision	Upper limit
$Z ightarrow e^+e^-$	$H \to \mathrm{inv}$	$(0.11 \pm 0.36)\%$	0.84%
$Z ightarrow \mu^+ \mu^-$	$H\to \mathrm{inv}$	$(0.11 \pm 0.26)\%$	0.62%
Z o q ar q	$H\to \mathrm{inv}$	$(0.11 \pm 0.24)\%$	0.59%
Comb	ined	$(0.11 \pm 0.16)\%$	0.42%

Reference for Higgs->invisible

U.L. on the invisible branching fraction = 24% (at 95% C.L.)

$$\sigma_{\rm f-N}^{\rm SI} = \frac{8\Gamma_{\rm inv} m_{\chi}^2}{m_{\rm H}^5 v^2 \beta^3} \frac{m_{\rm N}^4 f_{\rm N}^2}{(m_{\chi} + m_{\rm N})^2},\tag{5.2}$$

assuming a fermion DM candidate, where $m_{\rm N}$ is the average of the proton and neutron masses 0.939 GeV and $\beta = \sqrt{1-4m_\chi^2/m_{\rm H}^2}$. The Higgs vacuum expectation value v is taken to be 246 GeV. The dimensionless quantity $f_{\rm N}$ denotes the nuclear form-factor. The central values for the exclusion limits are derived assuming $f_{\rm N}=0.326$, taken from ref. [93], while alternative values of 0.260 and 0.629 are taken from the MILC Collaboration [94]. The translation between $\Gamma_{\rm inv}$ and $\mathcal{B}({\rm H}\to{\rm inv})$ uses the relation $\mathcal{B}({\rm H}\to{\rm inv})=\Gamma_{\rm inv}/(\Gamma_{\rm SM}+\Gamma_{\rm inv})$, where $\Gamma_{\rm SM}=4.07\,{\rm MeV}$ [47]. Figure 9 shows the 90% CL upper limits on the spin-independent DM-nucleon cross section as a function of the DM mass, assuming $m_{\rm H}=125\,{\rm GeV}$, for the scalar and fermion DM scenarios. These limits are calculated using the 90%

From , "Search for invisible decays of the Higgs boson in pp collision at $\sqrt{s} = 7$, 8, and 13 TeV" The CMS collaboration, JHEP02(2017)135