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Abstract

The future Circular Electron Positron Colliders, such as the CEPC and FCC-ee, are
proposed to make precise measurement of the Higgs boson, verify the Standard Model,
explore physic beyond the Standard Model and son on. One important task of them is
operating at a center-of-mass energy around the W-pair threshold to measure the W boson
mass with high precison, which is depended on the data taking strategy. In this paper, the
Optimization of the data taking scheme is performed. In case of taking data at three energy
points, with L = 3.2 ab−1, the precison of ∆mW ∼ 1.0 MeV, as well as the precison of
2.8 MeV for W width, can be achieved.
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1 Introduction

In the Standard Model (SM) of particle physics, the electroweak (EW) interaction is mediated by the W
boson, the Z boson, and the photon, in a gauge theory based on the SU(2)L × U(1)Y symmetry [1–3].
The so called symmetry-breaking mechanism, relies on the interaction of the gauge bosons with a scalar
doublet field and implies the existence of an additional physical state known as the Higgs boson [4–6]. In
1983, CERN first established the existence of the W and Z [7–10]. The Higgs boson was first discovered
by LHC Collaborations ATLAS and CMS in 2012 [11, 12].

In the EW theory, the W-boson mass, mW , can be expressed as function of the Z-boson mass, mZ ,
the fine-structure constant, α, the Fermi constant, Gµ, the top-quark mass, mt, and the Higgs boson mass,
mH . With the measured values of these parameters, the SM prediction of mW is mW = 80.358 ± 0.008
GeV in Ref. [13] and mW = 80.362 ± 0.008 GeV [14]. The current Partical Data Group (PDG) world
average value of mW = 80.385 ± 0.015 MeV [15] is dominated by the LEP2 and Tevatron, and the latest
measurement of mW is presented by ATLAS at

√
s = 7 TeV, with the result mW = 80.370 ± 0.019 MeV.

In the context of global fits to the SM parameters, constraints on physics beyond the SM are currently
limited precision of the W-boson mass measurement. The high precision measurement of mW is very
essential to test the overall consistency of the SM and search the physics beyond the SM.

The current results of mW are almost measured with the direct reconstruction method, with the final
states from W decays. This method suffers the large systematic uncertainty, e.g., the uncertainties asso-
ciated with the modeling of hadronization, the radiative corrections, the energy scale of lepton, and the
missing energy. Alternatively, a precise direct determination of the W mass can be achieved by com-
paring the observed W-pair production cross section near its kinematic threshold, and the one calculated
with the EW theory. This method is available because the production cross section of W-pair is very sen-
sitive to the mass and width of W boson near the W-pair threshold, and it only involves counting events,
which is clean and uses all decay channels. The advantage of this method is that it is only sensitive to
the number of events, i.e., the statistics of data, and the precision of the W-pair production cross section.

In this study, the possibility of extracting the W mass, as well as its width, is explored, with the
total integrated luminosity of data assumed as L = 3.2 ab−1. Because the data taking scheme, includes
the number of data taking points, the energy of each data point, and the allocation of the integrated
luminosity, is depend on the statistical and systematic uncertainties of mW and ΓW , the study of the
uncertainty is performed firstly, which is described in section 2. Then different data taking schemes are
investigated in section 3.

2 Theoretical tool and uncertainty analysis

In this study, the GENTLE version 2.0 [16] program is used to calculate σWW as a function of the energy
(ECM), W mass (mW) and width (ΓW). Figure 1 shows the cross sections of W-pair as a function of the
center-of-mass (c.m.) energy with mW and ΓW fixed to the PDG [15] average values mW = 80.385 GeV
and ΓW = 2.085 GeV, with the on-shell (off-shell) Born level, as well as the off-shell level with Initial
State Radiative (ISR) correction.

2.1 Statistical uncertainty

The observed W-pair cross section of a specific energy point is:

σWW =
NWW

Lε
=

Nobs − NB

Lε
, (1)

where NWW is the signal yields; Nobs and NB are the number of observed and background events, respec-
tively; L is the integrated luminosity; and ε is the event selection efficiency of signal events.
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Figure 1: The cross sections of W-pair as a function of the c.m. energy of the e+e− collision, with the
mW and ΓW fixed to the PDF average values. The green curve is the Born cross section with zero-width
assumption, the black one is the Born cross section with the off-shell correction (the W width is taken
into account), and the red one is cross section with the off-shell and ISR corrections.

So the statistical uncertainty of the σobs can be written as (Poisson distribution):

∆σobs(stat.) =

√
Nobs

Lε
=

√
σobs
√
LεP

, P =
εσWW

εσWW + εBσB
(2)

where P is the purity of signal events, εB is the event selection efficiency of background events.
When taking data at single energy point, the statistical sensitivity to the W mass or width is:

∆mW(stat.) = (
∂σobs

∂mW
)−1 × ∆σobs = (

∂σobs

∂mW
)−1 ×

√
σobs
√
LεP

,

∆ΓW(stat.) = (
∂σobs

∂ΓW
)−1 × ∆σobs = (

∂σobs

∂ΓW
)−1 ×

√
σobs
√
LεP

.

(3)

Figure 2 shows the statistical uncertainty of mW and ΓW as a function of the c.m. energy. When
taking data at the lowest point of Fig. 2 (a) or (b), the minimal statistical uncertainty of mW or ΓW can be
obtained, but only one of them can be determined with one data point.

When there are more than one data points, the mW and ΓW can be measured simultaneously. The
statistical uncertainties can be obtained by the covariance matrix, which is the inverse of the second
derivative matrix of the (log-likelihood or χ2) function with respect to its free parameters, usually as-
sumed to be evaluated at the best values (the function minimum). The minimum χ2 method is used in
this study and the χ2 can be constructed as Eq. 4, which is minimized by minuit.

χ2 =
∑

i

(Nfiti − Ni
obs)

2

Ni
obs

=
(LεP)i(σi

fit − σ
i
obs)

2

σi
obs

. (4)

So, the covariance matrix can be written as:

V =
1
2
×


∂2χ2
∂m2

W

∂2χ2
∂mW∂ΓW

∂2χ2
∂mW∂ΓW

∂2χ2
∂m2

ΓW


−1

=
∑

i


(LεP)i

σi
obs

( ∂σ
∂mW

)2 (LεP)i

σi
obs

∂σ
∂mW

∂σ
∂ΓW

(LεP)i

σi
obs

∂σ
∂mW

∂σ
∂ΓW

(LεP)i

σi
obs

( ∂σ
∂mW

)2


−1

. (5)
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Figure 2: The statistical uncertainties of mW and ΓW when taking data at a single energy point.

The diagonal elements of the second derivative matrix, are de-coupled from the other parameter(s),
but when the matrix is inverted, the diagonal elements of the inverse contain contributions from all the
elements of the second derivative matrix, which is the correlations come from. When the number of fit
parameters reduce to one, the Eq. 5 will be simplified to Eq. 3.

2.2 Systematic uncertainties

Since the mW (ΓW) is obtained by fit the observed cross section of W-pair, σWW , with the theoretical
calculated cross section, the systematic uncertainties mainly originate from the calculation of σWW , the
integrated luminosity, the detection efficiency, the purity, the beam energy and its spread, and so on.

If there are more than one data taking points, the systematic uncertainties described above can be
divided into two categories:

• Uncorrelated uncertainty: This category includes the uncertainties associated with the beam energy
calibration, ∆E; and beam energy spread, ∆EBS.

• Correlated uncertainty: This category includes the uncertainties from the integrated luminosity,
∆L; the detection efficiency, ∆ε; the purity, ∆P; and the theoretical W-pair cross section, ∆σth.
Generally, this type of uncertainties contains some common trends at different energy points, which
can be taken into account in the further analysis.

2.2.1 The uncorrelated uncertainties

The uncorrelated uncertainties, ∆E and ∆EBS , are dominantly based on the collider performance during
the data taking. With the beam energy spread, the observed cross section of a specific energy point can
be written as:

σobs(E0) =

∫ ∞
0

σ(E
′

) ×G(E0, EBS )dE
′

=

∫ ∞
0

σ(E
′

) ×
1

2
√
πE0

BS

e
−(E0−E

′
)2

4E02
BS dE

′

,

(6)

where E0 is the calibrated energy of the data point, E0
BS is the nominal beam energy spread, and E

′

is
the true energy, which follows Gaussian distribution. We assume that there is no correlation between the
two beams, so the total uncertainty associated with beam energy spread is

√
2EBS .
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With the ∆E and ∆EBS , the σobs becomes:

σobs(E0) =

∫ ∞
0

σTH(E
′

) ×
1

2
√
πEBS

e
−(E−E

′
)2

4E2
BS dE

′

, (7)

where E is the energy with its uncertainty, E = G(E0,
√

2∆E), and EBS is the energy spread with its
uncertainty, EBS = G(E0

BS ,
√

2∆EBS ). Figure 3 (a) shows the dependence of uncertainty of W mass,
∆mW , on the ∆E, with a fixed energy. We can see that the ∆mW is almost increase linearly with the
∆E. When the ∆E is fixed, the ∆mW is near insensitive to the energy, which is shown in Fig. 3 (b).
The distributions of W-pair cross section with different beam energy spreads are shown in Fig 4, where
the Y-axis is the ratio between the cross sections with different EBS and the one without EBS . It can
be noted that the dependence of cross section on the beam energy spread intersects at a point, with
E ≈ 2mW + 1.3 GeV, where the cross section is insensitive to the beam energy spread.

E (MeV)∆

0.5 1 1.5 2

M
 (

M
e
V

)
∆

0

0.5

1

1.5

2

=161.1 (GeV)s

(a)

 (GeV)s
156 158 160 162 164

M
 (

M
e
V

)
∆

0

0.2

0.4

0.6

0.8

E=0.5 (MeV)∆

(b)

Figure 3: (a)The dependence of uncertainty of W mass , ∆mW , on the ∆E, with a fixed energy. (b)The
dependence of ∆mW on the energy, with a fixed ∆E.

 (GeV)s
155 160 165 170

­1
0

σ/
c

σ

­5

0

5

10

15

­3
10×

BSE

[0.8­1.2] ×BSE

[0.9­1.1] ×BSE

BSE

[0.8­1.2] ×BSE

[0.9­1.1] ×BSE

+1.3 (GeV)
W

=2ms

Figure 4: The distribution of the ratio between the cross sections with different EBS and the one without
EBS . The central curve corresponds to the prediction obtained with EBS = 0.16% (relative value), which
is the design value of CEPC. Purple and blue bands show the ratio curves obtained varying the EBS .
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2.2.2 The correlated uncertainties

With the contributions from the correlated uncertainties, which include the ∆L, ∆ε, ∆P, and ∆σth, the
observed numbers of W-pair events at different data points become large or small at the same time, which
is the meaning of the correlation.

Since Nobs = LσthεP, these correlated uncertainties described above, will contribute to the ∆mW

(∆ΓW) in same way. So we just take the ∆L as an example. With uncertainty, the luminosity of a specific
data point is in the form:

L = G(L0,L0 · σL), (8)

where L0 is the nominal value and σL is the relative uncertainty of L0, which is keep same value among
different data points. To consider the ∆mW associated with ∆L, the nominal luminosity, L0 is used in the
fit formula and the ∆L is added in the data simulation. For a data point, the ∆mW caused by ∆L can be
written as:

∆mW =
∂mW

∂σWW
σ · σL. (9)

Figure 5 (a) shows the dependence of ∆mW on the energy with a fixed σL, where the blue dots are
the simulation results and red curve is the result of Eq. 9. It can be seen that the simulation results
are consistent with the Eq. 9, and the contribution from σL will has a minimal point according to the
product of the W-pair cross section and the partial derivative of W mass to the W-pair cross section. The
dependence of ∆mW on the σL at a single data point with fixed energy, is shown in Fig. 5 (b), we can see
that the ∆mW associated with the uncertainty of luminosity at a specific energy point, almost increases
linearly along with the σL.

When there are more than one data point, the contribution from σL among different data points
cannot considered in a independent way, due to the correlations. There is a more sophisticated way to
consider the correlated systematic uncertainties by updating the χ2 definition [17], which is defined as:

χ2 =
∑

i

(Nfiti − Ni
obs)

2

δ2
i

+
(h − 1)2

δ2
c

, (10)

where δ2
i is the total statistical and uncorrelated systematic uncertainties, h is a free parameters, and δ2

c
is the total relative correlated systematic uncertainty. By using this method, the contributions from the
correlated uncertainties can be reduced.
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Figure 5: (a)The distribution of the ∆mW along with the energy, (b)the dependence of ∆mW on the ∆L at
a specific energy point.
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3 Data taking strategies

In the above section, we study the main sources of the uncertainties of mW (∆ΓW if there is more than
one data point), including both the statistical and systematic ones. Generally, the ∆mW (∆ΓW) associated
with these sources is depending on the energy of the data point, and the statistical part is also limited by
the integrated luminosity of the data point. Based on the previous study, three data taking schemes are
investigated, that are taking data at one, two, and three energy points.

In this paper, the following configurations are assumed for the different data taking schemes: the
final uncertainty of the beam energy calibration is better than 0.5 MeV, ∆E < 0.5 MeV; the beam energy
spread can be well determined with its relative uncertainty less than 1%, ∆EBS < 0.01; and the total

relative correlated systematic, δcorr
sys ≡

√
∆L2 + ∆ε2,+∆P2 + ∆σ2

th, less than 2 × 10−4. The one standard
derivation of ΓW from PDG [15] is used as its uncertainty, which is 42 MeV.

3.1 Measurement of W mass at one energy point

For taking data at a single data point, there is a ideal strategy to measure the mW at the statistical sensitiv-
ity energy point, E = 2mW +0.4 ≈ 161.2 GeV, which is shown in the Fig. 2 (a). But the contribution from
systematic should be considered, especially for the added source, ΓW . Figure 6 shows the distribution of
W-pair cross section with the W mass and width set at the PDG [15] average values mW = 80.385 GeV,
and ΓW = 2.085 GeV, and with large 1GeV variation bands of the mass and width central values. We can
seen that although the variation of the W width changes the cross section lineshape, all the lineshapes of
the cross sections with different ΓW will intersect at a energy point, E = 2mW + 1.5 ≈ 162.3 GeV, where
the cross section is insensitive to the W width.

Based on the study of the uncertainties of mW , we try to take data at the two specific energy points
individually. One is around the most statistical sensitive point, E = 161.2 GeV, and other one is E =

162.3 GeV, where there are very small contributions from the uncertainties of ΓW and the EBS . Table 1
summarizes the results for taking at the above two energy points individually, with the configurations
described above. We can see that the dominant contribution to ∆mW at the most statistic sensitive point
is from the uncertainty of ΓW , which is negligible when taking data at E = 162.3 GeV. So taking data
at 162.3 GeV is a good strategy when just measuring the mW , and the corresponding precision is about
0.9 MeV.
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Table 1: The precision of mW when taking data at E = 161.2 or 162.3 GeV. Shown in the table are the
∆mW associated with the statistical uncertainty and the systematic uncertainties. The last column is the
total ∆mW at the corresponding energy point.

Energy/source δstat (stat.) ∆E ∆EBS ∆ΓW δcorr
sys Total

∆mW (MeV)
161.2 (GeV) 0.59 0.36 0.12 8.0 0.35 8.0
162.3 (GeV) 0.68 0.37 - - 0.44 0.9

3.2 Measurement of W mass and width at two energy points

When taking data at two different energy points near the W-pair threshold, the mW and ΓW can be mea-
sured simultaneously. In this situation, the uncertainties of the measured results, ∆mW and ∆ΓW , cannot
be obtained by the Eq. 5, due to the correlation between the two energy points. For each simulation, the
statistical and uncorrelated systematic uncertainties, are assumed follow individual Poisson and Gaussian
distributions for each energy point, respectively; and for each correlated systematic uncertainty, the same
Gaussian distribution is used for all the energy points to consider the correlations. We repeat the simula-
tion 500 times, the corresponding distributions of the mW and ΓW are follow the Gaussian distributions,
with the means represent the nominal values and the one standard derivations includes contributions from
both uncorrelated and correlated uncertainties.

To obtain the best measurements of mW and ΓW with the given assumptions, the energy points values,
E1 and E2, as well as the luminosity fraction F allocated to the lower energy point, should be optimized.
So the 3-dimensional (3D) scan of the values of E1, E2, and F is performed, with 100 MeV as the scan
steps for energies and 0.05 for F.

The energy of most statistically sensitive point for mW is above W-pair threshold, but the one for ΓW

is below the threshold, as shown is Fig. 2, which shows that the best precisions of W mass and width
cannot be reached with same energy point. So we define the object function to quantify the importance
of them in the 3D scan, T = mW + A · ΓW , where A is a scale factor. Since W mass is thought to
be more important than its width, A = 0.1 is used throughout this paper, and the goal of 3D scan is
turn to minimize the ∆T now. During the optimization of the scan parameter such as E1, the different
dependences of ∆T on E1 are obtained by scanning other two parameters, than the value with minimum
∆T is taken as the optimized result for E1.

Figure 7 (a)-(c) show the optimization of the E1, E2, and F, respectively. In practice, the 3D scan is
performed, but the 2D plots are used to illustrate the optimization results for the scan parameters. When
the dependence of ∆T on one parameter is plotted, another one is fixed with the scanning of the third
one. For the minimal ∆T , the three scan parameters are optimized as:

E1 = 157.5 GeV, E2 = 162.5 GeV, F = 0.3. (11)

With these results, together with the configurations of total integrated luminosity and the control of
the systematic uncertainties, the projected precisions for mW and ΓW are listed in Table 2.

3.3 Measurement of W mass and width at three energy points

When taking data at three energy points near the W-pair threshold, the correlation between the different
energy points can be taken into account during the mW and ΓW measurements by introducing a additional
fit parameter h, as shown in Eq. 10. In this way, the dependence of the measurement(s) of mW (ΓW)
on the correlated systematic uncertainties, will be decreased, which means that the robustness of the
measurements will be improved corresponding.
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Figure 7: The optimization results of 3D scan for taking data at two points. (a)-(c) are for E1, E2, and F,
respectively.

Table 2: The precision of mW and ΓW with the optimization result of taking data at two energy points,
Shown in the table are the ∆mW associated with the statistical uncertainty and the systematic uncertain-
ties. The last column is the total projected uncertainties of W mass and width.

Source δstat (stat.) ∆E ∆EBS δcorr
sys Total

∆mW (MeV) 0.81 0.38 - 0.48 1.02
∆ΓW (MeV) 1.06 0.54 0.88 0.22 2.90
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Based on the procedure of taking data at two energy points, the situation for three energy points
becomes simple. The energies of the three data points, E1, E2, and E3, as well as the two luminosity
fractions F1 and F2, are optimized to obtain the best measurements of mW and ΓW , where F1 = L1/L

and F2 = L2/(1 − F1)L. The scan procedure is similar as the one used for two energy points, but now
the 3D scan is turn to be 5-dimensional (5D) scan, with additional 2 scan parameters. Figure 8 shows the
optimization results for the 5D scan parameters, and for the minimal ∆T , the three scan parameters are
optimized as:

E1 = 157.5 GeV, E2 = 162.5 GeV, E3 = 161.5 GeV, F1 = 0.3, F2 = 0.9. (12)

With these results, together with the configurations of the total integrated luminosity and the control
on the systematic uncertainties, the projected uncertainties would be

∆mW ∼ 1.0 MeV, ∆ΓW ∼ 2.8 MeV. (13)

The precisions of the W mass and width with three energy points, is not improved much when
compared with the results with two energy points. But the results with three energy points will be most
stable, since the requirements of them on the correlated systematic uncertainties are broaden.
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Figure 8: The optimization results of 5D scan for taking data at three points. (a)-(d) are the results for
E1, E2, F1, and E3, respectively. The F2 is also be optimized, which can be seen from (d).

3.4 Discussion about the data taking plan

In this section, three data taking schemes are investigated, based on different physical goal. With a
given statistics of data and configurations of experiment (the controls of systematic uncertainties), the
optimization of data taking is to minimize the total uncertainty, which is to find the balance between
statistical and systematic uncertainties.
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When the detector performance is excellent, as well as the high precision of the W-pair cross section
calculation, the dominant limitation to the precision of mW and ΓW is statistical. Then taking data at few
energy points will benefit to the final results, especially when we just measure the mW , one energy point,
around the region where W-pair cross section insensitive to ΓW , is enough.

When the statistics of data is big enough, the dominant uncertainties of mW and ΓW are systematic.
In this case, the well consideration of the systematic uncertainties is more important. The correlation
between different energy points should be taken into account, especially for the uncertainties associated
with the luminosity, the detection efficiency, the background contribution, and the calculation of the W-
pair cross section. Based on this consideration, the number of data taking points is determined large than
the number of measurements.

In this study, the optimized ∆mW corresponding to three data points is just a litter bigger than the one
with a single data point, but the ΓW could be measured simultaneously. So we think it is better to take
data at three different data points, the corresponding parameters for these data points are optimized as
Eq. 12.

4 Summary

In this paper, different data taking schemes are investigated to measure the W boson mass at CEPC,
based on the study of statistical and systematic uncertainties. With the given total integrated luminosity,
L = 3.2 ab−1, and the corresponding controls on the systematic uncertainties, the number of data points
is determined as three, with the energies and luminosity allocations listed in Eq. 12. The corresponding
projected total uncertainties of W mass and width would be ∆mW ∼ 1.0 MeV and ∆ΓW ∼ 2.8 MeV,
respectively.
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