W Mass Measurement at CEPC

Presented by ¹Pei-Zhu Lai (賴培築)

Supervisor: ²Man-Qi Ruan, ²Gang Li, ²Bo Liu, ¹Chia-Ming Kuo ¹National Central University, Taiwan ²Institute of High Energy Physics, China EW Meeting Jul 17, 2018

Outline

- The selection efficiencies of signal sample.
- Results after event selections
 - Without Btag
 - With Btag score < 0.5 for two jets
- Comparison between wi/wo Btag

V1(WW→µ∨qq̄)	# of event	Efficiency	Efficiency w.r.t. previous
Tot # of event	11206127	—	—
Muon Selection	9570465	85.4%	—
Detector acceptance Icos(θμ)I < 0.995	9570465	85.4%	100%
Pt _{Miss} > 10 GeV	9197450	82.0%	96.1%
Visible mass > 0.5*√s	8479808	75.6%	92.1%
Two jets Btag score < 0.5	7990921	71.3%	94.2%

- These selection are following Maarten's suggestions.
- The effective luminosity is 10 ab⁻¹.
- Muon selections: ID=13 & R0 < 0.01mm & Eµ >= 10 (GeV).
- Jet reconstruction: force all events to two jets

Jul 17, 2018

V1(WW→µ∨q q)	ud	CS	us	cd
µ вw	82.13 ± 0.0031	81.4632 ± 0.0046	81.9237 ± 0.0135	81.6609 ± 0.0179
Орвсв	3.6720 ± 0.0039	4.1756 ± 0.0062	3.8382 ± 0.0177	4.0097 ± 0.0254
Entries	4041407	3992963	219817	218041
RMS	17.097	17.287	17.059	17.268
RMS/√Nw	0.0018	0.0021	0.0082	0.0086

- First, after passing event selection, the should on the high mass region disappear.
- There is a bump on 125 GeV. I think it is caused by "Visible mass > $0.5*\sqrt{s}$ ".
- Actually, RooFit cannot fit the distribution well around the right boundary. I don't know why and I think it doesn't effect on W mass measurement.
- Since there is a bump on 125 GeV I change the mass window from 50 to 125 GeV.

7

Mass window (40,160)

V1(WW→µ∨qq̄)	ud	CS	us	cd
$\mu_{\sf BW}$	82.13 ± 0.0031	81.4632 ± 0.0046	81.9237 ± 0.0135	81.6609 ± 0.0179
Орвсв	3.6720 ± 0.0039	4.1756 ± 0.0062	3.8382 ± 0.0177	4.0097 ± 0.0254
Entries	4041407	3992963	219817	218041
RMS	17.097	17.287	17.059	17.268
RMS/√N _w	0.0018	0.0021	0.0082	0.0086

Mass window (50,125)

V1(WW→µ∨qq̄)	ud	CS	us	cd
$\mu_{\sf BW}$	81.95 ± 0.0034	81.3845 ± 0.0050	81.7741 ± 0.0163	81.5296 ± 0.0197
Орвсв	3.5765 ± 0.0045	3.9522 ± 0.0072	3.6688 ± 0.0245	3.8378 ± 0.0285
Entries	4041407	3992963	219817	218041
RMS	17.097	17.287	17.059	17.268
RMS/√Nw	0.0018	0.0020	0.0078	0.0082

• The fitting results are different after changing the mass window. The μ_{BW} and σ_{DBCB} are smaller than the wide mass window.

Combined

 $C \mathcal{E} \mathcal{P}$

Jul 17, 2018

V1(WW→µ∨q q)	ud	CS	us	cd
µ вw	82.13 ± 0.0031	81.4488 ± 0.0049	81.9208 ± 0.0136	81.4488 ± 0.0049
σdbcb	3.6659 ± 0.0040	4.1423 ± 0.0065	3.8333 ± 0.0179	3.9915 ± 0.0268
Entries	3955286	3621348	214655	198410
RMS	17.081	16.816	17.035	16.822
RMS/√Nw	0.0018	0.0022	0.0083	0.0090

- First, after passing event selection, the should on the high mass region disappear.
- There is a bump on 125 GeV. I think it is caused by "Visible mass > $0.5*\sqrt{s}$ ".
- Actually, RooFit cannot fit the distribution well around the right boundary. I don't know why and I think it doesn't effect on W mass measurement.
- Since there is a bump on 125 GeV I change the mass window from 50 to 125 GeV.

Pei-Zhu Lai (NCU, Taiwan)

Mass window (40,160)

V1(WW→µ∨q q)	ud	CS	us	cd
$\mu_{\sf BW}$	82.13 ± 0.0031	81.4488 ± 0.0049	81.9208 ± 0.0136	81.4488 ± 0.0049
Орвсв	3.6659 ± 0.0040	4.1423 ± 0.0065	3.8333 ± 0.0179	3.9915 ± 0.0268
Entries	3955286	3621348	214655	198410
RMS	17.081	16.816	17.035	16.822
RMS/√N _w	0.0018	0.0022	0.0083	0.0090

Mass window (50,125)

V1(WW→µ∨qq̄)	ud	CS	us	cd
μ вw	81.95 ± 0.0034	81.3592 ± 0.0054	81.7700 ± 0.0164	81.4952 ± 0.0214
Орвсв	3.5709 ± 0.0046	3.9439 ± 0.0079	3.6667 ± 0.0246	3.8414 ± 0.0314
Entries	3955286	3621348	214655	198410
RMS	17.081	16.816	17.035	16.822
RMS/√Nw	0.0018	0.0022	0.0083	0.0090

• The fitting results are different after changing the mass window. The μ_{BW} and σ_{DBCB} are smaller than the wide mass window.

Entries / (0.2) GeV

Results(with Btag score < 0.5)

Combined **1** $\Pi^3 WW \rightarrow \mu v q \overline{q}$ ×**10³ WW**→μν*q*<u></u>α CEPC Preliminary (250 GeV) CEPC Preliminary (250 GeV) $\mu_{_{BW}} = 81.8573 \pm 0.0025$ $\mu_{_{\rm BW}} = 81.7120 \ \pm 0.0029$ 140 140 MC MC $\sigma_{DBCB} = 3.7135 \pm 0.0042$ $\sigma_{DBCB} = 3.8592 \pm 0.0038$ **BW**⊗DBCB **BW**⊗DBCB 120 120 $\sigma_{_{\rm BW}} = 2.0850$ $\sigma_{\rm BW} = 2.0850$ χ^2 /ndf = 76711.63 / 594 χ^2 /ndf = 38759.33 / 369 Entries / (0.2) GeV RMS = 16.968RMS = 16.968100 100 **Entries = 7990921** Entries = 7990921 $RMS/\sqrt{N_{W}} = 0.0014$ $RMS/\sqrt{N_{W}} = 0.0013$ 80 80 60 60 40 40 20 20 0 40 50 120 60 80 100 140 160 60 70 80 90 100 110 120 m_{ii} [GeV] m_{ii} [GeV]

Comparison between wi/wo Btag

Mass window (40,160), without Btag

V1(WW→µ∨q q)	ud	CS	us	cd
$\mu_{\sf BW}$	82.13 ± 0.0031	81.4632 ± 0.0046	81.9237 ± 0.0135	81.6609 ± 0.0179
σdbcb	3.6720 ± 0.0039	4.1756 ± 0.0062	3.8382 ± 0.0177	4.0097 ± 0.0254
Entries	4041407	3992963	219817	218041
RMS	17.097	17.287	17.059	17.268
RMS/√Nw	0.0018	0.0021	0.0082	0.0086

Mass window (40,160), with Btag score < 0.5

V1(WW→µ∨qq̄)	ud	CS	us	cd
$\mu_{\sf BW}$	82.13 ± 0.0031	81.4488 ± 0.0049	81.9208 ± 0.0136	81.4488 ± 0.0049
Орвсв	3.6659 ± 0.0040	4.1423 ± 0.0065	3.8333 ± 0.0179	3.9915 ± 0.0268
Entries	3955286	3621348	214655	198410
RMS	17.081	16.816	17.035	16.822
RMS/√Nw	0.0018	0.0022	0.0083	0.0090

• Using Btag makes the resolution better than without using Btag. In addition, it makes the invariant mass of heavy flavor jet closer to the value on PDG.

CEP

Comparison between wi/wo Btag

Mass window (50,125), without Btag

V1(WW→µ∨q q)	ud	CS	us	cd
$\mu_{\sf BW}$	81.95 ± 0.0034	81.3845 ± 0.0050	81.7741 ± 0.0163	81.5296 ± 0.0197
Орвсв	3.5765 ± 0.0045	3.9522 ± 0.0072	3.6688 ± 0.0245	3.8378 ± 0.0285
Entries	4041407	3992963	219817	218041
RMS	17.097	17.287	17.059	17.268
RMS/√Nw	0.0018	0.0020	0.0078	0.0082

Mass window (50,125), with Btag score < 0.5

V1(WW→µ∨qq̄)	ud	CS	us	cd
$\mu_{\sf BW}$	81.95 ± 0.0034	81.3592 ± 0.0054	81.7700 ± 0.0164	81.4952 ± 0.0214
Орвсв	3.5709 ± 0.0046	3.9439 ± 0.0079	3.6667 ± 0.0246	3.8414 ± 0.0314
Entries	3955286	3621348	214655	198410
RMS	17.081	16.816	17.035	16.822
RMS/√Nw	0.0018	0.0022	0.0083	0.0090

• Using Btag makes the resolution better than without using Btag. In addition, it makes the invariant mass of heavy flavor jet closer to the value on PDG.

CEP

Comparison between wi/wo Btag CEP

Jul 17, 2018

 $\mu_{_{\rm BW}} = 81.7126 \pm 0.0028$

 $\sigma_{\text{DBCB}} = 3.7273 \ \pm 0.0041$

 χ^2 /ndf = 41155.64 / 369

 $\sigma_{BW} = 2.0850$

RMS = 17.200

Entries = 8479808

 $RMS/\sqrt{N_{w}} = 0.0013$

wo Btag

 $\mu_{_{BW}} = 81.7120 \ \pm 0.0029$

 $\sigma_{_{DBCB}} = 3.7135 ~\pm 0.0042$

 χ^2 /ndf = 38759.33 / 369

 σ_{BW} = 2.0850

RMS = 16.968Entries = 7990921

 $RMS/\sqrt{N_{W}} = 0.0013$

wi Btag

100 110 120

Pei-Zhu Lai (NCU,

Back up

b-/c- tagging plots

Red line is for b-jet, blue line is for c-jet, and black line is for light-jet.

- According to left plot, if want to reject b-jet, the score is recommended less than 0.9; if want to select b-jet, the score is recommended greater than 0.8.
- According to right plot, if want to reject c-jet, the score is recommended less than 0.6; if want to select c-jet, the score is recommended greater than 0.4.