Course title: CP Violation

Instructor(s): Stephen Lars Olsen

Class Hours/Credits: 20 / 1

Class Format: lectures and class discussions

Aims & Objectives: Understand KM mechanism for quark-sector CP

violation, with potential extensions to neutrinos

Time & Place: 9:00~11:40 AM in the scheduled days RM204, Teaching Building, UCAS Yuquanlu Campus

Tentative Schedule of the course

Lectures	subjects	Date in 2018	hours
1	C, P, CP & T discrete symmetries	July 25 (Wed)	3
2	C, P and CP with Dirac fermions	July 27 (Fri)	3
3	C, P & CP violations in K meson system	August 6 (Mon)	3
4	Measurements of ε ' for K mesons	August 8 (Wed)	3
5	Kobayashi-Maskawa 6-quark CPV model	August 10 (Fri)	3
6	B mesons & CKM matrix Unitary triangle	August 13 (Mon)	3
7	CPV in the neutrino sector	August 15 (Wed)	2
total			20

Contents Outline:

Section 1: C, P & CP operators and violations in the weak interactions

Section 2: The Kobayashi Maskawa mechanism for CPV in the Standard Model

Section 3: CP violations in the neutrino sector and leptogenesis

Textbook and any related course material: Bigi & Sanda, CP Violation

Expected level of proficiency from students entering the course: General knowledge of particle physics; some familiarity with Dirac equation.