CP Violation

-- Lecture 4 --

M.C. Escher

Stephen Lars Olsen

July-August, 2018

Summary of Lecture 3

- K^0 and \overline{K}^0 mesons are not mass eigenstates; K_s and K_L are mass eigenstates
- K_L mesons discovered at Brookhaven Laboratory
- a K^0 will oscillate into a \overline{K}^0 and vice versa
- neutral K mesons produced in ϕ decay are ~100% "quantum correlated"
- K_s mesons are "regenerated" when a K_L passes through matter
- Discovery of $K_L \rightarrow \pi^+ \pi^-$ decays proved that CP symmetry is violated
- Measurements consistent with $K_L = K_2 + \mathcal{E} K_1$; $\varepsilon = 2.2 \times 10^{-3}$ $\varepsilon = \frac{i \operatorname{Im} M_{12} + \frac{1}{2} \operatorname{Im} \Gamma_{12}}{(M_L M_S) \frac{i}{2}(\Gamma_S + \Gamma_I)}$
- Phase of *ɛ* consistent with CPV originating from short-distance Mass-Matrix terms

$$\varepsilon = \frac{i \operatorname{Im} M_{12} + \frac{1}{2} \operatorname{Im} \zeta}{(M_L - M_S) - \frac{i}{2} (\Gamma_S + \Gamma_L)}$$

• Many beautiful, high-statistics measurements of CPV interference effects reported

Question from lecture 3

how do we measure time?

CPLEAR

0.5 Asymmetry A... 0.4 0.3 0.2 0.1 0 -0.1 -0.2-0.3-0.4 -0.5 2 18 20 6 10 12 14 16 Neutral-kaon decay time [τ_s] $A_{+-}(au) = rac{\overline{N}(au) - lpha N(au)}{\overline{N}(au) + lpha N(au)}$ $=-2rac{|\eta_{+-}|e^{rac{1}{2}(au/ au_{\mathrm{S}}- au/ au_{\mathrm{L}})}\cos(\Delta m au-\phi_{+-})}{1+|\eta_{+-}|^2e^{(au/ au_{\mathrm{S}}- au/ au_{\mathrm{L}})}}.$

$$\frac{N^{+} - N^{-}}{N^{+} + N^{-}} = 2 \left(\operatorname{Re}(\varepsilon) + \frac{e^{-\frac{1}{2}(\Gamma_{S} + \Gamma_{L})t} \cos\Delta M_{K}t}{e^{-\Gamma_{L}t} + e^{-\Gamma_{L}t}} \right)$$
$$I(K^{0} \to K^{0};t) = I_{0} \left| \left\langle K^{0} \left| K^{0}(t) \right\rangle \right|^{2} = I_{0} \left| f_{+}(t) \right|^{2}$$
$$I(K^{0} \to \overline{K}^{0};t) = I_{0} \left| \left\langle \overline{K}^{0} \left| K^{0}(t) \right\rangle \right|^{2} = I_{0} \left| f_{-}(t) \right|^{2}$$

NA31

infer time from distance

 $d=vt=\beta ct, \rightarrow t=d/\beta c$

decay probabilty in $\Delta d = \Delta \tau / \tau_{\kappa}$

comment on widths, lifetimes, branching factions, partial widths

$$\Gamma = \text{total}$$
width $\Gamma = \frac{\Box}{\tau} \rightarrow \frac{1}{\tau}$
 $\tau = \text{lifetime}$

we use units where $\Box = c = 1$

branching fraction

$$Bf(P \to xyz) = \frac{\text{# of } P \to xyz \text{ decays}}{\text{all } P \text{ decays}}$$
$$\sum_{i=\text{all modes}} Bf(P \to i) = 1$$

partial width $\Gamma_{xyz} = Bf(P \rightarrow xyz) \times \Gamma = \frac{Bf(P \rightarrow xyz)}{\tau}$

these are what theories calculate

$$\Gamma = \sum_{i=\text{all modes}} \Gamma_i$$

example:

K_s & K_L mesons

KO DECAY MODES	Fraction $(\Gamma_{\vec{I}}/\Gamma)$	K ⁰ DECAY MODES	ı	Fraction (Γ_i/Γ)
$\pi^{0}\pi^{0}\pi^{0}$ $\pi^{+}\pi^{-}$	Hadronic modes (30.69±0.05) % (69.20±0.05) %	$\pi^{\pm} e^{\mp} \nu_e$ Called K_{aa}^0 .	Semiler [_p]	(40.55 ±0.11) %
$\pi^{\pm} e^{\mp} \nu_{e}$	Semileptonic modes [p] (7.04±0.08) × 10 ⁻⁴	$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Hadronic modes	[<i>p</i>]	(27.04 ±0.07)%
Mean life $ au =$ (0.89	Mean life $ au =$ (0.8954 \pm 0.0004) $ imes$ 10 $^{-10}$ s			(19.52 ± 0.12) % (12.54 ± 0.05) %
otal widths		Mean life $ au =$ (5.116 \pm 0.021) $ imes$ 10 ⁻⁸ s		
$\Gamma_{Ks} = \frac{\Box}{\tau_{Ks}} = \frac{6.58 \times 10^{-22} \text{MeVs}}{0.895 \times 10^{-10} \text{s}} = 7.35 \times 10^{-12} \text{MeV}$		$\Gamma_{KL} = \frac{\Box}{\tau_{KL}} = \frac{6.58 \times 10^{-22} \mathrm{MeVs}}{5.12 \times 10^{-8} \mathrm{s}} = 1.28 \times 10^{-14} \mathrm{MeV}$		
partial widths				
$\Gamma_{Ks\to\pi e\nu} = Bf(K_s\to\pi e$	$(\nu \nu) \times \Gamma_{Ks} = 0.52 \times 10^{-14} \mathrm{MeV}$	$\Gamma_{KL\to\pi e\nu} = Bf(K_L \to \pi$	$(e\nu) \times \Gamma_{KL} =$	$= 0.52 \times 10^{-14} \mathrm{MeV}$

although $Bf(K_s \rightarrow \pi ev) < Bf(K_L \rightarrow \pi ev)$, the partial widths are equal

units when *ħ=c=1*

mass, energy & momentum units are MeV (sometimes GeV)

length and time units are MeV⁻¹

in "normal" units:

a 1 MeV⁻¹ length unit = $\Box c/1$ MeV = 197 fm = 197 × 10⁻¹³ cm

& a 1 MeV⁻¹ time unit = $\Box/1$ MeV = 6.58×10^{-22} s

Comments on choice of C

Input: $C^2=1$ and $C|\pi^0\rangle = +|\pi^0\rangle$

-- my choice for C values --

 $C, \mathcal{P} \& C\mathcal{P}$ for π and K mesons

Particle	P	С	СР
$ \pi^+\rangle$	-1	+ π ⁻ >	- π ⁻ >
$ \pi^{0}\rangle$	-1	+ π ⁰ ⟩	- π ⁰ ⟩
 π ⁻ ⟩	-1	+ π*⟩	- π*⟩
K*>	-1	+ K ⁻ >	- K ⁻ >
K ⁰ >	-1	+ K 0	- K ⁰ >
Kο>	-1	+ K ⁰ >	- K ⁰ >
K->	-1	+ K+ >	- K+ >

$$|K_{1}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle + |\overline{K}^{0}\rangle \right) \Leftarrow C\mathcal{P} \text{ even}$$
$$|K_{2}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle - |\overline{K}^{0}\rangle \right) \Leftarrow C\mathcal{P} \text{ odd}$$
$$C\mathcal{P} \langle \pi\pi |\mathcal{A} | K^{0}\rangle = + \langle \pi\pi | \mathcal{A}^{*} | \overline{K}^{0}\rangle$$

-- others (mostly theorist's) choices --

C, \mathcal{P} & *C* \mathcal{P} for π and K mesons

Particle	Р	С	CP
$ \pi^{*}\rangle$	-1	+ π ⁻ >	- π `⟩
$ \pi^{0}\rangle$	-1	$+ \pi^{0}\rangle$	$- \pi^0\rangle$
$ \pi\rangle$	-1	+ π *	- π * >
K*>	-1	+ K ⁻ >	- K ⁻ >
K ₀ >	-1	- K 0	+ K ⁰ >
K ₀	-1	- K ⁰	+ K0
K [.] >	-1	+ K+ >	- K*>

$$|K_{1}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle - |\overline{K}^{0}\rangle \right) \Leftarrow C\mathcal{P} \text{ even}$$
$$|K_{2}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle + |\overline{K}^{0}\rangle \right) \Leftarrow C\mathcal{P} \text{ odd}$$
$$C\mathcal{P} \langle \pi\pi |\mathcal{A} | K^{0}\rangle = -\langle \pi\pi | \mathcal{A}^{*} | \overline{K}^{0}\rangle$$

Physics stays the same (of course)

Superweak model for CPV?

$$|K_L\rangle = \frac{1}{\sqrt{1+|\varepsilon|^2}} \left(|K_2\rangle + \varepsilon |K_1\rangle\right) \qquad \varepsilon = \frac{i \operatorname{Im} M_{12} + \frac{1}{\varepsilon} \operatorname{In} \Gamma_{12}}{(M_L - M_S) - \frac{i}{\varepsilon} (\Gamma_S + \Gamma_L)}$$

Lincoln Wolfenstein

CPV is very small, ~10⁻³G_F²: is there a new "superweak," very short-ranged Δ S=2 interaction that directly couples K⁰ to \mathbb{R}^{0} ?

This interaction has a coupling strength ~10⁻¹⁰ G_F and is only strong enough to produce Im M_{12} , i.e. \mathcal{E} , and nothing else. It is seen in K₁ decay because ΔM_{κ} (<10⁻¹² MeV) is so small.

Decay of the K_L

Is there a direct decay K_{CP-odd} to $\pi^+\pi^-$ or $\pi^0\pi^0$?

The Superweak model says no!

$\eta_{\text{+-}} \, \text{and} \, \eta_{\text{00}}$ with direct decays

$$\eta_{+-} \equiv \frac{\left\langle \pi^{+}\pi^{-} | H | K_{L} \right\rangle}{\left\langle \pi^{+}\pi^{-} | H | K_{S} \right\rangle} = \frac{\left\langle \pi^{+}\pi^{-} | H | K_{2} \right\rangle + \varepsilon \left\langle \pi^{+}\pi^{-} | H | K_{1} \right\rangle}{\left\langle \pi^{+}\pi^{-} | H | K_{1} \right\rangle} = \varepsilon + \frac{\left\langle \pi^{+}\pi^{-} | H | K_{2} \right\rangle}{\left\langle \pi^{+}\pi^{-} | H | K_{1} \right\rangle}$$

$$\eta_{00} = \frac{\left\langle \pi^{0} \pi^{0} | H | K_{L} \right\rangle}{\left\langle \pi^{0} \pi^{0} | H | K_{S} \right\rangle} = \frac{\left\langle \pi^{0} \pi^{0} | H | K_{2} \right\rangle + \varepsilon \left\langle \pi^{0} \pi^{0} | H | K_{1} \right\rangle}{\left\langle \pi^{0} \pi^{0} | H | K_{1} \right\rangle} = \varepsilon + \frac{\left\langle \pi^{0} \pi^{0} | H | K_{2} \right\rangle}{\left\langle \pi^{0} \pi^{0} | H | K_{1} \right\rangle}$$

If Superweak is correct, and there are no direct CPV terms:

$$\frac{\left\langle \pi^{+}\pi^{-}|H|K_{2}\right\rangle}{\left\langle \pi^{+}\pi^{-}|H|K_{1}\right\rangle} = 0 \text{ and } \frac{\left\langle \pi^{0}\pi^{0}|H|K_{2}\right\rangle}{\left\langle \pi^{0}\pi^{0}|H|K_{1}\right\rangle} = 0$$

Then
$$\eta_{+-} = \varepsilon$$
 & $\eta_{00} = \varepsilon$ $\frac{\eta_{+-}}{\eta_{00}} = \frac{\langle \pi^+ \pi^- |H|K_L \rangle / \langle \pi^+ \pi^- |H|K_S \rangle}{\langle \pi^0 \pi^0 |H|K_L \rangle / \langle \pi^0 \pi^0 |H|K_S \rangle} = 1$

Predictions of Superweak model

All CPV is due to influence of $\boldsymbol{\mathcal{E}}$, no other measureable results

$$\eta_{+-} = \eta_{00} = \varepsilon; \quad \Re \equiv \left| \frac{\eta_{+-}}{\eta_{00}} \right|^2 = \frac{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)} = 1$$

phases of η_{+-} and η_{00} , ϕ_{+-} and $\phi_{00} = \arctan\left(\frac{2\Delta M_K}{\Delta\Gamma_K}\right) \approx 45^\circ \Leftarrow$ "SW phase"

direct $K_2 \rightarrow \pi\pi$ effects $\pi^+\pi^- \& \pi^0\pi^0$ differently

$$\langle \pi\pi; I = 0 | H | K^{0} \rangle = A_{0} e^{i\delta_{0}} \qquad \langle \pi\pi; I = 0 | H | \overline{K}^{0} \rangle = -A_{0}^{*} e^{i\delta_{0}} \\ \langle \pi\pi; I = 2 | H | K^{0} \rangle = A_{2} e^{i\delta_{2}} \qquad \langle \pi\pi; I = 2 | H | \overline{K}^{0} \rangle = -A_{2}^{*} e^{i\delta_{2}} \\ \langle \pi\pi; I = 2 | H | \overline{K}^{0} \rangle = A_{2} e^{i\delta_{2}} \qquad \langle \pi\pi; I = 2 | H | \overline{K}^{0} \rangle = -A_{2}^{*} e^{i\delta_{2}} \\ \langle \pi^{*}\pi^{-} \rangle = \sqrt{\frac{2}{3}} | \pi\pi; I = 0 \rangle + \sqrt{\frac{1}{3}} | \pi\pi; I = 2 \rangle \qquad | \pi^{0}\pi^{0} \rangle = -\sqrt{\frac{1}{3}} | \pi\pi; I = 0 \rangle + \sqrt{\frac{2}{3}} | \pi\pi; I = 2 \rangle \\ \langle \pi^{*}\pi^{-} | H | K_{2} \rangle = \frac{1}{\sqrt{2}} [\langle \pi^{*}\pi^{-} | H | \overline{K}^{0} \rangle] \qquad \langle \pi^{0}\pi^{0} | H | K_{2} \rangle = \frac{1}{\sqrt{2}} [\langle \pi^{0}\pi^{0} | H | \overline{K}^{0} \rangle - \langle \pi^{0}\pi^{0} | H | \overline{K}^{0} \rangle] \\ = \frac{1}{\sqrt{2}} (\sqrt{\frac{2}{3}} (A_{0} - A_{0}^{*}) e^{i\delta_{0}} + \sqrt{\frac{1}{3}} (A_{2} - A_{2}^{*}) e^{i\delta_{2}}) \qquad = i\sqrt{\frac{2}{3}} (\sqrt{2} \operatorname{Im} A_{0} e^{i\delta_{0}} + \operatorname{Im} A_{2} e^{i\delta_{2}}) \qquad = i\sqrt{\frac{2}{3}} (\sqrt{2} \operatorname{Re} A_{0} e^{i\delta_{0}} + \operatorname{Re} A_{2} e^{i\delta_{2}}) \qquad \langle \pi^{0}\pi^{0} | H | K_{1} \rangle = \sqrt{\frac{2}{3}} (-\operatorname{Re} A_{0} e^{i\delta_{0}} + \sqrt{2} \operatorname{Re} A_{2} e^{i\delta_{2}}) \end{cases}$$

Physics is in the difference between $A_0 \& A_2$ phases. It is customary^{*} to chose A_0 to be real

$$\left\langle \pi^{+}\pi^{-} \left| H \right| K_{2} \right\rangle = i\sqrt{\frac{2}{3}} \operatorname{Im} A_{2} e^{i\delta_{2}}$$

 $\left\langle \pi^{+}\pi^{-} \left| H \right| K_{1} \right\rangle = \sqrt{\frac{4}{3}} A_{0} e^{i\delta_{0}} \left(1 + \frac{\operatorname{Re} A_{2}}{\sqrt{2}A_{0}} e^{i(\delta_{2} - \delta_{0})} \right)$

$$\left\langle \pi^{0}\pi^{0} \left| H \right| K_{2} \right\rangle = i\sqrt{\frac{4}{3}} \operatorname{Im} A_{2} e^{i\delta_{2}}$$
$$\left\langle \pi^{0}\pi^{0} \left| H \right| K_{1} \right\rangle = \sqrt{\frac{2}{3}} A_{0} e^{i\delta_{0}} \left(-1 + \frac{\sqrt{2} \operatorname{Re} A_{2}}{A_{0}} e^{i(\delta_{2} - \delta_{0})} \right)$$

*T. T. Wu and C. N. Yang, Phys. Rev. Lett. 13, 380 (1964)

$\Delta I=1/2$ rule

KS DECAY MODES	Fraction $(\Gamma_{\vec{i}}/\Gamma)$	K+ DECAY MODES	Fraction (Γ_i/Γ)
$\pi^{0}\pi^{0}$	Hadronic modes (30.69±0.05) %		Hadronic modes
$\pi^+\pi^-$	(69.20±0.05) %	$\pi^{+}\pi^{0}\pi^{0}$	$(20.07 \pm 0.08)\%$ $(1.760 \pm 0.023)\%$
+ -	Semileptonic modes	$\pi^+\pi^+\pi^-$	(5.583±0.024)%
Mean life $\tau = (0.8954 \pm 0.0004) \times 10^{-10}$ s		Mean life $ au =$ (1.2380 \pm 0.0020) $ imes$ 10 $^{-8}$ s	
$\Rightarrow \pi^+ \pi^- = \frac{Bf(K_s \rightarrow \pi_{Ks})}{\tau_{Ks}}$	$\frac{\pi^+\pi^-)}{2} = 5.1 \times 10^{-12} \mathrm{MeV}$	$\Gamma_{K^+ \to \pi^+ \pi^0} = \frac{Bf(K^+ \to \pi)}{\tau_{K^+}}$	$(\pi^+\pi^0) = 2.4 \times 10^{-9} \mathrm{MeV}$
	$\Gamma_{Ks \to \pi^+ \pi^-}$	$] 450 \times \Gamma_{K^+ \to \pi^+ \pi^0}$	

phase space is same for both modes

$$\Rightarrow A_0 \approx \sqrt{450}A_2 \approx 22A_2 \qquad \begin{array}{c} K_s \rightarrow \left(\pi^+ \pi^-\right)_{I=0} \Leftarrow \Delta I = \frac{1}{2} & \text{favored} \\ K^+ \rightarrow \left(\pi^+ \pi^0\right)_{I=2} \Leftarrow \Delta I = \frac{3}{2} & \text{disfavored} \end{array}$$

direct CP violation double asymmetry

If there are direct CP violations:

$$\frac{\Gamma\left(K_{L} \to \pi^{+} \pi^{-}\right)}{\Gamma\left(K_{S} \to \pi^{+} \pi^{-}\right)} = \left|\eta_{+-}\right|^{2} = \left|\varepsilon + \varepsilon'\right|^{2} = \varepsilon^{2} \left|1 + \varepsilon'/\varepsilon\right|^{2} \approx \varepsilon^{2} \left(1 + 2\operatorname{Re}\varepsilon'/\varepsilon\right)$$
$$\frac{\Gamma\left(K_{L} \to \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \to \pi^{0} \pi^{0}\right)} = \left|\eta_{00}\right|^{2} = \left|\varepsilon - 2\varepsilon'\right|^{2} = \varepsilon^{2} \left|1 - 2\varepsilon'/\varepsilon\right|^{2} \approx \varepsilon^{2} \left(1 - 4\operatorname{Re}\varepsilon'/\varepsilon\right)$$

$$\Re = \frac{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)} \approx \frac{1 + 2\operatorname{Re} \varepsilon' / \varepsilon}{1 - 4\operatorname{Re} \varepsilon' / \varepsilon} \approx 1 + 6\operatorname{Re} \varepsilon' / \varepsilon$$

precision measurements of $K_L \rightarrow \pi^0 \pi^0$ are very important

Quest for $K_1 \rightarrow \pi^0 \pi^0$

1st attempt by Cronin

Trigger on one γ -ray with P_T>160 MeV

Figure 13: Spectrometer at PPA for the measurement of the γ -ray spectrum from K_L decay

results

 $|\eta_{+}/\eta_{00}|^2 = 1.03 \pm 0.07 \iff \text{Phys. Rev. 188, 2033 (1969)}$

7% precision

The early measurements

1989 on non-zero measurement of *E*'

After I submitted my paper to

Physical Review Letters I received a reluctant acceptance from the referee who objected that my paper made no predictions. What he really meant was that the superweak theory predicted nothing; that is, nothing else would be found beyond the parameter ε in the K° system. Unfortunately, this prediction has proven all too true.

L. Wolfenstein (1989)

Go to higher energy

US: E731 at Fermilab

Europe: NA-31 at CERN

NA31 (CERN) 1st "evidence" for $\varepsilon' \neq 0$

E731 (Fermilab) finds ε' =consistent with 0

Big Controversy

E731: $Re(\epsilon'/\epsilon) = (7.4\pm6.0) \cdot 10^{-4}$ Not dispro

In any case, while the average is well within the range expected in the standard model, the evidence for a nonzero effect is less than two standard deviations.

The NA31 result is more interesting in that it tends to disagree with the latest predictions from the Standard Model. On the other hand, the E731 result is in the range favored by the Standard Model and as well it doesn't quite rule out the Superweak Model (Re $\varepsilon'/\varepsilon = 0$) with any confidence. The results differ by about two standard deviations; nevertheless, the conclusions are sufficiently different that it would not be appropriate to average the results prior to the establishment of a non-zero effect.

The E731 result does not confirm the non-zero result of NA31 nor does it significantly disagree with it.

What are we to conclude from these experiments? The most important conclusion is that they must be continued to still higher accuracy. The point is not to find the exact value of e'; the point is to make absolutely sure that e' is non-zero. The NA31 experiment has wounded the superweak theory. The time has come to really kill it.

> However, a result consistent with zero will not rule out the standard model, because of the uncertainties in the $Re(\epsilon'/\epsilon) = (23.0\pm6.5) \cdot 10^{-4}$ prediction.

so that we cannot as yet claim that direct CP violation is established.

Inconsistent with NA31 superweak

$\epsilon'=0$? or $\epsilon' \neq 0$?, that is the question

Experimental goal

Measure:

$$\Re = \frac{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)}$$

with $\approx \pm 0.1\%$ precision

The NA-48 experiment at CERN

NA48: K_s and K_L beams simultaneously

 K_S are distinguished from K_L by tagging the protons upstream of their production target.

K_{S} and K_{L} signatures

$K \rightarrow \pi^0 \pi^0$ events

$K \rightarrow \pi^0 \pi^0$ event selection

$K \rightarrow \pi^+ \pi^-$ detection

x 10 ²

$K \rightarrow \pi^+ \pi^-$ selection

Problem: different decay-time distributions

Ideally, efficiency corrections cancel out in the ratios:

$$\mathfrak{R} = \frac{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)}$$

However, because of the differences in the decay vertex distributions, these cancellations are not so effective.

Determining the R (double ratio)

Consider a slice of decay volume, Δz_i at z_i . and a range of K momentum Δp_i at p_i :

Low statistics experiments

Compute $\varepsilon^{00(+-)}(z,p)$ with Montecarlo;

Determine $F_{L}(z,p)$ from $K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ decays + Monte Carlo, etc

Weight events

Determine:
$$\Gamma(K_{L(S)} \to (\pi\pi)^{00(+)}) = \sum_{ij} \frac{N_{L(S)}^{00(+)}(z_i, p_j)}{\varepsilon_{ij}^{00(+)}F_{ij}^{00(+)}}$$

Make ratios

Systematic errors are dominated by MC, but are smaller than statistical errors

High statistics experiments (+-)

measure $\Re i_{ij}^{+-} = \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)}$ for events with vertices in the small region $\Delta z_i, \Delta p_j$

Efficiency weighting (00)

High statistics experiments

make a double ratio: $\Re_{ij}^{tot} = \frac{\Re_{ij}^{+-}}{\Re_{ij}^{00}} = \frac{F_{ij}^{S} \cdot N_{ij} (K_L \to \pi^+ \pi^-) / F_{ij}^L \cdot N_{ij} (K_S \to \pi^+ \pi^-)}{F_{ij}^S \cdot N_{ij} (K_L \to \pi^0 \pi^0) / F_{ij}^L \cdot N_{ij} (K_S \to \pi^0 \pi^0)}$ -- beam flux factors cancel --

no dependence on efficiency

or beam intensity

just count events

$$\mathfrak{R}_{ij}^{tot} = \frac{N_{ij} (K_L \to \pi^+ \pi^-) / N_{ij} (K_S \to \pi^+ \pi^-)}{N_{ij} (K_L \to \pi^0 \pi^0) / N_{ij} (K_S \to \pi^0 \pi^0)}$$

This results in many (N= $Z_{tot}/\Delta z \times P_{tot}/\Delta p$?) independent measurements with no MC dependence & small systematic errors

The final statistical error is larger, but the systematic error is smaller

Use "life-time weighting"

Important to correct for different decay vertex distributions

The KTeV Detector

Charged particle momentum resolution < 1% for p>8 GeV/c; Momentum scale known to 0.01% from K→π⁺π⁻
CsI energy resolution < 1% for E_γ > 3 GeV; energy scale known to 0.05% from K→πev.

For $E_K \sim 70$ GeV, $\begin{array}{l} K_S: \gamma\beta c\tau \sim 3.5m \\ K_L: \gamma\beta c\tau \sim 2.2 \text{ km} \end{array}$

Double-beam with active regenerator

1 1 1 1 1

τ.

I.

1 I.

1

120

140

160

.

1 1 1

180

- 1

200

-1.0

Invariant Mass Plots

0.46

0.5

0.52 0.54 Reconstructed invariant mass (GeV/c²)

0.48

Reweight K_L decays to reg. beam distribution. 97 Data 10⁶ 10⁵ + 10⁴ 10³ Vacuum (no reweighting) Regenerator 10² 10¹ 1 10¹²⁰ 130 140 150 160 10⁵ 10⁴ 10³ Vacuum (reweighted) Regenerator +10² 10¹ 1 120 130 140 150 160 Decay Position (m)

Huge numbers of events

KTeVKKVacuum BeamReg. BeamK $\rightarrow \pi^+\pi^-$ 8,593,98814,903,532K $\rightarrow \pi^0\pi^0$ 2,489,5374,130,392

NA-48

4.8 million $\pi^0\pi^0$ events total

~1000x increase over the best pre-1990 experiments

Final ε' results

Final ϵ' results

What do the theorists say?

♦ Theoretical predictions for $\text{Re}(\varepsilon'/\varepsilon)$ generally below $1 \cdot 10^{-3}$

$\epsilon,\,\eta_{\text{+-}}\,\text{and}\,\,\eta_{\text{00}}\,\text{today}$

CP violating asymmetries in QM

requirements for a CPV-generated particle-antiparticle asymmetry:

- 1) a process with a non-zero CP phase (δ_{CP})
- 2) a competing process with the same final state
- 3) a non-zero common (or strong) phase (δ_{com})

	i→f	i→f
M _{CP} phase	δ_{CP}	-δ _{CP}
M ₀ phase	δ_{com}	δ_{com}

 δ_{com} , the "common" or "strong" phase, of M_0 , is the same for $i \to f$ and $\overline{i} \to \overline{f}$

CPV in $K_{I} \rightarrow \pi^{+}\pi^{-}$

S-wave $\pi\pi$ phase shifts

$K^0 \rightarrow \overline{K}^0 \rightarrow K^0$ in $\overline{p}p \rightarrow K^0 K^- \pi^+ (\overline{K}^0 K^+ \pi^-)$ (CPLEAR)

direct CP parameter ϵ'

If it's not superweak, what is it?

Can CPV fit into the Standard model?

Clue: CPV is seen in strangeness-changing weak decays.

maybe CPV has something to do with flavor-changing Weak Interactions

Flavor mixing & CP Violation

Three Quarks for Müster Mark

1963: all known strongly interacting particles are comprised of three basic constituents: fractionally charged quarks (and their three anti-quark partners).

S

$$q=+2/3 \begin{pmatrix} \mathcal{U} \\ d \end{pmatrix}$$
$$q=-1/3 \begin{pmatrix} \mathcal{U} \\ d \end{pmatrix}$$

The elementary particles before 1974

Weak Interactions in the 3-quark era 1964--1974

n

Problems with the Weak Interactions & the 3-quark model

1) anomalous quark W.I."charges"

Strength of the weak interaction, characterized by the Fermi constant, G_F, is well measured in muon decays

Cabbibo's solution: flavor mixing

Missing neutral currents

2: no <u>flavor-changing</u> "neutral currents" seen.

flavor-preserving neutral currents (e.g. $vN \rightarrow vX$) are seen

discovered at CERN

flavor-changing neutral currents (e.g. $K \rightarrow \pi l^+ l^-$) are strongly supressed

GIM sol'n: Introduce a 4th quark

d'& s' are mixed d & s

eigenstates

Mixing matrix must be Unitary

$|\alpha|^2 + |\beta|^2 = 1$ & $\alpha^*\beta - \alpha\beta^* = 0$
W.I. quark spinors

Charged currents (c-quark)

Flavor preserving Neutral Current $|\alpha|^2 + |\beta|^2 G_N$, d,(s) $|d\rangle = \alpha |d'\rangle - \beta |s'\rangle$ **d**,(s) $|s\rangle = \alpha |s'\rangle + \beta |d'\rangle$ $\langle d \| d \rangle = (\alpha^* \langle d' | - \beta^* \langle s' |) (\alpha | d' \rangle - \beta | s' \rangle)$ $= |\alpha|^{2} \langle d' | d' \rangle + \alpha^{*} \beta \langle d' | s' \rangle - \beta^{*} \alpha \langle s' | d' \rangle + |\beta|^{2} \langle s' | s' \rangle$ $= |\alpha|^2 + |\beta|^2$ =1 From Unitarity

Flavor changing Neutral Current

 $|d\rangle = \alpha |d'\rangle - \beta |s'\rangle$ $(\alpha^*\beta+\beta\alpha)G_{N}$ d(s) $|s\rangle = \alpha |s'\rangle + \beta |d'\rangle$ $\langle s \| d \rangle = (\alpha^* \langle s' | - \beta^* \langle d' |) (\alpha | d' \rangle + \beta | s' \rangle)$ $= |\alpha|^{2} \langle s' | d' \rangle + \alpha^{*} \beta \langle s' | s' \rangle - \beta^{*} \alpha \langle d' | d' \rangle + |\beta|^{2} \langle d' | s' \rangle$ $=(lpha^*eta-eta^*lpha)=0$ From Unitarity

FCNC forbidden by Unitarity

GIM-Mechanism

Flavor mixing with 4 quarks

-- 2-dimensional rotation --

Cabibbo's flavor mixing revisitd

short-distance $K^0 \leftrightarrow \overline{K}^0$ mixing

$|\Delta m_s| = |m_{K_s} - m_{K_L}|$ constrained original prediction of c-quark mass

Original GIM paper:

PHYSICAL REVIEW D

VOLUME 2, NUMBER 7

1 OCTOBER 1970

Weak Interactions with Lepton-Hadron Symmetry*

S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI[†] Lyman Laboratory of Physics, Harvard University, Cambridge, Massachuseits 02139 (Received 5 March 1970)

... from the observed K_1K_2 mass difference we now conclude that Δ must be not larger than 3-4 GeV.

Japan physicists knew about the c quark

1971 paper by Nagoya particle physicist Kiyoshi Niu and colleagues

Prog. Theor. Phys. Vol. 46 (1971), No. 5

A Possible Decay in Flight of a New Type Particle

Kiyoshi NIU, Eiko MIKUMO and Yasuko MAEDA* Institute for Nuclear Study University of Tokyo

*Yokohama National University

August 9, 1971

Assumed decay mode	$M_x{ m GeV}$	T_{x} sec
$\begin{array}{c} X \rightarrow \pi^0 + \pi^{\pm} \\ X \rightarrow \pi^0 + p \end{array}$	1.78 2.95	2.2×10^{-14} 3.6×10^{-14}

Shuzo Ogawa (Nagoya) interpreted this event as production of one particle with a c-quark ($X \rightarrow \pi^0 p$) and one with an anti-c-quark ($X \rightarrow \pi^0 \pi^{\pm}$).

Introducing a CP-violating, complex amplitude into the Standard Model

The elementary particles in 1973

In Nagoya

In the rest of the world

1973 Kobayashi & Maskawa

Makoto Kobayashi

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

PAGE 1

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of *CP*-violation are studied. It is concluded that no realistic models of *CP*-violation exist in the quartet scheme without introducing any other new fields. Some possible models of *CP*-violation are

"quartet scheme" =4-quark model

Quark-flavor-mixing for 4 flavors

Can we add a complex CPV phase to one of these matrix elements?

8 4 flavors; # of arb. phases:

of free parameters:

Only 1 free parameter: the Cabibbo angle, $\theta_{\rm C}$

$$V = \begin{pmatrix} \cos\theta_{\rm C} & \sin\theta_{\rm C} \\ -\sin\theta_{\rm C} & \cos\theta_{\rm C} \end{pmatrix}$$

KM paper, page 12

"6 quark model"

Next we consider a 6-plet model, another interesting model of CP-violation.

$$\begin{pmatrix} d \\ s \\ s \\ b \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

3 Euler angles: $\theta_1 \theta_2 \& \theta_3$, plus 1 CP-violating phase: δ

Then, we have CP-violating effects through the interference among these different current components.

i.e., theory can accommodate CP violation, but only with 6 (or more) quarks

What about 6 quark flavors

 $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$ eigenstates Veak int eigenstates S θ_{2}

Can we add a complex CPV phase to one of these matrix elements?

Number of parameters: Unitarity conditions:	18 9	
6 flavors; # of arb. phases:	5	
# of free parameters:	4	

Yes!

4 parameters, 3 or rotations (Euler angles: $\theta_1 \theta_2 \& \theta_3$) with one left over for a CPV phase

Quark field "re-phasing"

multiply each quark by an arbitrary phase factor:

$$q_i \rightarrow e^{i\phi_i} q_i$$
 6 (2N) arbitrary phase factors: ϕ_i

simultaneously "rephase" the CKM matrix:

$$V \rightarrow \begin{pmatrix} e^{i\phi_{u}} & 0 & 0 \\ 0 & e^{i\phi_{c}} & 0 \\ 0 & 0 & e^{i\phi_{t}} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{id} & V_{is} & V_{ib} \end{pmatrix} \begin{pmatrix} e^{-i\phi_{d}} & 0 & 0 \\ 0 & e^{-i\phi_{s}} & 0 \\ 0 & 0 & e^{-i\phi_{b}} \end{pmatrix} \quad \text{or} \quad V_{ij} \rightarrow e^{i(\phi_{i} - \phi_{j})} V_{ij}$$
$$\left\langle \overline{u}_{i} \middle| V_{ij} \middle| d_{j} \right\rangle \rightarrow \left\langle \overline{u}_{i} \middle| e^{-i\phi_{i}} e^{i(\phi_{i} - \phi_{j})} V_{ij} e^{i\phi_{j}} \middle| d_{j} \right\rangle = \left\langle \overline{u}_{i} \middle| V_{ij} \middle| d_{j} \right\rangle$$

1 overall phase can be factored out:

$$\begin{array}{cccc} \text{for example } \phi_{u} & & \\ q_{i} \rightarrow e^{i(\phi_{i} - \phi_{u})} q_{i} & & \\ \end{array} & & V \rightarrow e^{i\phi_{u}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i(\phi_{c} - \phi_{u})} & 0 \\ 0 & 0 & e^{i(\phi_{t} - \phi_{u})} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{cs} & V_{cb} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} e^{-i\phi_{d}} & 0 & 0 \\ 0 & e^{-i\phi_{s}} & 0 \\ 0 & 0 & e^{-i\phi_{b}} \end{pmatrix}$$

5 (2N-1) arbitrary phases in CKM matrix + 1 overall (trivial) phase

KM paper was in 1973, the 3-quark age 1964-1974

3x3 matrix \Rightarrow **3** generations, i.e. 6 quarks

6 quarks:

q=+2/3

q = -1/3

predicted by GIM discovered in Nagoya 1971 rest of the world: Nov 1974

In 1973, these were not in our dreams.

History

Sam Ting

Kiyoshi Niu

Burt Richter

More History

November 1977:

Bottom (5th) quark discovered @ Fermilab

Phys.Rev.Lett.39:252-255,1977.

February 1995:

Top (6th) quark discovered @ Fermilab

A little history

- 1963 CP violation seen in K⁰ system
- 1973 KM 6-quark model proposed
- 1974 charm (4th) quark discovered
- 1978 beauty/bottom (5th) quark discovered
- 1995 truth/top (6th) quark discovered

The challenge

Measure a complex phase for $b \rightarrow u$

or in t→d

or, even better, both

Summary of Lecture 4

- The Superweak model was a plausible explanation for the $K_L \rightarrow \pi^+ \pi^-$ observation It predicted the phase of $\varepsilon = \phi_{SW} = \arctan(2\Delta M_K/\Delta\Gamma_K) \simeq 45^\circ$, in agreement with experiment, no other observable CPV processes, & a dull future for specialists in the field.
- Precise comparisons of the rates for $K_L \rightarrow \pi^+ \pi^-$ and $K_L \rightarrow \pi^0 \pi^0$ in high-statistics experiments exposed a direct CPV amplitude in $K_L \rightarrow \pi \pi$ decays, killing the Superweak model
- The measured Weak Interaction charge of the d-quark is 0.98 G_F, that for the s-quark is 0.21 G_F. These differences from G_F are due to quark-flavor mixing
- The non-existence of Flavor-Changing Neutral Currents was explained by the discovery of the charmed quark & Unitarity of the 4-quark flavor mixing matrix
- Kobayashi & Maskawa: a CP violating phase can be accommodated in the quarkflavor mixing matrix but only if there are 6 quark flavors (not 3, known in 1973)
- Three more quark-flavors are discovered: charm, bottom and top.