CP Violation

-- Lecture 6 --

Stephen Lars Olsen

July-August, 2018

Summary of Lecture 5

- Carter and Sanda establishes conditions on M_t , $|V_{cb}|$ and $|V_{ub}|$ for producing measureable CP violating asymmetries in B meson decays.
- Experiments at DESY, SLAC and Cornell show that the Carter-Sanda conditions are met
- Experiments at KEK (Belle) and SLAC (BaBar) were designed to test the KM predictions for large, mixing-induced CP violation asymmetries in $B^0 \rightarrow K_s J/\psi$ and $K_L J/\psi$ decays
- Both experiments found CP violating asymmetries similar to the Carter-Sanda-Bigi KM-model-based predictions
- Unlike the K meson system, where the observed CP violating effects are small, the CP violating effects in B meson decay are large, near their maximum possible values (sin2\$\overline{\phi_1}\$\approx 0.68 vs a maximum possible value of 1).

Questions about Belle/BaBar CP asymmetries

Interfere $B \rightarrow f_{CP}$ with $B \leftrightarrow \overline{B} \rightarrow f_{CP}$

What do we measure?

$$K^{0} = \frac{1}{\sqrt{1+\varepsilon^{2}}} \left((1-\varepsilon)K_{S} + (1+\varepsilon)K_{L} \right)$$

$$\overline{K}^{0} = \frac{1}{\sqrt{1+\varepsilon^{2}}} \left((1+\varepsilon)K_{S} + (1-\varepsilon)K_{L} \right)$$

$B^{0}(t)$ and $\overline{B}^{0}(t)$ time dependence

-- for B⁰ mesons, no ϵ term --

 $B^{0} = \frac{1}{\sqrt{2}} (B_{1} + B_{2}) \Longrightarrow B^{0}(t) = \frac{1}{\sqrt{2}} (B_{1}e^{-i(M_{1} - \frac{1}{2}\Gamma)t} + B_{2}e^{-i(M_{21} - \frac{1}{2}\Gamma)t}) = (B_{1} + B_{2}e^{-i\Delta Mt})\frac{1}{\sqrt{2}}e^{-i(M_{1} - \frac{1}{2}\Gamma)t}$ do the same for \overline{B}^0 & neglect the overall $\frac{1}{\sqrt{2}}e^{-i(M_1-\frac{i}{2}\Gamma)t}$, which cancels in the asymmetry ratio. mixing terms $B^{0}(t) = B^{0}(1 + e^{-i\Delta Mt}) + \overline{B}^{0}(1 - e^{-i\Delta Mt})$ $e^{i2\phi_{1}}$ $e^{-i2\phi_{1}}$ $\overline{B}^{0}(t) = \overline{B}^{0}(1 + e^{-i\Delta Mt}) + B^{0}(1 - e^{-i\Delta Mt})$

differences in the time evolution of B^0 and \overline{B}^0 mesons

-- including CPV --

time development of a B⁰ at t=0: CPV mixing phase $\left| B^{0}(t) \right\rangle = \left(\left| B^{0} \right\rangle (1 + e^{-i\Delta M t}) + e^{i2\phi} \right| \overline{B}^{0} \right\rangle (1 - e^{-i\Delta M t}) \right)$

 $J/\psi K_s$ is a CP=-1 eigenstate, $B_2 \rightarrow J/\psi K_s$ is allowed. Project out the B_2 time dependence for an initial B^0

$$\left\langle B_2 \left| B^0(t) \right\rangle = \left(\left\langle B^0 \right| + \left\langle \overline{B}^0 \right| \right) \right| B^0(t) \right\rangle = \left\langle B^0 \left| B^0 \right\rangle (1 + e^{-i\Delta M t}) + \left\langle \overline{B}^0 \right| \overline{B}^0 \right\rangle e^{i2\phi_1} (1 - e^{-i\Delta M t})$$
$$\Rightarrow (1 + e^{-i\Delta M t}) + e^{i2\phi_1} (1 - e^{-i(\Delta M t)}) = (1 + e^{i2\phi_1}) + e^{-i\Delta M t} (1 - e^{i2\phi_1})$$

square this:

$$\left|\left\langle B_2 \mid B^0(t)\right\rangle\right|^2 = \left((1+e^{i2\phi_1})+e^{-i\Delta Mt}(1-e^{i2\phi_1})\right) \times \left((1+e^{-i2\phi_1})+e^{+i\Delta Mt}(1-e^{-i2\phi_1})\right)$$

and do some algebra:
$$\left|\left\langle B_2 \mid B^0(t)\right\rangle\right|^2 = 4 - 4\sin 2\phi_1 \sin \Delta Mt$$

the CPV mixing phase for \overline{B}^0 has opposite sign likewise: $|\overline{B}^0(t)\rangle = (|\overline{B}^0\rangle(1+e^{-i\Delta Mt}) + e^{-i2\phi}|B^0\rangle(1-e^{-i\Delta Mt}))$ and $|\langle B_2 | \overline{B}^0(t)\rangle|^2 = 4 + 4\sin 2\phi_1 \sin \Delta Mt$

$$\frac{\left|\left\langle B_{2} \mid \overline{B}^{0} \operatorname{tags}\right|^{2} - \left|\left\langle B_{2} \mid B^{0}(t)\right\rangle\right|^{2}}{\left|\left\langle B_{2} \mid \overline{B}^{0}(t)\right\rangle\right|^{2} + \left|\left\langle B_{2} \mid B^{0}(t)\right\rangle\right|^{2}} = \frac{8\sin 2\phi_{1}\sin\Delta Mt}{8} = \sin 2\phi_{1}\sin\Delta Mt$$

Question: if KM phases are in V_{ub} & V_{td}, why is there CPV with K⁰s

Today's topics

- How does the measured CP violating phase compare with expectations from other measurements
- Other KM-model motivated CP violation measurements

Current status of the CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$$

• nearly diagonal

- off-diagonal elements are small
- far-off-diagonal elements are very small

CKM matrix hierarchy

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} \varepsilon^{0} & \varepsilon^{1} & \varepsilon^{3} \\ \varepsilon^{1} & \varepsilon^{0} & \varepsilon^{2} \\ \varepsilon^{3} & \varepsilon^{2} & \varepsilon^{0} \\ \varepsilon & 2 & \varepsilon^{0} \end{pmatrix} \rightarrow \begin{pmatrix} \varepsilon^{0} & \varepsilon^{0} & \varepsilon^{0} \\ \varepsilon^{0} & \varepsilon^{0} & \varepsilon^{0} \\ \varepsilon^{0} & \varepsilon^{0} & \varepsilon^{0} \end{pmatrix} \rightarrow \begin{pmatrix} \varepsilon^{0} & \varepsilon^{0} & \varepsilon^{0} \\ \varepsilon^{0} & \varepsilon^{0} & \varepsilon^{0} \\ \varepsilon^{0} & \varepsilon^{0} & \varepsilon^{0} \end{pmatrix}$$

Wolfenstein parameterization:

 $\lambda = \sin \theta_{\rm c} \sim 0.22$ $V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$ $\lambda = 0.22453 \pm 0.00044, \quad A = 0.836 \pm 0.015, \quad \text{all SM CP Violations are due to this single imaginary number}$ $\lambda = 0.122_{-0.017}^{+0.018}, \quad \bar{\eta} = 0.355_{-0.011}^{+0.012}.$

Unitarity of the CKM triangle

$$V_{CKM}^{\dagger}V_{CKM} = \begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \times \begin{pmatrix} \underline{V_{ud}} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
9 equations:

Unitarity of the CKM triangle

for CPV, the most interesting unitarity relation is

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ \hline V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

this can be represented as a triangle in the complex plane V_{ub} and V_{td} are corner elements in the CKM matrix, the elements with a complex phase

Unitary triangle normalized to V_{cb}V^{*}_{ct}

KM predictions: $\phi_1 + \phi_2 + \phi_3 = 180^\circ$ sides form a triangle

the Belle and BaBar experiments measured $\beta/\phi_1 \approx 22^\circ$, how about $\alpha/\phi_2 \& \gamma/\phi_3$?

measure $|V_{ub}|/|V_{cb}|$ from inclusive B \rightarrow Xe[±]V endpoint

measure $|V_{ub}|$ from exclusive $B \rightarrow \pi e^{\pm} v$ decay rate

2016 results for $|V_{ub}|$ and $|V_{cb}|$

A. Alberti, P. Gambino, K. J. Healey, and S. Nandi (2014), 1411.6560. * P. Gambino, P. Giordano, G. Ossola, and N. Uraltsev, *JHEP* 0710, 058 (2007), 0707.2493.

$|V_{td}|$ from $B^0 \leftrightarrow \overline{B}^0$ mixing

Constraints on the $\rho-\eta$ plane in 2001

"CKM fitter" 2001: A. Hoecker et al., hep-ph/0104062v2

Constraints on Unitary Triangle in 2001

"CKM fitter" 2001: A. Hoecker et al., hep-ph/0104062v2

Unitary triangle in Summer 2008

Stockholm, December 2008

Next task; measure the other angles

$\gamma(\phi_1)$, the phase of V_{ub}

briefly discussed in Lecture 2: eiø3

and $\alpha(\phi_1)$

first we discuss $\gamma(\phi_3)$, the phase of V_{ub}

What we need:

two interfering processes, one of them=b \rightarrow u

-- best if they have nearly equal strengths

weak phase: ϕ_3

common phase

 $B^0/B^0 \rightarrow h^+ D^{(*)}$ h = π, ρ, a₁

dominant B⁰ decay modes

Large BR, but: $r = \frac{|A_2|}{|A_1|} \sim \lambda^2 \approx 0.05 \implies$ Interference effects are tiny

hopeless with current facilities

Better to use $B^{-} \rightarrow D^{0}K^{-}$ decays

where D^0 and \overline{D}^0 decay to the same final state: $\left|\widetilde{D}^0\right\rangle = \left|D^0\right\rangle + re^{i\theta}\left|\overline{D}^0\right\rangle$

Relative phases: $\theta = -\phi_3 + \delta_B (B^- \to DK^-), \theta = +\phi_3 + \delta_B (B^+ \to DK^+)$ $\delta_B = \delta_{K\bar{D}} - \delta_{K\bar{D}}$ is the strong phase difference between DK and $\overline{D}K$ $r_B = \left| \mathbf{A} (B^- \to \overline{D}^0 K^-) / \mathbf{A} (B^- \to D^0 K^-) \right| \quad \bigstar \text{ "color suppressed; } r_B \approx 0.1 \sim 0.2$

"color suppression"

Here the quark & antiquark colors automatically match, no matter what colors are produced by the W

Here the colors of the quarks will match the colors of the u and \overline{u} quarks only $1/3^{rd}$ of the time.

Expect a relative suppression of the amplitude by a factor of $1/3^{rd}$, but in practice it is often not so severe

ADS method to measure ϕ_3

expect a large B⁻/B⁺ asymmetry but a small event rate -- product branching fractions are of order 10⁻⁷ --

BaBar results from ADS method

more B⁺ events, but with only $\approx 2\sigma$ statistical significance

Belle results from ADS method

more B⁺ events, but with $\approx 1.5\sigma$ statistical significance

this may be a useful method at BelleII

GLW method

$$\mathcal{A}_{1,2} = \frac{Br(B^- \to D_{1,2}K^-) - Br(B^+ \to D_{1,2}K^+)}{Br(B^- \to D_{1,2}K^-) + Br(B^+ \to D_{1,2}K^+)} = \frac{2r\sin\delta'\sin\varphi_3}{1 + r^2 + 2r\cos\delta'\cos\varphi_3}$$
$$\mathcal{R}_{1,2} = \frac{Br(B \to D_{1,2}K) / Br(B \to D_{1,2}\pi)}{Br(B \to D^0 K) / Br(B \to D^0\pi)} = 1 + r^2 + 2r\cos\delta'\cos\varphi_3$$

4 equations, 3 unknowns: (r, δ' and Φ_3)

GLW results

Belle results (253 fb ⁻¹)		2
	\mathcal{R}	\mathcal{A} Belle
$B \rightarrow D_l K$	$1.13 \pm 0.16 \pm 0.05$	$0.06 \pm 0.14 \pm 0.05$
$B \rightarrow D_2 K$	$1.17 \pm 0.14 \pm 0.14$	-0.12±0.14±0.05
$B \rightarrow D^*_{l}K$	$1.41 \pm 0.25 \pm 0.06$	$-0.20\pm0.22\pm0.04$
$B \rightarrow D_2^* K$	$1.15 \pm 0.31 \pm 0.12$	$0.13 \pm 0.30 \pm 0.08$

Best results: "Dalitz" analyses of $D \rightarrow K_{s}\pi^{+}\pi^{-}$

$$B^- \to K^- \tilde{D}^0 \to K^- K_S \pi^+ \pi^-$$
, where $\left| \tilde{D}^0 \right\rangle = \left| D^0 \right\rangle + r e^{i(\delta + \phi_3)} \left| \overline{D}^0 \right\rangle$

What is a Dalitz plot?

A scatter-plot that summarizes all that happens in meson decays to three spin-zero particles

plot $M^{2}(p_{1}, p_{2})$ versus $M^{2}(p_{1}, p_{3})$

3

Why $M^2(p_i, p_j)$ and not $M(p_i, p_j)$??

If there are no dynamics in $X \rightarrow p_1 p_2 p_3$, only phasespace, the Dalitz Plot distribution is uniform,

This would not be true for an $M(p_i, p_j)$ vs $M(p_i, p_k)$ plot

Features of a Dalitz plot I

A vertical band indicates a resonance in the p_1p_2 channel

Features of a Dalitz plot II

a resonance in the p_2p_3 channel is a diagonal band

Simple Breit-Wigner Resonance Amplitude

Breit Wigner Resonance Amplitude

$$A_{BW} \propto \frac{\frac{1}{2}\Gamma}{(M_0 - M_{ij}) - i\frac{\Gamma}{2}}$$

 $Re(A_{BW})$ rapidly changes sign at $M_{ij}=M_0$

Properties of Dalitz plots III

 $D^+ \rightarrow \pi^+ K^- \pi^+$

when resonance bands cross, they interfere, and the phase changes rapidly

$D^0 \rightarrow K_S \pi^- \pi^+$ Dalitz plot

CLEOc model for $D \rightarrow K_S \pi^+ \pi^- DP$

fit about 10 interfering BW resonance amplitudes.

δ_{com} depends upon DP position

Back to $\gamma(\phi_3)$ in $B^{\pm} \rightarrow K^{\pm} D^0 / \overline{D}^0$ decays

$D^0/\overline{D}^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz plots

$$D^{0}: \overline{u}c \longrightarrow s\overline{u}: K^{*-} \to K_{s}\pi^{-}$$
$$\overline{D}^{0}: u\overline{c} \longrightarrow \overline{s}u: K^{*+} \to K_{s}\pi^{+}$$

 $D^0 \rightarrow K_s \pi^+ \pi^-$ and $\overline{D}^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz plots are different

LHCb Dalitz $B \rightarrow KD(K_S \pi^+ \pi^-)$ samples

can you see a difference? -- LHCb's computer can!

latest $\phi_3(\gamma)$ measurements from LHCb

Ultimate goal is CP-tagged $K_s \pi^+ \pi^-$ DPs

need \approx 10 fb⁻¹ of $\psi(3770)$ data at BESIII

There is also a direct CPV in $B \rightarrow K^{\pm}\pi$ decays

 $B \rightarrow K^{\pm} \pi$

direct CPV via interference between tree and penguin

difficult to interpret in terms of V_{ub}

theory prediction was that these 2 asymmetries would be equal

Summary of all measurements

Revisit the Unitary triangle

Is the Unitary triangle a right triangle??

Measuring $\phi_2(\alpha)$

relative phase of V^{*}_{ub} and V_{td}

$\phi_2(\alpha)$ from $B \rightarrow \pi^+ \pi^-$

Must deal with "Penguin Pollution"

Watch where you step!!

"Penguin" processes i.e. additional, non-tree amplitudes

Penguins can be ~comparable in strength to b→u transitions

History of "Penguins"

Ref: Preface to Shifman's 1999 book, ITEP Lectures on Particle Physics and Field Theory, John Ellis recalls how the gluon interference diagram came to be called a penguin diagram.

One night in spring 1977, Ellis lost a bet during a game of darts. His penalty required that he use the word "penguin" in a journal article. "For some time, it was not clear to me how to get the word into this b quark paper that we were writing at the time," Ellis wrote.

"Then, one evening I stopped on my way

back to my apartment to visit some friends living in Meyrin, where I smoked some illegal substance. *Later, when I got back to my apartment and continued working on our paper, I had a sudden flash*

that the famous diagrams looked like penguins.

So we put the name into our paper, and the rest, as they say, is history."

CKM enhanced

Now four important diagrams

Direct CPV from penguin-tree interference??

 $\Gamma(B^{0} \rightarrow \pi^{+} \pi^{-}) \neq \Gamma(\overline{B^{0}} \rightarrow \pi^{+} \pi^{-}) ??$

"direct" CP violation

Δt dependence for B $\rightarrow \pi^+\pi^-$

Isospin analysis \rightarrow triangle relation

-- pions are bosons \rightarrow no *I=1* for $\pi\pi$ S-wave --

Determining $\delta \alpha = |\alpha - \alpha_{eff}|$

use triangle relations
$$\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$$
$$\frac{1}{\sqrt{2}}\tilde{A}^{+-} + \tilde{A}^{00} = \tilde{A}^{-0}$$

 $\frac{1}{\sqrt{2}}A^{+-}A^{00}\frac{1}{\sqrt{2}}\tilde{A}^{+-}\tilde{A}^{00}\tilde{A}^{00}$ $A^{+0}\tilde{A}^{00}\tilde{A}^{00}$ $\tilde{A}^{-0}\tilde{A}^{-0}$

very hard to measur errors are large

$$\begin{aligned} A^{+-} &= A(B^{0} \rightarrow \pi^{+}\pi^{-}) \\ \overline{A}^{+-} &= A(\overline{B}^{0} \rightarrow \pi^{+}\pi^{-}) \\ A^{00} &= A(B^{0} \rightarrow \pi^{0}\pi^{0}) \\ \overline{A}^{00} &= A(\overline{B}^{0} \rightarrow \pi^{0}\pi^{0}) \\ A^{+0} &= A(B^{+} \rightarrow \pi^{+}\pi^{0}) \\ \overline{A}^{-0} &= A(B^{-} \rightarrow \pi^{-}\pi^{0}) \end{aligned}$$

experimentally: $|A^{00}| \approx \frac{1}{\sqrt{2}} |A^{+-}|$ error on $|\overline{A}^{00}| - |A^{00}| \sim 50\%$

no penguin contribution to the $\pi^+\pi^0/\pi^-\pi^0$ modes: $|\mathcal{A}^{+0}| = |\tilde{\mathcal{A}}^{-0}|$

2δα

rotate blue triangle by 2α i.e., allign $A^{+c} \otimes \widetilde{A}^{-0}$

In principle, $\delta \alpha$ from the residual angle between $\frac{1}{\sqrt{2}}A^{+-}$ and $\frac{1}{\sqrt{2}}\widetilde{A}^{+-}$

need independent measurements of $B^0 \rightarrow \pi^0 \pi^0$ and $\overline{B^0} \rightarrow \pi^0 \pi^0$

not so easy in practice: experimentally: $|A^{00}| \approx \frac{1}{\sqrt{2}} |A^{+-}|$ error on $|\overline{A}^{00}| - |A^{00}| \sim 50\%$

 $\mathcal{A}_{CP}(B^0 \to \pi^+ \pi^-) = +0.33 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)},$ $\mathcal{S}_{CP}(B^0 \to \pi^+ \pi^-) = -0.64 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)},$

Less Penguin Pollution with $B \rightarrow \rho \rho$

$$Bf(B^{0} \to \rho^{+}\rho^{-}) = 24.2 \pm 3.1 \times 10^{-6}$$
$$Bf(B^{0} \to \rho^{0}\rho^{0}) = 0.7 \pm 0.3 \times 10^{-6}$$

 $|A^{+-}| \approx 6 \times |A^{00}| \iff \text{the triangles are "squashed"}$

$$A^{+-} = A(B^{0} \to \rho^{+}\rho^{-})$$
$$\overline{A}^{+-} = A(\overline{B}^{0} \to \rho^{+}\rho^{-})$$
$$A^{00} = A(B^{0} \to \rho^{0}\rho^{0})$$
$$\overline{A}^{00} = A(\overline{B}^{0} \to \rho^{0}\rho^{0})$$
$$A^{+0} = A(B^{+} \to \rho^{+}\rho^{0})$$
$$\overline{A}^{-0} = A(B^{-} \to \rho^{-}\rho^{0})$$

No possibility for a large $\delta \alpha$!

Also, the branching fraction for $B \rightarrow \rho^+ \rho^-$ is 5 times larger than $B^0 \rightarrow \pi^+ \pi^-$)
But: $B \rightarrow \rho^+ \rho^-$ may not be a CP eigenstate

0

-0.5

pure CP = +1 $\frac{d^2\Gamma}{\cos\theta_1 d\cos\theta_2} = \frac{9}{4} \left| f_L \cos^2\theta_1 \cos^2\theta_2 \right|$ $+\frac{1}{4}(1-f_L)\sin^2\theta_1\sin^2\theta_2$, mixture of CP = +1 & -1Nature is kind! (c) $f_L = 0.992 \pm 0.024$ ≈pure CP = +1 100

0.5

$B \rightarrow \rho^+ \rho^-$ results from Babar

Summary of all results on ϕ_2

 $\phi_2 = 87.6^{\circ} \pm 3.5^{\circ}$

consistent with 90°

Is the "Unitary Triangle" a triangle?

PDG 2018

What's next?

Probing CPV with Penguins

New Physics in Penguin loops

FCNC decay b→s

 \boldsymbol{s}

8

 $ar{m{u}},\,ar{m{d}}$

K

CPV in B↔ B mixing

CPV with Penguins

SM prediction

since QCD does not violate CPV, no QCD corrections are needed

final results from Belle & BaBar

Belle PRL 198, 171802

BaBar PRD 79, 0720090

Tree - avg : $\sin 2\phi_1 = 0.68 \pm 0.02$

stat error: ± 0.018

aka $\sin 2\beta$

"New Physics" CPV phase with Bellell

Measure $\phi_1(\beta)$ using $B^0 \rightarrow K^0 J/\psi; J/\psi \rightarrow \ell^+ \ell^-$

Compare to $\phi_1^{\text{eff}}(\beta^{\text{eff}})$ using $B^0 \rightarrow K^0 \phi; \phi \rightarrow K^+K^-$ (& other penguin decays)

"systematic-free" measurement: $J/\psi \rightarrow \ell^+\ell^-/\phi \rightarrow K^+K^-$

Tree - avg : $\sin 2\phi_1 = 0.679 \pm 0.020$

Future with 50 ab⁻¹ at Bellell

Summary of Lecture 6

- Measurements of ϕ_1 , the phase of V_{td} agree with constraint set by measurements of $|V_{td}|$ (from B⁰-B⁰ mixing); $|V_{ub}|$ (from B $\rightarrow \pi e^{-\nu}$); and ϵ (from CPV in K-mesons).
- Kobayashi & Maskawa shared the 2008 Nobel prize for their 6-quark model for CPV.
- Subsequent measurements produced a precision measurement of ϕ_1 = 21.9°±0.6° and first measurements of ϕ_2 =86.7°±3.5° and ϕ_3 =76.2°±5.0°.
- At current precision, $\phi_1 + \phi_2 + \phi_3 = 185.9^{\circ} \pm 6.1^{\circ}$, consistent with a closed triangle.
- Large direct CP violations are observed, such as a ~30% difference between $B^0 \& B^0 \rightarrow \pi^+\pi^-$
- All observed CP violation measurements can be attributed to the KM phase in the 6-quark flavor mixing matrix. The CP violations in the 3rd generation b-quark, t-quark are near their maximum possible values (e.g, sin2\u03c6₁≈0.68 vs a maximum possible value of 1).
- •All measured constraints on the ρ & η Wolfenstein parameters are consistent with each other.

S-wave $\pi\pi$ and isospin

-- no *I=1* for $\pi\pi$ S-wave --

$$A^{+0} = \frac{\sqrt{3}}{2} A_{\frac{3}{2},2}$$

$$A^{+-} = \frac{1}{\sqrt{6}} A_{\frac{3}{2},2} + \frac{1}{\sqrt{3}} A_{\frac{1}{2},0}$$

$$A^{00} = \sqrt{\frac{2}{3}} A_{\frac{3}{2},2} - \frac{1}{\sqrt{3}} A_{\frac{1}{2},0}$$

$$\frac{1}{\sqrt{2}} A^{+-} + A^{00} = A^{+0}$$

$$\begin{split} \left\langle \pi^{+}\pi^{0} \right| &= \frac{1}{\sqrt{2}} \left\langle 2;1 \right| + \frac{1}{\sqrt{2}} \left\langle 1;0 \right| + \frac{1}{\sqrt{3}} \left\langle 0;0 \right| \\ \left\langle \pi^{+}\pi^{-} \right| &= \frac{1}{\sqrt{6}} \left\langle 2;0 \right| + \frac{1}{\sqrt{2}} \left\langle 1;0 \right| + \frac{1}{\sqrt{3}} \left\langle 0;0 \right| \\ \left\langle \pi^{0}\pi^{0} \right| &= \sqrt{\frac{2}{3}} \left\langle 2;0 \right| - \sqrt{\frac{1}{3}} \left\langle 0;0 \right| \\ \left| \frac{1}{2};\frac{1}{2} \right\rangle \right| \frac{3}{2};\frac{1}{2} \right\rangle &= \sqrt{\frac{3}{4}} \left| 2;1 \right\rangle - \frac{1}{2} \right\rangle 1,1 \\ \left| \frac{1}{2};-\frac{1}{2} \right\rangle \left| \frac{3}{2};\frac{1}{2} \right\rangle &= \frac{1}{\sqrt{2}} \left| 2;0 \right\rangle - \frac{1}{\sqrt{2}} \right| 1;0 \\ \left\langle \pi^{+}\pi^{0} \right| T_{\frac{3}{2}} \right| B^{+} \right\rangle &= \frac{1}{\sqrt{2}} \sqrt{\frac{3}{4}} \left\langle 2;1 \right| T_{\frac{3}{2}} \right| 2;0 \\ \left\langle \pi^{+}\pi^{-} \right| T_{\frac{3}{2}} \right| B^{0} \right\rangle &= \frac{1}{\sqrt{6}} \frac{1}{\sqrt{2}} \left\langle 2;0 \right| T_{\frac{3}{2}} \right| 2;0 \\ \left\langle \pi^{0}\pi^{0} \right| T_{\frac{3}{2}} \right| B^{0} \right\rangle &= \sqrt{\frac{2}{3}} \frac{1}{\sqrt{2}} \left\langle 2;0 \right| T_{\frac{3}{2}} \right| 2;0 \\ \left\langle \pi^{0}\pi^{0} \right| T_{\frac{3}{2}} \right| B^{0} \\ &= \frac{1}{\sqrt{2}} \left\langle 2;0 \right| T_{\frac{3}{2}} \right| 2;0 \\ \left\langle \pi^{0}\pi^{0} \right| T_{\frac{1}{2},0} \right| B^{0} \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \left\langle 0;0 \right| T_{\frac{1}{2}} \right| 0;0 \\ \left\langle \pi^{+}\pi^{-} \right| T_{\frac{1}{2},0} \right| B^{0} \\ &= -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \left\langle 0;0 \right| T_{\frac{1}{2}} \right| 0;0 \\ \left\langle \pi^{0}\pi^{0} \right| T_{\frac{1}{2},0} \right| B^{0} \\ &= -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} = -\frac{1}{\sqrt{3}} A_{\frac{1}{2},0} \\ \\ &\text{where } A_{\frac{1}{2},0} \\ &= \frac{1}{\sqrt{2}} \left\langle 0;0 \right| T_{\frac{1}{2}} \right| 0;0 \\ \end{array}$$

differences in the time evolution of B^0 and \overline{B}^0 mesons

-- including CPV --

 $J/\psi K_s$ is a CP=-1 eigenstate $B_2 \rightarrow J/\psi K_s$ is allowed project the B_2 time dependence for an initial B^0

CPV mixing phase

 $|B^{0}(t)\rangle = \left(|B^{0}\rangle(1+e^{-i\Delta Mt})+e^{i2\phi_{1}}|\overline{B}^{0}\rangle(1-e^{-i\Delta Mt})\right)$ $\left\langle B_{2} \left| B^{0}(t) \right\rangle = \left(\left\langle B^{0} \right| + \left\langle \overline{B}^{0} \right| \right) \right| B^{0}(t) \right\rangle = \left\langle B^{0} \right| B^{0} \right\rangle (1 + e^{-i\Delta M t}) + \left\langle \overline{B}^{0} \right| \overline{B}^{0} \right\rangle e^{i2\phi_{1}} (1 - e^{-i\Delta M t})$ $\Rightarrow (1 + e^{-i\Delta Mt}) + e^{i2\phi_1} (1 - e^{-i(\Delta Mt)}) = (1 + e^{i2\phi_1}) + e^{-i\Delta Mt} (1 - e^{i2\phi_1})$ $\left| \left\langle B_2 \mid B^0(t) \right\rangle \right|^2 = \left((1 + e^{i2\phi_1}) + e^{-i\Delta Mt} (1 - e^{i2\phi_1}) \right) \times \left((1 + e^{-i2\phi_1}) + e^{+i\Delta Mt} (1 - e^{-i2\phi_1}) \right)$ $(1+e^{i2\phi_1})\times(1+e^{-i2\phi_1})=2+2\cos 2\phi_1 \quad ; \quad e^{-i\Delta Mt}(1-e^{i2\phi_1})\times e^{+i\Delta Mt}(1-e^{-i2\phi_1})=2-2\cos 2\phi_1$ $(1+e^{i2\phi_1})e^{+i\Delta Mt}(1-e^{-i2\phi_1}) = 2i\sin 2\phi_1 e^{+i\Delta Mt} ; e^{-i\Delta Mt}(1-e^{i2\phi_1})(1+e^{-i2\phi_1}) = -2i\sin 2\phi_1 e^{-i\Delta Mt}$ $\left|\left\langle B_{2} \mid B^{0}(t)\right\rangle\right|^{2} = 2 + 2\cos 2\phi_{1} + 2 - 2\cos 2\phi_{1} + \sin 2\phi_{1}(2i(e^{+i\Delta Mt} - e^{+i\Delta Mt}))$ $\left|\left\langle B_2 \mid B^0(t)\right\rangle\right|^2 = 4 - 4\sin 2\phi_1 \sin \Delta M t$

project the B_2 time dependence for an initial \overline{B}^0 d t t tb b B٩ the CPV mixing phase has opposite sign B° $\left|\overline{B}^{0}(t)\right\rangle = \left(\left|\overline{B}^{0}\right\rangle(1+e^{-i\Delta Mt}) + e^{-i2\theta_{1}}\right|B^{0}\right\rangle(1-e^{-i\Delta Mt})\right)$ V_{td} V_{th} $\left\langle B_{2} \left| \overline{B}^{0}(t) \right\rangle = \left(\left\langle B^{0} \right| + \left\langle \overline{B}^{0} \right| \right) \left| \overline{B}^{0}(t) \right\rangle = \left\langle B^{0} \left| \overline{B}^{0} \right\rangle (1 + e^{-i\Delta M t}) + \left\langle \overline{B}^{0} \right| B^{0} \right\rangle e^{-i2\phi_{1}} (1 - e^{-i\Delta M t})$ $\Rightarrow (1 + e^{-i\Delta Mt}) + e^{-i2\phi_1} (1 - e^{-i(\Delta Mt)}) = (1 + e^{-i2\phi_1}) + e^{-i\Delta Mt} (1 - e^{-i2\phi_1})$ $\left| \left\langle B_2 \mid \overline{B}^0(t) \right\rangle \right|^2 = \left((1 + e^{-i2\phi_1}) + e^{-i\Delta Mt} (1 - e^{-i2\phi_1}) \right) \times \left((1 + e^{+i2\phi_1}) + e^{+i\Delta Mt} (1 - e^{+i2\phi_1}) \right)$ $(1+e^{-i2\phi_1})\times(1+e^{i2\phi_1}) = 2+2\cos 2\phi_1 \quad ; \quad e^{-i\Delta Mt}(1-e^{-i2\phi_1})\times e^{+i\Delta Mt}(1-e^{+i2\phi_1}) = 2-2\cos 2\phi_1$ $(1+e^{-i2\phi_1})e^{+i\Delta Mt}(1-e^{+i2\phi_1}) = -2i\sin 2\phi_1 e^{+i\Delta Mt} ; e^{-i\Delta Mt}(1-e^{-i2\phi_1})(1+e^{+i2\phi_1}) = +2i\sin 2\phi_1 e^{-i\Delta Mt}$ $\left| \left\langle B_2 \mid \overline{B}^0(t) \right\rangle \right|^2 = 2 + 2\cos 2\phi_1 + 2 - 2\cos 2\phi_1 + \sin 2\phi_1 (2i(e^{-i\Delta M t} - e^{+i\Delta M t})))$ $\left|\left\langle B_2 \mid \overline{B}^0(t)\right\rangle\right|^2 = 4 + 4\sin 2\phi_1 \sin \Delta M t$ 0.5 Asymmetry B⁰ tags B⁰ tags $\frac{\left|\left\langle B_{2} \mid \overline{B}^{0}(t)\right\rangle\right|^{2} - \left|\left\langle B_{2} \mid B^{0}(t)\right\rangle\right|^{2}}{\left|\left\langle B_{2} \mid \overline{B}^{0}(t)\right\rangle\right|^{2} + \left|\left\langle B_{2} \mid B^{0}(t)\right\rangle\right|^{2}} = \frac{8\sin 2\phi_{1}\sin\Delta Mt}{8} = \sin 2\phi_{1}\sin\Delta Mt$ -5 -2.5 2.5 7.5 5

∆t(ps)

What's next?

Repeat these measurements with:

NEUTRINOS

AND PENGUINS

Unitary triangle in Summer 2015

PDG 2018

