CP Violation

-- Lecture 5 --

M.C. Escher

Stephen Lars Olsen

July-August, 2018

Summary of Lecture 4

- The Superweak model was a plausible explanation for the $K_L \rightarrow \pi^+ \pi^-$ observation It predicted the phase of $\varepsilon = \phi_{SW} = \arctan(2\Delta M_K/\Delta\Gamma_K) \simeq 45^\circ$, in agreement with experiment, no other observable CPV processes, & a dull future for specialists in the field.
- Precise comparisons of the rates for $K_L \rightarrow \pi^+ \pi^-$ and $K_L \rightarrow \pi^0 \pi^0$ in high-statistics experiments exposed a direct CPV amplitude in $K_L \rightarrow \pi \pi$ decays, killing the Superweak model
- The measured Weak Interaction charge of the d-quark is 0.98 G_F, that for the s-quark is 0.21 G_F. These differences from G_F are due to quark-flavor mixing
- The non-existence of Flavor-Changing Neutral Currents was explained by the discovery of the charmed quark & Unitarity of the 4-quark flavor mixing matrix
- Kobayashi & Maskawa: a CP violating phase can be accommodated in the quarkflavor mixing matrix but only if there are 6 quark flavors (not 3, known in 1973)
- Three more quark-flavors are discovered: charm, bottom and top.

Today's topics

- Necessary conditions for observable KM-type CP violating asymmetries in B meson decays
- Experimental tests of the KM model for CP violation

CKM matrix today

The challenge

Measure a complex phase for $b \rightarrow u$

or in $t \rightarrow d$

or, even better, both

KM model predicts large differences between B⁰ and B⁰ decays

VOLUME 45, NUMBER 12

PHYSICAL REVIEW LETTERS

22 September 1980

CP Nonconservation in Cascade Decays of B Mesons

Ashton B. Carter and A. I. Sanda Rockefeller University, New York, New York 10021 (Received 2 June 1980)

NOTES ON THE OBSERVABILITY OF *CP* VIOLATIONS IN B DECAYS

I.I. BIGI

Institut für Theor. Physik der RWTH Aachen, D-5100 Aachen, FR Germany

A.I. SANDA¹

Rockefeller University, New York 10021, USA

Ikaros Bigi

Ashto

Ashton Carter

Sanda-Carter conditions

$B^0 \leftrightarrow \overline{B}^0$ mixing

Essential element of the CPV measurement

(for B mesons, only short-distance terms are important)

b→d:

 $\mathcal{A} = V_{ub}^* V_{ud} f(m_u) + V_{cb}^* V_{cd} f(m_c) + V_{tb}^* V_{td} f(m_t)$ amplitude for b > u, c, t > d mixing

GIM:
$$V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} = 0$$

Unitarity relation

non-zero only if: $m_u \neq m_c \neq m_t$

Large m_t would overide GIM

 $B^0 \leftrightarrow \overline{B^0}$ mixing would be fast (and this would allows us to access V_{td}'s CPV phase)

\overline{B}^0 — B^0 mixing discovered in Germany

Fig. 2. Completely reconstructed event consisting of the decay Υ (4S) $\rightarrow B^0 B^0$.

Henning Schroeder 1945-2012

m_t prediction from $B_d \leftrightarrow B_d$ mixing

PHYSICAL REVIEW D

VOLUME 48, NUMBER 7 pg 3271

1 OCTOBER 1993

$B_d^0 - \overline{B}_d^0$ mixing and the prediction of the top-quark mass in an independent particle potential model

N. Barik Physics Department, Utkal University, Bhubaneswar-751 004, India

P. Das, A. R. Panda, and K. C. Roy Physics Department, Kendrapara College, Kendrapara-754 211, India (Received 22 December 1992; revised manuscript received 30 April 1993)

$m_t = 167^{+16}_{-17} \,\mathrm{GeV}$

PDG 2012: $m_{t} = 173.5 \pm 0.6 \pm 0.6 \text{ GeV}$

Y.H. Zheng, PhD Thesis

Long B-meson lifetime discovered at SLAC

more B-decays with positive decay lengths

SLAC result in 1987:

$$\tau_B = 1.2 \pm 0.2 \times 10^{-12} \text{ s}$$

 $|V_{cb}| = 0.047 \pm 0.005$

latest results : $\tau_B = 1.52 \pm 0.01 \times 10^{-12}$ s

measure $|V_{ub}|/|V_{cb}|$ from B \rightarrow Xe[±]v endpoint

$|V_{ub}| = 0.0041 \pm 0.0009 (\approx 0.1 |V_{cb}|)$

Carter-Sanda conditions are met!

Ashton Carter in 2015

发表时间 18-02-2015 · 更改时间 18-02-2015 发表时间 02:37

阿什顿.卡特宣誓就任美国新 任国防部长

作者:林兰

REUTERS/Gary Cameron

The Key

Use B⁰ mesons $B^{0} = \textcircled{0}$ $\overline{B}^{0} = \textcircled{0}$ $\overline{B}^{0} = \textcircled{0}$ $B^{0}/\overline{B^{0}}$ similar to K⁰/ \overline{K}^{0}

小学课本 Primer on B mesons

Lesson 1: Basic properties

- $\tau\text{=}$ 1.5 x 10^{-12} s (c $\tau\approx450~\mu\text{m}\text{)}$
- How do they decay?

- usually to charm: $|b \rightarrow c|^2 / |b \rightarrow u|^2 \approx 100$

• How are they produced?

 $-e^+e^- \rightarrow \Upsilon$ (4S) $\rightarrow BB$ is the cleanest process

Lesson 2: "flavor-specific" B decays **In >95% of B⁰ decays:** B^0 and $\overline{B^0}$ are distinguishable by their decay products semileptonic decays: $\mathbf{B}_{\mathbf{0}}$ $X l^- \nu$ D hadronic decays: **B**⁰

Lesson 3: $B \rightarrow CP$ eigenstate decays In 1~2% of B⁰ decays: final state is equally accessible from B⁰ and B⁰ charmonium

decays:

J/ψ

I^{PC}=1⁻⁻

CP=+

Lesson 4: The Υ (4S) resonance

 $\sigma(e^+e^- \rightarrow BB) \approx 1nb$

- $B^0\overline{B}^0/B^+B^-\approx 50/50$
- good S/N: (~1/3)
- **BB** and nothing else
- coherent 1⁻⁻ P-wave

~95% flavor-specific decays; only a few % are CP-eigenstate decays

Lesson 5: $B^0 \leftrightarrow \overline{B}^0$ mixing

A B⁰ can become a B⁰ (and vice versa)

(in the BB system only short-distance terms are important)

The neutral B meson system

H=M -
$$\frac{i}{2}$$
 Γ

 Mass matrix
 Decay matrix

 $\left< B_{j} \left| H \right| B_{i} \right> = \left< B_{j} \left| M \right| B_{i} \right> - \frac{i}{2} \left< B_{j} \left| \Gamma \right| B_{i} \right> = M_{ij} - \frac{i}{2} \Gamma_{ij} = X_{ij}$

$$\begin{pmatrix} \left\langle B^{0} \left| H \right| B^{0} \right\rangle & \left\langle B^{0} \left| H \right| \overline{B}^{0} \right\rangle \\ \left\langle \overline{B}^{0} \left| H \right| B^{0} \right\rangle & \left\langle \overline{B}^{0} \left| H \right| \overline{B}^{0} \right\rangle \end{pmatrix} = \begin{pmatrix} M_{11} - \frac{i}{2} \Gamma_{11} & M_{12} - \frac{i}{2} \Gamma_{12} \\ M_{21} - \frac{i}{2} \Gamma_{21} & M_{22} - \frac{i}{2} \Gamma_{22} \end{pmatrix}$$

CPT symmetry: $M_{11} = M_{22}$ $\Gamma_{11} = \Gamma_{22}$

Hermeticity: $X_{21} = M_{12}^* - \frac{i}{2}\Gamma_{12}^*$

no assumptions about CP

$$H \Longrightarrow \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{12} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M_{11} - \frac{i}{2}\Gamma_{11} \end{pmatrix}$$

Schrodinger's Equation

-- allowing for CP violation and including decays --

to conform to the standard notation:

$$\begin{aligned} X_{21} &= \mathcal{A}_{B^0 \to \overline{B}^0} = -ip^2 \quad \left(= M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right) \\ X_{12} &= \mathcal{A}_{\overline{B}^0 \to B^0} = -iq^2 \quad \left(= M_{12} - \frac{i}{2}\Gamma_{12}\right) \\ i\hbar \frac{\partial}{\partial t} \Psi(t) = H\Psi(t) \end{aligned}$$

assume solutions of the form: $\psi_i(t) = a_i e^{-i\lambda_i t}$

Schrodinger's equation for energy eigenstates;

$$\begin{pmatrix} X_{11} & -ip^{2} \\ -iq^{2} & X_{11} \end{pmatrix} \begin{pmatrix} a_{i} \\ b_{i} \end{pmatrix} e^{-i\lambda_{i}t} = i \frac{\partial}{\partial t} \begin{pmatrix} a_{i} \\ b_{i} \end{pmatrix} e^{-i\lambda_{i}t}$$
$$\Rightarrow \begin{pmatrix} X_{11} - \lambda & -iq^{2} \\ -ip^{2} & X_{11} - \lambda_{i} \end{pmatrix} \begin{pmatrix} a_{i} \\ b_{i} \end{pmatrix} = 0$$

$$\begin{aligned} & \text{Solutions for } \Psi(\mathbf{t}) \\ & \underset{\text{eigenvalue}}{\text{equation:}} & \begin{vmatrix} X_{11} - \lambda_i & -iq^2 \\ -ip^2 & X_{11} - \lambda_i \end{vmatrix} = 0 \\ & \underset{\text{eigenvalues}}{\text{eigenstates}} \\ & \underset{i=1:}{\text{i}} \quad \lambda_s = X_{11} + ipq; \quad |B_{n_{S^n}}\rangle = \frac{1}{\sqrt{p^2 + q^2}} \left(p|B\rangle - q|\overline{B}^0 \right) \right) \\ & \underset{i=2:}{\lambda_L} = X_{11} - ipq; \quad |B_{n_{L^n}}\rangle = \frac{1}{\sqrt{p^2 + q^2}} \left(p|B\rangle + q|\overline{B}^0 \right) \right) \\ & |B_{n_{L^n}}\rangle = |B_2\rangle = \frac{1}{\sqrt{2}} \left(|B^0\rangle + |\overline{B}^0\rangle \right) \\ & |B^0(t)\rangle = \frac{1}{\sqrt{2}} \left(|B_1\rangle e^{-i(M_1 - \frac{1}{2}\Gamma_1)t} + |B_2\rangle e^{-i(M_2 - \frac{1}{2}\Gamma_2)t} \right) \\ & |\overline{B}^0(t)\rangle = \frac{1}{\sqrt{2}} \left(|B_1\rangle e^{-i(M_1 - \frac{1}{2}\Gamma_1)t} - |B_2\rangle e^{-i(M_2 - \frac{1}{2}\Gamma_2)t} \right) \\ & \underset{\text{experiment : } \Delta M_d = |M_1 - M_2| = 3.34 \pm 0.03 \times 10^{-10} \text{ MeV} \\ & \Gamma_{B^0} = (\Gamma_1 + \Gamma_2)/2 = (1.29 \pm 0.01)\Delta M_d \end{aligned}$$

$B^{0}(t)$ and $\overline{B}^{0}(t)$ time dependence

$$|B^{0}(t)\rangle = \left(|B^{0}(0)\rangle(1+e^{i\Delta Mt})+|\overline{B}^{0}\rangle(1-e^{i\Delta Mt})\right)e^{-\Gamma_{B}t}$$

common phase
$$|\overline{B}^{0}(t)\rangle = \left(|\overline{B}^{0}(0)\rangle(1+e^{i\Delta Mt})-|B^{0}\rangle(1-e^{i\Delta Mt})\right)e^{-\Gamma_{B}t}$$

Can we measure ϕ_1 ?

\checkmark two processes: $B^0 \rightarrow f_{cp} \& B^0 \rightarrow \bar{B}^0 \rightarrow f_{cp}$

 \checkmark weak phase: $2\phi_1$

 \checkmark common phase: Δ mt

Interfere $B \rightarrow f_{CP}$ with $B \leftrightarrow \overline{B} \rightarrow f_{CP}$

What do we measure?

Requirements for CPV

- Many B mesons
 - "B-factory" & the Y(4S) resonance
- <u>Reconstruct+isolate CP eigenstate decays</u>
 - Kinematic variables for signal +(cont. bkg suppr+PID).
- <u>"Tag" flavor of the other B</u>
- Measure decay-time difference
 - Asymmetric beam energies, high precision vertexing(Δz)
 - Likelihood fit to the Δt distributions

PEPII B factory in California

The PEPII Collider (magnetic separation)

Int(L dt)=131 fb⁻¹

On resonance:113 fb⁻¹

 $9 \times 3.0 \text{ GeV}; L=(6.5 \times 10^{33})/cm^2/sec$

The BaBar Detector Superconducting Coil (1.5T)

Silicon Vertex Tracker (SVT)[5 layers]

e+ (3 GeV)

Drift Chamber [40 stereo lyrs](DCH)

Cherenkov Detector (DIRC) [144 quartz bars, 11000 PMTs] Cherenkov Detector (DIRC)

e⁻ (9 GeV)
KEK laboratory in Japan

KEKB

e⁺e⁻ luminosity ~ 2^(t/2.5yr)

A magnetic spectrometer based on a huge superconducting solenoid

Drift chamber for tracking & momentum measurement

Belle drift chamber under construction

Event-time structure

It is not difficult to determine the time an event occurred (t_0) with <±0.5ns precision

Gas multiplication in a drift chamber

For V₀=2000V, b=2 cm a=20 μ m: E-field at the wire≈150×10³ V/cm Gas gain ~ 10⁵

Time vs drift distance

Same event in the entire Detector

Kinematic variables for the Y(4S)

$$E_B \equiv E_{J/\psi} + E_{K_S} = E_{CM}/2$$

invariant mass:
$$m_B = \sqrt{(E_{J/\psi} + E_{K_s})^2 - (\vec{p}_{J/\psi} + \vec{p}_{K_s})^2}$$

Beam-constrained $m_{bc} = \sqrt{(E_{CM}/2)^2 - (\vec{p}_{J/\psi} + \vec{p}_{K_s})^2}$
mass:

Kinematic variables for the Y(4S)

Signal purity≈98%

[2332 events with a purity of 0.60]

Step 3: Check the other tracks to see if the other meson is a B^0 or a $\overline{B^0}$

Flavor-tagging the other B

Figure of merit(Q)= $\varepsilon(1-2 w)^2$: the 'effective' tagging efficiency

∽w=wrong-sign tags Inclusive Leptons: high-p l[−] *b* → c l[−] v *intermediate-p* l⁺ *b* → c l[−] v *b* → c l[−] v Inclusive Hadrons: ■high-p π⁻ $B^{\theta} \rightarrow D^{(*)+} \pi^{-} D^{(*)+} \rho^{+}, etc.,$ ■low-p π⁺ $D^{\theta} \pi^{+}$ ■intermediate-p K⁻

Belle: effective efficiency = 30 %

Distinguishing different particle types dE/dx

Ionization density in the drift chamber (dE/dx)

K meson identification from dE/dx, Cherenkov & TOF

Distinguishing different particle types (time-of-flight)

Time of flight measurement

here you use a much faster clock

TOF measurements of particle mass

Time = L/v $\Rightarrow \beta = v/c = p/\sqrt{(p^2+m^2)} \Rightarrow m$

Identify the other tracks in the event

A K⁻ tag event means the other meson is (probably) a $\overline{B^0}$ (not a B^0)

Step 4. Find decay time difference

Silicon vertex detector

Silicon detector **Charged particle track** position resolution \approx 20 μ m **E-field** 300µm

Magnified vertex

y-z vertices

Event-by-event Likelihood

 $\mathcal{L}_{i} = \int ((1 - f_{bk})\mathcal{P}_{sig} + f_{bk}\mathcal{P}_{bk}) \times \mathcal{R}(\Delta t - \Delta t') d\Delta t'$ *resolution function* background frac **B-lifetime** studies Sidebands & MC **b**-flavor tag PDG $e^{-|\Delta t|/\tau_B}$ \mathcal{P}_{sig} -<u>Ejq(</u>1 $-2w(\sin 2\phi_{1})\sin(\Delta m\Delta t)$ $2\tau_B$ lone free wrong-tag frac. $\xi_f = \pm 1$ for $CP = \pm 1$ parameter

$P_{\rm bk}$, sidebands, etc

Resolution function

$\underline{\sin 2\phi_1}$ measurement by Belle (2003)

CONF-0353

Belle results at LP-2001 Rome

Belle Results LP-2001 Rome

Belle Results LP-2001 Rome

BaBar/Belle comparison (LP2001)

	BaBar	Belle
Integrated Luminosity	23fb ⁻¹	33fb ⁻¹
$K_{s}(\pi+\pi-)$ J/ ψ events (purity)	316(96%)	457 (97%)
$K_L J/\psi$ events (purity)	273(51%)	569 (61%)
Other CP modes	214	366
Effective tagging effic (w)	26%	27%
$sin2\phi_1$	0.59±0.14±0.05	0.99±0.14±0.06

Weighted average: $sin2\phi_1=0.79\pm0.11$; $\phi_1=26^{\circ}\pm5^{\circ}$

More recent results

	sin(2	β) ≡	sin($(2\phi_1) \frac{H}{MOT}$	FLAV iond 2018
BaBar PRD 79 (2009) 072009		•	0.69 ± 0	.03 ± 0.01
BaBarχ PRD 80 (, K 2009) 112001	·	-	0.69 ± 0.52 ± 0	.04 ± 0.07
BaBar J. PRD 69 (/ψ (hadronic) K 2004) 052001	s	H-	<u>+ 1.56</u> ± 0	.42 ± 0.21
Belle PRL 108	(2012) 171802		H	0.67 ± 0	.02 ± 0.01
ALEPH PLB 492,	259 (2000)	,	*	0.84 +	^{0.82} 1.04 ± 0.16
OPAL EPJ C5, 3	379 (1998)		- Here	3.20 +	¹⁸⁰ 200 ± 0.50 ★
CDF PRD 61,	072005 (2000)	н	 ★I		0.79 ^{+0.41} -0.44
LHCb Jhep 11	(2017) 170		н	0	.76 ± 0.03
Belle5S PRL 108	(2012) 171801		•	0.57 ± 0	.58 ± 0.06
Average HFLAV				0	.70 ± 0.02
-2	-1	0	1	2	3

CP Violations seen in B meson decays

near their maximum possible values:

Consistent with KM-model-based prediction

Are these CPV asymmetries really due to a phase in the CKM matrix?

Summary of Lecture 5

- Carter and Sanda establishes conditions on M_t , $|V_{cb}|$ and $|V_{ub}|$ for producing measureable CP violating asymmetries in B meson decays.
- Experiments at DESY, SLAC and Cornell show that the Carter-Sanda conditions are met
- Experiments at KEK (Belle) and SLAC (BaBar) were designed to test the KM predictions for large, mixing-induced CP violation asymmetries in $B^0 \rightarrow K_s J/\psi$ and $K_L J/\psi$ decays
- Both experiments found CP violating asymmetries similar to the Carter-Sanda-Bigi KM-model-based predictions
- Unlike the K meson system, where the observed CP violating effects are small, the CP violating effects in B meson decay are large, near their maximum possible values (sin2φ₁≈0.68 vs a maximum possible value of 1).

