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• NC disappearance
• Sterile neutrino search: are there other 

neutrinos beyond the three known active 
flavors?

• Also, cross sections, exotic phenomena and non-
beam physics

• ne appearance + nµ disappearance
• Mass hierarchy: m3>m1,2 or m1,2>m3? Implications for absolute neutrino masses, 

unified theories and neutrino-less double beta decay searches
• CP phase δCP: whether neutrinos and antineutrinos behave the same way in 

oscillation? Implications for matter-antimatter asymmetry 
• Octant of q23 : Is q23 exactly 45o? Is n3 more strongly coupled to nt or nµ? 
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NOvA Physics Goals
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This talk: New ne and nµ oscillation results with 
NOvA’s first antineutrino data
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• For the three-flavor case the PMNS matrix is most commonly parameterized by three 
real mixing angles θ12, θ23 and θ13 and a single phase δCP

Including two independent squared mass differences Dm2
21=m2

2-m2
1 and Dm2

32=m2
3-m2

2,
there are 6 free parameters that determine the neutrino oscillation.
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One	“dip”	due	to	the	fixed	
baseline

q23=45o,	sin22q23=1	deep	dip

q23≠45o,	sin22q23<1	shallow	dip

Nunokawa,	Parke,	Valle,	in	“CP	Violation	and	Neutrino	Oscillations”,	
Prog.Part.Nucl.Phys.	60	(2008)	338-402.

nµ disappearance: High precision Dm32 and sin22q23 , constrain octant

𝑃 𝜇𝜇 ≈ 1 − sin* 2𝜃*- sin*
Δ𝑚-*

* 𝐿
4𝐸

nµ disappearance
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ne appearance
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• Measuring mass hierarchy (sign of D value), dCP and 
octant of 𝜃23 with ne appearance,

• 𝑃(𝜈5 ⟶ 𝜈7) difference between D > 0 and D < 0 
enlarged by matter effect A (∝L when fix L/E to 
oscillation maximum)

Matter effect
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Appearance and Disappearance at NOvA

• Measuring 𝜈7 and �̅�7 appearance 
probabilities with nµ and �̅�5 beam

• When other parameters fixed, 
𝜈5 → 𝜈7 and �̅�5 → �̅�7 appearance 
probabilities depend on 
– sign of Dm2

32 

– dCP

– octant of q23 

• nµ and �̅�5	disappearance provides 
high precision Dm32 and sin22q23 , 
constrain q23 octant

𝜈7/�̅�7 Appearance event counts



NOvA Far Detector 
(on surface)
Ash River, MN 
810 km

NuMI beam and 
NOvA Near Detector
Fermilab
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• Upgraded NuMI muon neutrino beam at Fermilab (700 kW design goal achieved)
• Longest baseline in operation (810 km), large matter effect (±30%), sensitive to 

mass hierarchy
• Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation 

maximum, small wrong sign components

14 mrad

8

NuMI Off-Axis ne Appearance Experiment

Eν ≈ 0.43
Eπ

1+ γ 2θν
2
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Beam Performance

antineutrino neutrino 

neutrino+ antineutrino 

Operating at 700 kW since Jan 2017

• Neutrino beam data: 8.85x1020 POT, taken Feb 2014 - Feb 2017
• First antineutrino data: 6.9 x 1020 POT, taken Feb 2017 - April 2018
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CC event rates at FD in neutrino beam
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NOvA Simulation
CC event rates at FD in antineutrino beam

�̅�5	cross section 
much lower than 𝜈5



• 14-kton Far Detector
• 344,064 detector cells
• 0.3-kton functionally identical Near Detector
• 18,432 cells

The NOnA Detectors
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• Composed of PVC modules extruded to form long tube-like cells 
• Each cell: filled with liquid scintillator, has wavelength-shifting fiber (WLS) routed to 

Avalanche Photodiode (APD)
• Cells arranged in planes, assembled in alternating vertical and horizontal directions
• Low-Z and low-density, each plane just 0.15 X0, great for e- vs p0 separation



NOvA Event Topologies

ne CC (ne appearance signal)

nµ CC (nµ disappearance signal)

NC (NC disappearance signal)

Jianming Bian - UCI 11



• QE, RES tuned to consider long-range nuclear correlations using València model via work 
of R. Gran (MINERvA) [https://arxiv.org/abs/1705.02932]

• DIS at high invariant mass (W>1.7 GeV/c2) weighted up 10% based on NOvA data
• Empirical MEC (Meson	Exchange	Current) model for Multi-nucleon ejection (2p2h) 

[T. Katori, AIP Conf. Proc. 1663, 030001 (2015)], amount tuned in 2D 3-momentum and energy transfers 
(q0 =Eν −Eµ , |q|=|pν −pµ|) space to match ND data
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Neutrino Interaction Tuning
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(See Talk 134, Jeremy Wolcott, 08/17/2018)



• Empirical MEC (Meson	Exchange	Current) model for Multi-nucleon ejection (2p2h) [T. 

Katori, AIP Conf. Proc. 1663, 030001 (2015)], amount tuned in 2D 3-momentum and energy transfers 
(q0 =Eν −Eµ , |q|=|pν −pµ|) space to match ND data

• MEC shape systematic estimated by re-fitting using models with QE and RES related 
systematic shifts
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Neutrino Interaction Tuning
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Improved Flux Model

• Package to Predict the Flux (PPFX) from MINERvA (Phys. Rev. D 94, 092005. 2016).
– Based on thin target hadron production data from NA49 and MIPP.

• Significantly reduced systematic uncertainties.
– Central values also changed within prior systematics, but not shown here.

14
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Analysis Strategy
• Separate nµ/ne /NC signal from beam backgrounds 
• Extrapolate observed ND spectrum to FD, reject cosmic 

rays in FD, make FD unoscillated prediction
• Measure shapes and yields of signal events in energy/PID 

bins in FD to determine oscillation parameters
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Event clustering

550 𝜇s exposure of the Far Detector

• Because NOvA is on surface, hits in a trigger window are a combination of cosmic and beam events. 
• First step in reconstruction is to cluster hits by space-time coincidence to separate neutrino hits and 

cosmic hits.

X view

Y view

550 𝜇s trigger window

Jianming Bian - UCI 16



Event clustering

Time-zoom on 10 𝜇s interval during NuMI beam pulse

Event clusters that contain neutrino interactions can be correctly selected in the neutrino spill 
timing window

X view

Y view

10 𝜇s spill timing window

Jianming Bian - UCI 17



• CVN: a convolutional neural network (CNN), based on modern image recognition 
technology

• Introduce convolution filters to extract features from the hit map for the training of 
the neural net

• Statistical power equivalent to 30% more exposure than previous ne PIDs
• νe , νµ and NC analyses all use CVN as event selector

Deep-Learning based PID for ne and nµ Analyses

Outputs of convolutional filters (features) CVN output in the far detector MC

Hit map of 
a ne CC event

Jianming Bian - UCI 18

At NOvA, CVN has been extended to single particle ID, 
energy reconstruction (for future analyses), etc

(See Poster 206, Fernanda Psihas)
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PID efficiencies

Neutrino Anti-Neutrino



Vertexing: Find lines of energy
depositions with Hough 
transform. Then determine the 
vertex that all lines converge to

Shower Clustering: Based on 
the vertex and the lines, showers 
are reconstructed by angular 
clustering

Tracking: Trace particle trajectories with Kalman filter tracker (below).
Also have a cosmic ray tracker that reconstructs cosmic tracks with high speed.

Prong/track 
Reconstruction

20Jianming Bian - UCI
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Area-normalized, shape-only systematics

Data/MC normalization difference: 

1.3% and 0.5% for ν? and �̅�5

Near Detector Spectrum (nµ disappearance)

• Select ν? (�̅�5) CC in ND from neutrino (antineutrino) 
beam, wrong sign contamination 3% (11%)

• Eν = Eµ+ Ehad, data split in 4 equal energy quantiles 
based on Ehad/En, resolution varies from 5.8% (5.5%) to 
11.7% (10.8%) for neutrino (antineutrino) beam.

• Normalize ND MC to data in each Eν bin, then 
extrapolate the 4 quantiles to FD

Reco ν? (�̅�5) energy, all Quartiles
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• FD selection: 

– Additional BDT to reduce cosmic backgrounds

– Estimate cosmic background rate from timing 
sidebands of the NuMI beam triggers and cosmic 
trigger data

νµ events in 4 quartiles, 
each quartile extrapolated 
independently

νµ Data at Far Detector
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• FD selection: 

– Additional BDT to reduce cosmic backgrounds

– Estimate cosmic background rate from timing 
sidebands of the NuMI beam triggers and cosmic 
trigger data

• Neutrino beam:  

– Observe 113 events

– Expect 730 +38/-49(syst.) w/o oscillations 

• Antineutrino beam:

– Observe 65 events

– Expect 266 +12/-14(syst.) w/o oscillations

νµ Data at Far Detector

4 quartiles combined
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Near Detector Spectrum (ne appearance)

• Select ν7 (�̅�7) CC in ND from neutrino 
(antineutrino) beam

• Eν = f (Ee,	Ehad), data split into low and high 
particle ID (purity) range 

• For neutrino beam:

– Contained and uncontained νµ events constrain 
the π/K contributions to the beam νe’s.

– Michel electrons constrains NC/νµ CC balance 
in each Eν bin

• For antineutrino beam, scale all components evenly 
to match data

• NDàFD extrapolation: Each component 
propagated independently in energy and PID bins



νe Far Detector Prediction
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• FD selection: 

– Add a one-bin peripheral with less stringent 
containment selection to include more signal

– Use location dependent BDT and tight PID cuts 
to recover signal events in this peripheral bin

• NDàFD extrapolation: Each component propagated 
independently in energy and PID bins

• Neutrino beam:  

– Background: 11 beam, 3 cosmic and < 1 wrong 
sign

• Antineutrino beam:

– Background events : 3.5 beam, <1 cosmic and  1 
wrong sign



νe Far Detector Backgrounds
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• Neutrino beam:  

– Background: 11 beam, 3 cosmic and < 1 wrong sign

• Antineutrino beam:

– Background events : 3.5 beam, <1 cosmic and  1 wrong sign

• Major backgrounds from beam ne

• Wrong sign background depends on oscillation



νe Data at Far Detector
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• Neutrino beam:  

– Observe 58 events, expect 15 background events

• Antineutrino beam:

– Observe 18 events, expect 5.3 background events

• > 4s �̅�7 appearance

Selected νe candidate in FD Data



Systematic Uncertainties (Joint fit)

• Largest systematics for νµ and νe are 
calibration and cross-sections.

• Both analyses are statistically limited.
• Upcoming NOvA test beam program 

will address calibration and detector 
response uncertainties

• Neutron uncertainty – new with ν̅’s

28
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Neutron Response Systematic for 𝝂A



Systematic Error in Calibration
Michel electrons 
from muon decays

• Our calibration is built on dE/dx from stopping 
cosmic muons.

• Control samples for calibration uncertainty
– p0 mass peak in ND
– Michel electrons in ND and FD

30
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Cross-checks: Muon-removed from bremsstrahlung

Cosmic rays in
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Cross-checks: Muon-removed, Electron-added



Joint Appearance and Disappearance 

• Statistically limited, largest systematics 
for νµ and νe are calibration and cross-
sections.

• Best fit:
– Normal Hierarchy
– sin2θ23 = 0.58±0.03 (UO)
– Δm2

32 = (2.51+0.12-0.08)*10−3 eV2

• Prefer non-maximal at 1.8s, favor upper 
octant at similar level 33
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Joint Appearance and Disappearance 

• Statistically limited, largest systematics for νµ
and νe are calibration and cross-sections

• Best fit:
– Normal Hierarchy
– δCP= 0.17π 
– sin2θ23 = 0.58±0.03 (UO)
– Δm2

32 = (2.51+0.12-0.08)*10−3 eV2

• Consistent with all δCP values in NH at < 1.6σ
• Exclude δ=π/2 in IH at > 3σ
• Prefer NH at 1.8σ

35
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Joint Appearance and Disappearance 

Error bars represent counting 
uncertainty of 𝜈7/�̅�7 appearance, 
full power from joint fit to 
𝜈7/�̅�7+𝜈5/�̅�5 energy/PID spectra

• Prefer non-maximal at 1.8s, favor upper octant 
Consistent with all δCP values in NH at < 1.6σ

• Exclude δ=π/2 in IH at > 3σ
• Prefer NH at 1.8σ

𝜈7/�̅�7 appearance event counts Best fit from 𝜈7/�̅�7	+ 𝜈5/�̅�5	combined analysis
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• Taking antineutrino data since 2017, 
switch back to neutrinos in 2019, run 
50% neutrino, 50% anti-neutrino 

• Extended running through 2024, test 
beam program and potential accelerator 
improvement to enhance ultimate reach

• If δCP=3π/2, 3 σ sensitivity to MH by 
2020, ~5 σ by 2024

• 3 σ to MH for 30-50% (depending on 
octant) of δCP range by 2024

• 2+ σ to CP at δCP=3π/2 or δCP=π/2 by 
2024

50/50	ν/anti-ν

Looking Forward

Thank you!



Backup
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One	“dip”	due	to	the	fixed	
baseline

q23=45o,	sin22q23=1	deep	dip

q23≠45o,	sin22q23<1	shallow	dip

Nunokawa,	Parke,	Valle,	in	“CP	Violation	and	Neutrino	Oscillations”,	
Prog.Part.Nucl.Phys.	60	(2008)	338-402.

nµ disappearance: High precision Dm32 and sin22q23 , constrain octant

𝑃 𝜇𝜇 ≈ 1 − sin* 2𝜃*- sin*
Δ𝑚-*

* 𝐿
4𝐸

nµ disappearance
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ne appearance
P(νµ →νe )  ≈ sin2 2θ13 sin2θ23
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• Measuring mass hierarchy (sign of D value), dCP and 
octant of 𝜃23 with ne appearance,

• 𝑃(𝜈5 ⟶ 𝜈7) difference between D > 0 and D < 0 
enlarged by matter effect A (∝L when fix L/E to 
oscillation maximum)

Matter effect



NuMI Off-Axis ne Appearance Experiment
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Observed NC events in Far Detector

• FD selection: 
– NC CVN selection applied

– Additional Deep-learning based cosmic rejection

• Neutrino beam:  

– Observe 201 events, predict 188 ± 13 
(syst.) events (38 bkg.)

• Antineutrino beam:

– Observe 61 events, predict 69 ± 8
(syst.) events (16 bkg.) 

• No significant suppression for NC 
observed, consistent with 3-flavor 
oscillation



• Combined data of neutrino and antineutrino beams fitted assuming CPT invariance
• If fit separately, �̅�5 data prefers non-maximal while 𝜈5 prefers maximal
• χ2s consistent with combined fit oscillation parameters with p > 4%
• Matter effects introduce small asymmetry in the point of maximal disappearance, ~1s

prefers Upper (Lower) Octant in NH (IH)
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nµ appearance fit
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nµ appearance fit
• Combined data of neutrino and antineutrino beams fitted assuming CPT invariance
• If fit separately, �̅�5 data prefers non-maximal while 𝜈5 prefers maximal
• χ2s consistent with combined fit oscillation parameters with p > 4%
• Matter effects introduce small asymmetry in the point of maximal disappearance
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2017/2018 RHC ne  FD Data

66 FD data 
events in 2017 
analysis

58 FD data 
events in 2017 
analysis

Change in data events after retraining of PID, new training improved bkg rejection
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Systematic Uncertainties (Joint Fit)


