

Vertex Tracker Detector

Qun Ouyang(IHEP), Xiangming Sun(CCNU), Meng Wang(SDU)

On behalf of the study group

September 13-15, 2018 Beijing

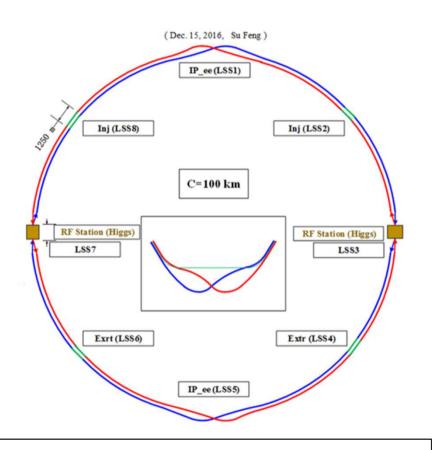
CEPC Physics and Detector CDR International Review

Editors:

Members of mini-review:

Dong, Mingyi Liu, Beijiang Lu, Yunpeng Ouyang, Qun Wang, Meng Wu, Zhigang Bortoletto, Daniela Grinstein, Sebastian Snoeys, Walter

• • • • •


Apologize if anybody missed from the list

Outline:

- Requirements and challenges
- Baseline design and performance studies
- Sensor technology options
- Mechanics and Integration
- R&D activities
- Summary

Reminder: CEPC Beam Timing

Circular e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in 10yrs $E_{cm}\approx 240$ GeV, luminosity $\sim 3\times 10^{34}$ cm⁻²s⁻¹, (1.6-3.2×10³⁵ cm⁻²s⁻¹ at the Z-pole)

Bunch spacing 680 ns @ H(240)

210 ns @ W(160)

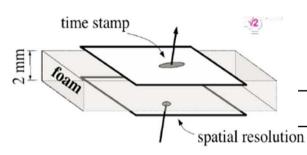
25 ns @ Z(91)

Fully Partial Double Ring - 100Km

Vertex Detector Requirements

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$


- Detector system requirements:
 - $-\sigma_{SP}$ near the interaction point: $<3 \mu m \longrightarrow \sim 16 \mu m$ pixel pitch
 - material budget: $\leq 0.15\%X_0/layer$ power consumption $< 50 \text{mW/cm}^2$, if air
 - − first layer located at a radius: ~1.6 cm
 - pixel occupancy: ≤ 1 % \sim μs level readout
- * Radiation tolerance: see slide 9
- * Time stamp: needed for short bunch spacing

cooling used

Baseline Vertex Detector Layout

VXD: *B*=3*T*

- 3 layers of double-sided pixels
- σ_{SP} =2.8 μ m in L1
- Faster pixel sensor in L2, to provide time-stamp
- Polar angle θ ~15 degrees
- Total number of pixels: 690M

mm]	350	cosθ =0.923
	300	cosθ =0.969
	250	FTD
	200	
	150	SIT cosθ =0.993
	100	
VXD	50	VTX
	0	200 400 600 800 1000 1200
	,	Z [mm]

 $|\cos \theta|$

0.07

0.90

л	Layer 1	10	02.5	0.97	2.8
	Layer 2	18	62.5	0.96	6
	Layer 3	37	125.0	0.96	4
	Layer 4	39	125.0	0.95	4
	Layer 5	58	125.0	0.91	4

125.0

|z| (mm)

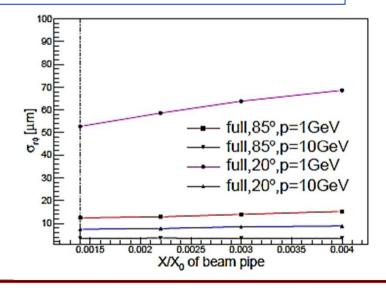
VXD parameters

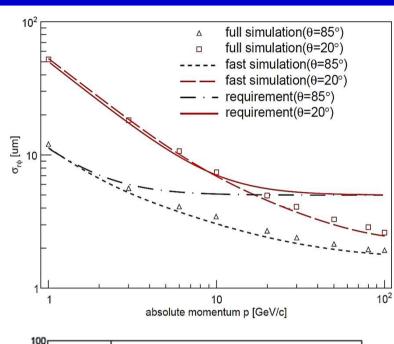
60

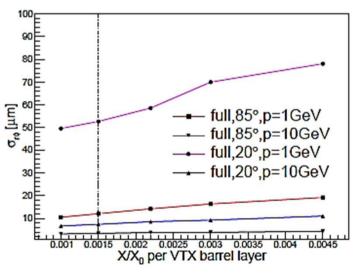
Layer 6

R (mm)

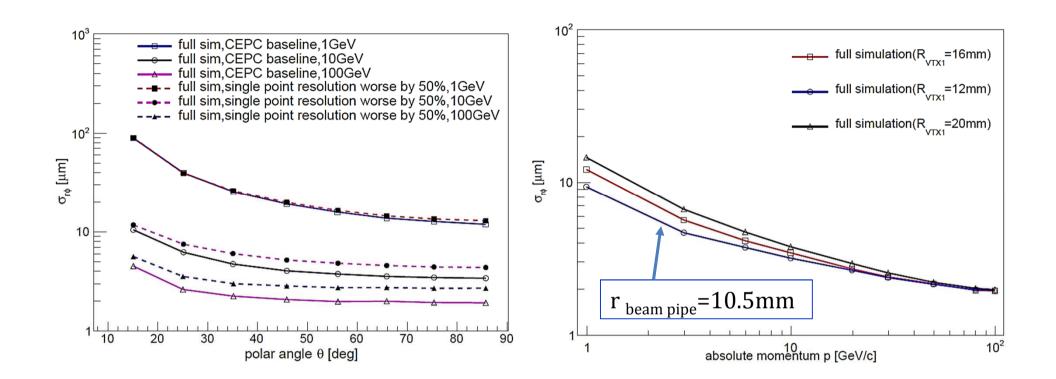
16


4


 $\sigma_{\rm sp}$ (μ m)


Performance Studies – IP Resolution

Performance of the baseline configurations with fast and full simulation


Sensitivity to material budget with full simulation

Performance Studies – IP Resolution

Sensitivity to single-point resolution and innermost radius with full simulation

Beam-Induced Radiation Backgrounds

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10^{12} 1 MeV n_{eq}/cm^2 ·year]	2.1	5.5	6.2

Table 9.4: Summary of hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) with combined contributions from pair production and off-energy beam particles, at the first vertex detector layer (r = 1.6 cm) at different machine operation energies of $\sqrt{s} = 240$, 160 and 91 GeV, respectively.

	H(240)	W(160)	Z(91)
Hit density (hits \cdot cm ⁻² \cdot BX ⁻¹)	2.4	2.3	0.25
Bunching spacing (µs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23

Table 4.2: Occupancies of the first vertex detector layer at different machine operation energies: 240 GeV for ZH production, 160 GeV near W-pair threshold and 91 GeV for Z-pole.

detector occupancy <1%, assuming 10 μs of readout time for the silicon pixel sensor and an average cluster size of 9 pixels per hit.

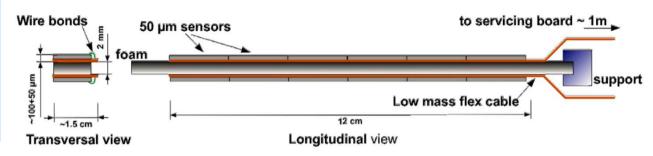
Sensor Technology Options

Technology	Examples	Small pixels	Low mass	Low power	Fast timing
Monolithic CMOS MAPS	Mimosa CPS	++	++	++	-
Integrated sensor/amplif. + separate r/o	DEPFET, FPCCD	+/++	0	+	-
Monolithic CMOS with depletion	HV-CMOS, HR-CMOS	+	++	0	+
3D integrated	Tezzaron, SOI	++	+	0	++
Hybrid	CLICpix+planar sensor, HV-CMOS hybrid	+	0	+	++

Ref: Recent developments in LC vertex and tracking R&D, Dominik Dannheim, LCWS 2015

Many technologies from ILC/CLIC could be referred.

BUT, unlike the ILD/CLIC, the CEPC detector will operate in continuous mode. → without power-pulsing


Sensor Technology Options

Possible technologies for CEPC vertex

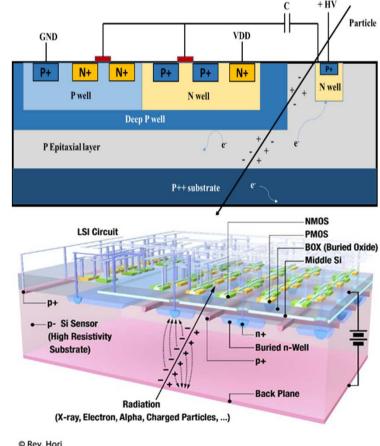
- HR-CMOS sensor with a novel readout structure (ALPIDE @ ALICE-ITS upgrade)
 - relatively mature technology
 - $<50 \text{mW/cm}^2 \text{ expected}$
 - Capable of readout every ~4μs
- SOI sensor with similar readout structure
 - Fully depleted HR substrate, potential of 16μm pixel size design
 - Full CMOS circuit
- DEPFET: possible application for inner most vertex layer
 - small material budget, low power consumption in sensitive area
- 3D-IC: ultimate detector, but not mature enough

Mechanics and Integration

- Double-sided ladder
 - PLUME design concept
- Cooling
 - to be considered

Vertex detector	Power dissipation	Cooling method	Material budget requirement/layer	
Alice ITS	$300\mathrm{mW/cm^2}$	water	0.3%	
STAR PXL	$170\mathrm{mW/cm^2}$	air	0.39%	
	$< 120 \mathrm{mW/cm^2}$	air or N_2	0.15%	
ILD vertex —	(CPS and DEPFET)	an or ive		
ILD Vertex —	35 W inside cryostat	two-phase CO ₂		
	(FPCCD)	two-phase CO ₂		
	20 W for sensor	Air		
BELLE-II PXD	and SWITCHER	All	0.2%	
	180 W on each end	CO_2	•	

Table 4.3: Cooling methods for several vertex detector designs. The chip power dissipation, coolant type and corresponding material budget requirement per sensor layer are indicated. The active CO_2 cooling adds additional material in the forward region, outside the sensitive area. For the ILD FPCCD option, this additional material budget is $0.3\%~X_0$ averaged over the end-plate region, while for the BELLE-II PXD, it is $\sim 0.1-0.2\%~X_0$ per layer.

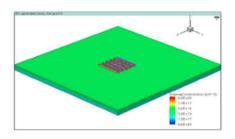

R&D Activities in China

Initial sensor R&D targeting on

- Pixel single point resolution 3 5μm
- Power consumption at the current level <100mW/cm²
- Integration time 10-100µs

Two monolithic pixel technologies

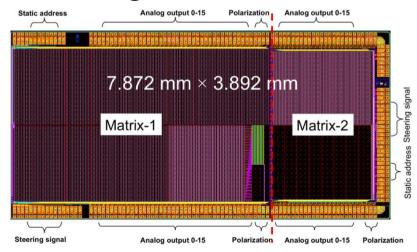
- CMOS pixel sensor (CPS)
 - TowerJazz CIS 0.18 μm process
 - Quadruple well process
 - Thick (~20 μm) epitaxial layer
 - with high resistivity ($\geq 1 \ k\Omega \bullet cm$)
- SOI pixel sensor
 - LAPIS 0.2 µm process
 - *High resistive substrate* ($\geq 1 \ k\Omega \bullet cm$)
 - Double SOI layers available
 - Thinning and backside process


@ Rey. Hori

CMOS Pixel Sensor – 1st Design

Sensor design & TCAD simulation

Y.Zhang, et al, NIMA 831(2016)99-104


Different sensor diode geometries, epitaxial-layer properties and radiation damage

JadePix1 submission in Nov. 2015

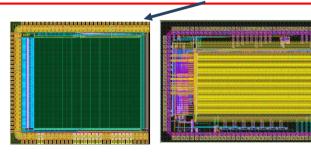
Y. Zhang, Y.Zhou, et al (IHEP, SDU)

- Exploratory prototype, analog pixel, rolling shutter readout mode
- Sensor optimization and radiation tolerance study
- sensing node AC-coupled to increase biased voltage
- Sensor characterization
 - Noise level
 - Charge collection efficiency
 - Irradiation with Neutron
 - Test beam in Aug. 2018

CMOS Pixel Sensor – 2nd Design

Design goal: digital readout pixel sensor with

- Single point resolution better than 5μm
- Power consumption <80 mW/cm²
- Integration time < 100μs


Joint effort of CCNU and IHEP

Design submission in May 2017

- Tow prototypes with digital pixels (in-pixel discriminator)
- Tow different readout schemes: rolling shutter & asynchronous

JadePix2: Y.Zhou (IHEP)

- Pixel size: $22\mu m \times 22\mu m$
- Two different pixel version with higher biased voltage
- Test in lab ongoing

MIC4: P.Yang(CCNU) Y.Zhang (IHEP)

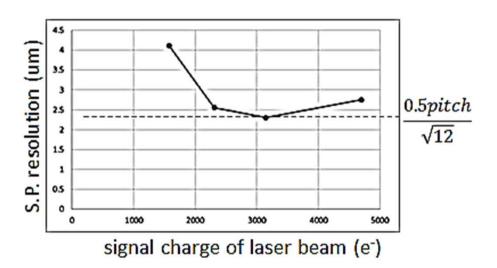
- Pixel size: $25\mu m \times 25\mu m$
- Two different pixel frontend with Matrix readout architecture
- Test in lab ongoing

SOI Pixel Sensor

First submission (CPV1) in June 2015

Y. Lu (IHEP)

- 16*16 μm with in-pixel discrimination
- Double-SOI process for shielding and radiation enhancement


Second submission (CPV2) in June 2016

Y. Lu, Y.Zhou (IHEP)

- In-pixel CDS stage inserted
- To improve RTC and FPN noise
- To replace the charge injection threshold

CPV2 performance

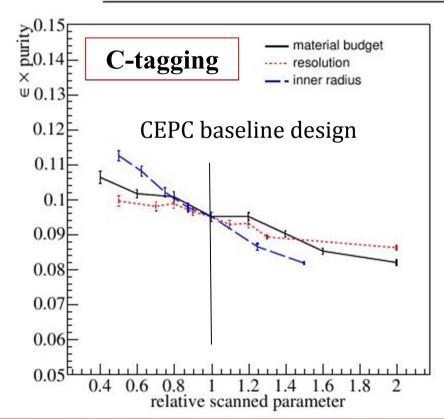
- Thinned down to 75um thick
- Temporal noise ~6e⁻
- Threshold dispersion (FPN) ~114e⁻
- Single point resolution measurement under infrared laser beam

Future Plan on R&D

- Further optimization study of vertex system
- Novel readout scheme exploration
- Large area pixel array design
- Radiation hardness and time-stamp sensor design
- Prototype development within 5 years
- Small ($16\mu m \times 16\mu m$) pixel, targeting on $3\mu m$ single point resolution
 - To explore 3D connection technology by designing the in-pixel digital logic in a separated tier
 - Or to look for any new process

Summary

- CDR finished with baseline detector design
- Critical technologies listed
- R&D project started along the baseline design specifications
 - in-pixel electronics, small pixel size
 - new asynchronous readout architecture
- Collaboration with international teams
- Going to TDR for next step, a huge challenge
- Expertise demanding

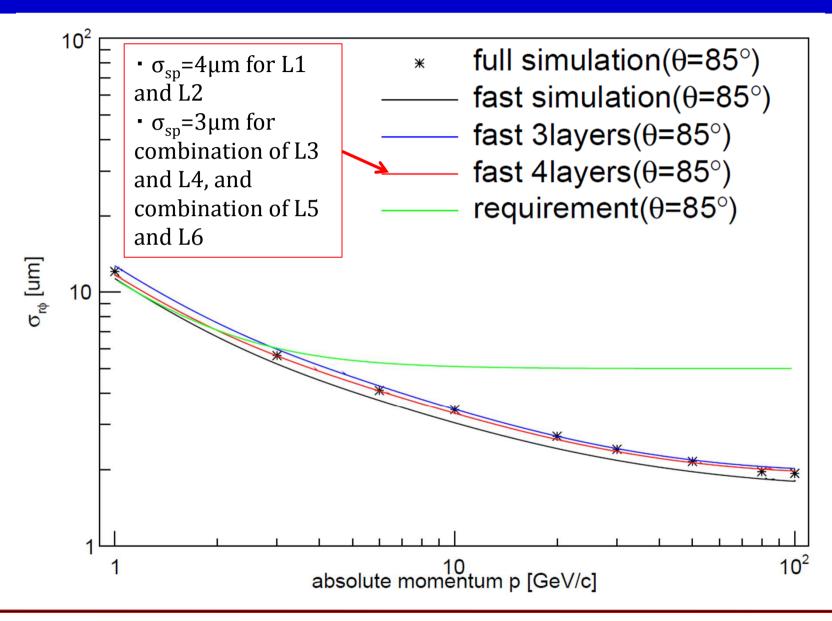

Many thanks to all members of CEPC Physics and Detector working group who made significant efforts to prepare the CDR!

Thank you for your attention!

	Higgs	W	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	45	5.5
Circumference (km)	•	100	·	
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0)36
Crossing angle at IP (mrad)	-	16.5×	2	
Piwinski angle	2.58	7.0	23	3.8
Number of particles/bunch N_e (1010)	15.0	12.0	8	.0
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)
Beam current (mA)	17.4	87.9	46	1.0
Synchrotron radiation power /beam (MW)	30	30	10	5.5
Bending radius (km)		10.7		
Momentum compact (10-5)		1.11		
$β$ function at IP $β_x*/β_y*(m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance $\varepsilon_{v}/\varepsilon_{v}$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016
Beam size at IP $\sigma_{\rm r}/\sigma_{\rm v}$ (µm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04
Beam-beam parameters ξ_v/ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072
RF voltage V_{RF} (GV)	2.17	0.47	0.	10
RF frequency f_{RF} (MHz) (harmonic)		650 (216	816)	
Natural bunch length σ_z (mm)	2.72	2.98	2.42	
Bunch length σ_z (mm)	3.26	5.9 8.5		
Betatron tune v_x/v_y	363.10 / 365.22			
Synchrotron tune ν_c	0.065	0.0395)28
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.	94
Natural energy spread (%)	0.1	0.066	0.0)38
Energy acceptance requirement (%)	1.35	0.4	0.23	
Energy acceptance by RF (%)	2.06	1.47	1.7	
Photon number due to beamstrahlung	0.29	0.35	0.	55
Lifetime _simulation (min)	100			
Lifetime (hour)	0.67	1.4	4.0	2.1
F (hour glass)	0.89	0.94	0.	99
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

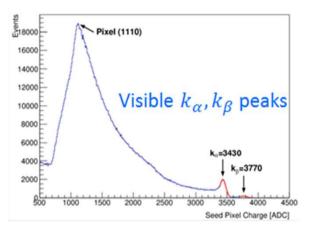
Performance Studies – Flavour Tagging

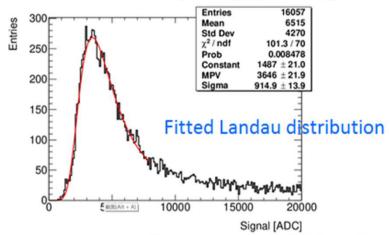
$\frac{\text{situations}}{\epsilon \cdot \text{purity}}$	best 0.925 ± 0.001	baseline 0.914±0.001	worst 0.900±0.001
$\epsilon \cdot \text{purity}$	best	baseline	worst 0.078±0.001
	$\epsilon \cdot \text{purity}$ $\epsilon \cdot \text{purity}$	$\epsilon \cdot \text{purity} 0.925 \pm 0.001$ $\epsilon \cdot \text{purity} \text{best}$	$\epsilon \cdot \text{purity} 0.925 \pm 0.001 \qquad 0.914 \pm 0.001$

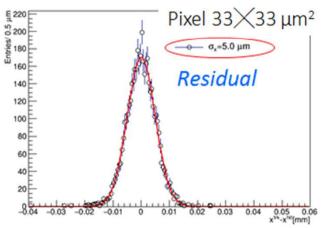


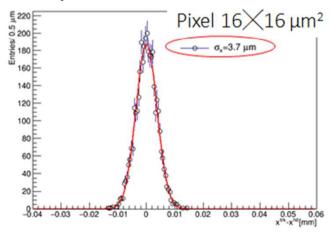
Sept 13-15, 2018

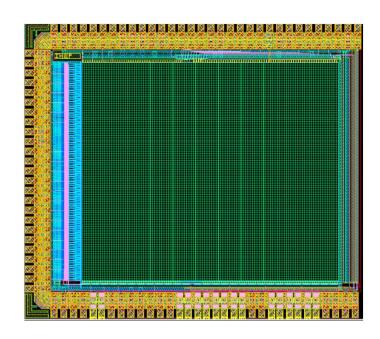
worst case: with parameters of ALICE ITS upgrade


- material budget: $0.3\% X_0$ /layer
- resolution: 5 μm
- inner radius: 23 mm

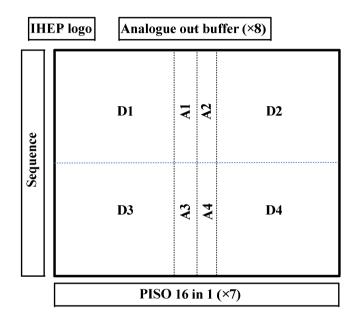

Performance Studies – IP Resolution


JadePix1: Performance Characterization


Characterization with radiative sources, ⁵⁵Fe (x-ray), ⁹⁰Sr (β/MIP)



 (Preliminary) position resolution measured with the DESY electron beam and the EUDET beam telescope

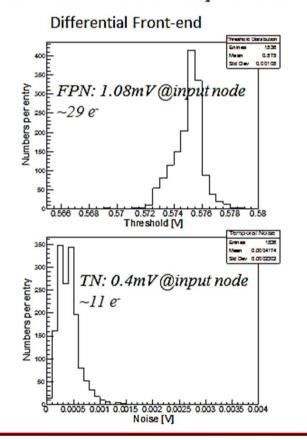

JadePix2: Rolling - shutter Mode

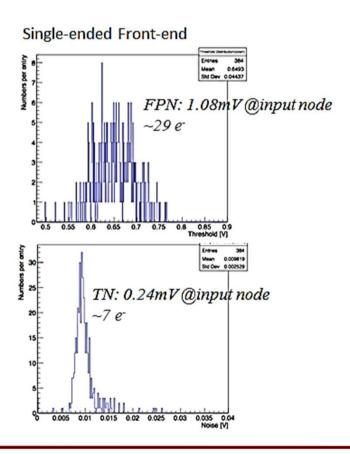
Two different pixel versions:

- Pixel size: $22\mu m \times 22\mu m$
- Same amount of transistors;
- Offset cancellation technique;
- Version 2 has higher signal gain, but suffers "more" from "Latch" input voltage distortion.

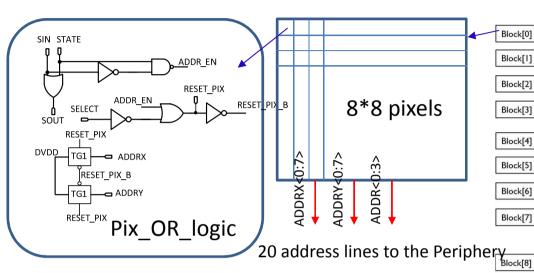
Details in Yang Zhou's presentation

Chip features:

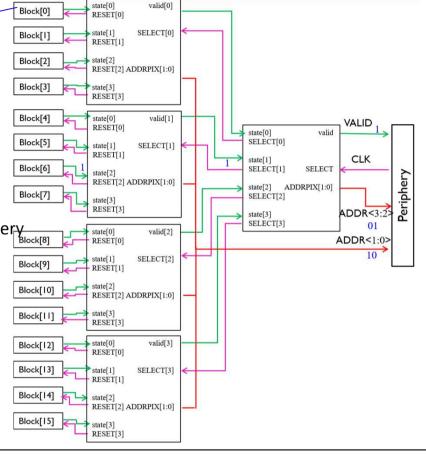

- $-3\times3.3 \text{ mm}^2$
- -96×112 pixels with 8 sub-matrix
- Processing speed: 11.2μs/frame with 100 ns/row
- Output data speed: 160 MHz
- Power: 3.7μA/pixel (14.4 mW/cm² @pixel matrix)


JadePix2: Noise Measurement

JadePix2


Sept 13-15, 2018

- 0.18 um High resistive CMOS Imaging Sensor (CIS) process;
- High precision amplifier & comparator in 22 um pixel.
- Characterization of front-end in pixel
 - Fixed-Pattern Noise & Temporal Noise

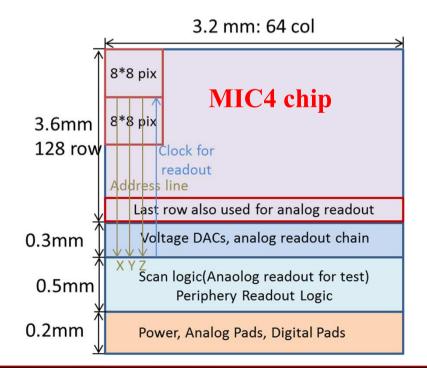


MIC4 Design: Asynchronous Readout Mode

Matrix readout architecture:

- AERD (Address-Encoder and Reset-Decoder) many connection lines occupy larger area than the logic circuit itself
- OR gate chain: speed is limited with the number of the chain pixels
- Combine these two solutions: 64 pixels as a group using OR gate chain, groups using AERD structure to readout

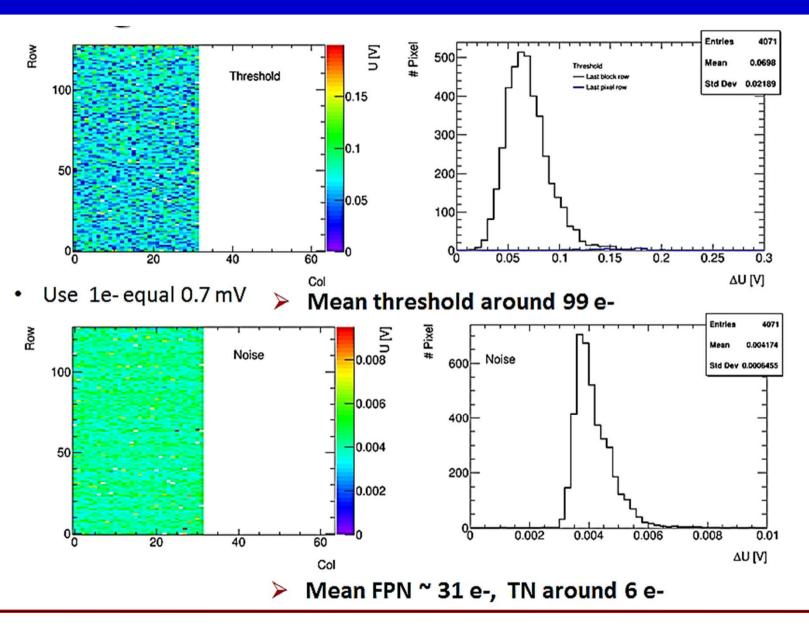
Details in Ping Yang's presentation

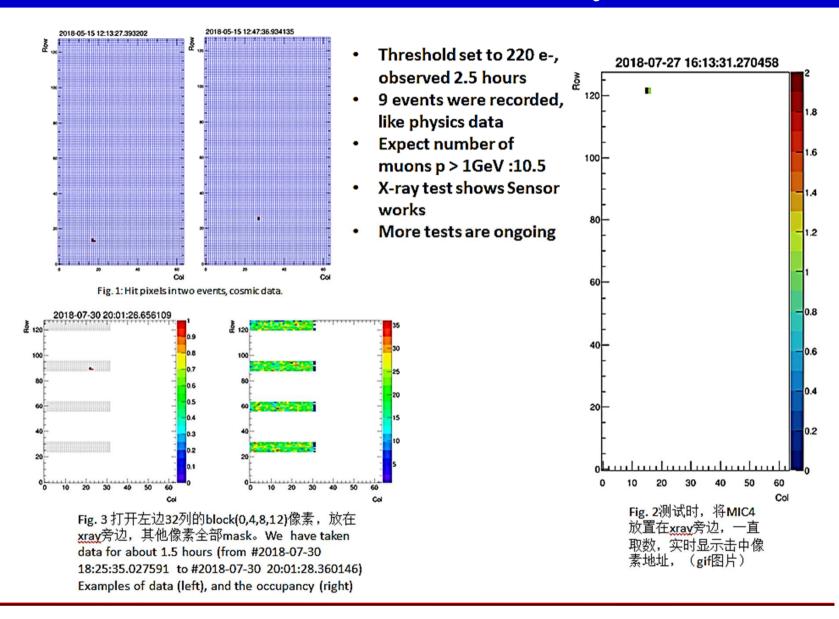

front-end I: ALPIDE structure P. Yang (CCNU) **front-end II:** CSA based front-end circuit Y. Zhang (IHEP)

MIC4 Submission: Asynchronous Mode

Y. Zhang (IHEP) & P. Yang (CCNU)

front-end I: Same structure as ALPIDE chip

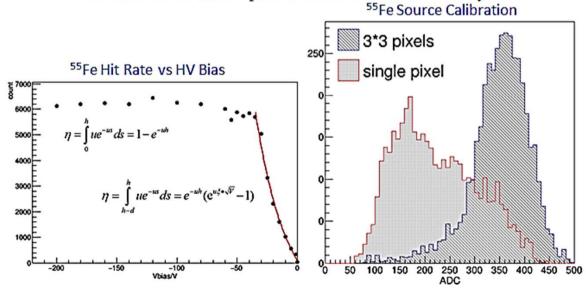

- ENC: 8 e⁻
- Power cons.: 61 nA/pixel
- Threshold: 140 e
- Peaking time < 1 us
- Pulse duration < 3 μs

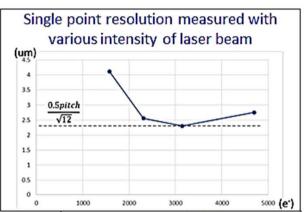

front-end II: CSA based front-end circuit

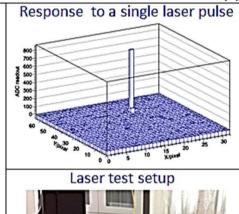
- Pixel size: $25 \times 25 \,\mu\text{m}^2$
- ENC: 24 e⁻
- Power cons.: 50 nW/pixel (8 mW/cm² @pixel matrix)
- Threshold: 170 e⁻
- Peaking time < 500 ns @ Qin < 1.5 ke⁻
- Pulse duration $< 9.4 \mu s @ Qin < 1.5 ke^{-1}$
- \rightarrow 3.2 \times 3.7 mm²
- \rightarrow 128 \times 64 pixels
- Integration time: < 5 μs/10 μs</p>
- ➤ Power consumption: < 80 mW/cm²
- Chip periphery
 - Band gap
 - Voltage DAC
 - Current DAC
 - Matrix configuration
 - LVDS
 - Custom designed PADs

MIC4: Threshold and Noise Distribution

MIC4: Cosmic and X-ray Test


CPV2: Sensor Characterization


Compact Pixel for Vertex (CPV2)


- Very compact pixel design, 16 um fine pitch targeting on single point resolution < 3 um;
- In-pixel amplifier and discriminator, optimized low power consumption < 1uA/pixel;
- Back-side thinning to 75 um;
- 0.2 um customized SOI process.

Measurement results:

- Fully depleted by applying -40V bias;
- CVF = 123.3 uV/e at the output of amplifier;
- 2.3 um achieved at the optimum threshold and laser intensity.

