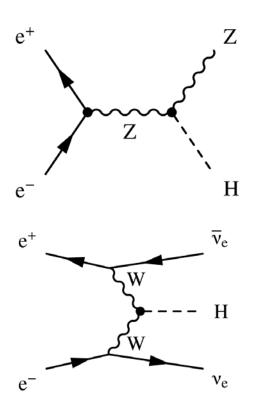
Precision Higgs Physics at CEPC

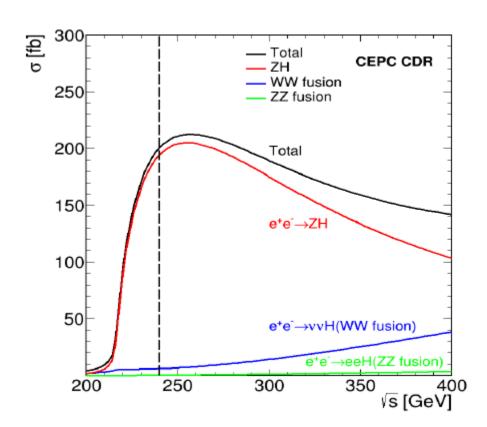
Initial assessments of Higgs physics potential at the CEPC based on the white paper (to be submitted)

Chinese Physics C Vol. XX, No. X (201X) 010201

Precision Higgs Physics at the CEPC*

Fenfen An^{4,21} Yu Bai⁹ Chunhui Chen²¹ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴
Zhenwei Cui³ Yaquan Fang^{4,6} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²⁰ Yuanning Gao⁵
Shao-Feng Ge^{15,27} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo^{10,11} Tao Han^{5,29} Shuang Han⁴
Hong-Jian He^{10,11} Xianke He¹⁰ Xiao-Gang He^{10,11} Jifeng Hu¹⁰ Shih-Chieh Hsu³⁰ Shan Jin⁸
Maoqiang Jing^{4,7} Ryuta Kiuchi⁴ Chia-Ming Kuo¹⁹ Pei-Zhu Lai¹⁹ Boyang Li⁵ Congqiao Li³ Gang Li⁴
Haifeng Li¹² Liang Li¹⁰ Shu Li^{10,11} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang⁴
Libo Liao⁴ Bo Liu^{4,21} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{24,28} Xinchou Lou^{4,6,31} Lianliang Ma¹²
Bruce Mellado¹⁷ Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²² Zhuoni Qian¹⁸
Nikolaos Rompotis²⁰ Manqi Ruan⁴ Alex Schuy³⁰ Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴
Shufang Su²³ Dayong Wang³ Jing Wang⁴ Lian-Tao Wang²⁵ Yifang Wang^{4,6} Yuqian Wei⁴
Yue Xu⁵ Haijun Yang^{10,11} Weiming Yao²⁶ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴
Mingrui Zhao² Xianghu Zhao⁴ Ning Zhou¹⁰


Jianming Qian (University of Michigan) On behalf of the Higgs working group


International Review of CEPC Detector and Physics CDR IHEP, Beijing, September 13-15, 2018

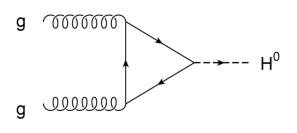
CEPC Higgs Factory Operation

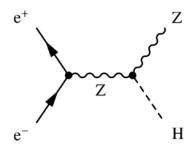
Designed to produce 1 million Higgs bosons \Rightarrow 7 years operation at $\sqrt{s} = 240$ GeV for an integrated luminosity of 5.6 ab⁻¹ (2 IPs)

At $\sqrt{s} = 240$ GeV, $ee \rightarrow ZH$ production is near the maximum and dominates with a smaller contribution from $ee \rightarrow vvH$.

Event Rates in 5.6 ab⁻¹

Process	Cross section	Events in 5.6 ab ⁻¹		
Higgs boson production, cross section in fb				
$e^+e^- \rightarrow ZH$	196.2	1.10×10^{6}		
$e^+e^- \rightarrow \nu_e \bar{\nu}_e H$	6.19	3.47×10^{4}		
$e^+e^-\!\to e^+e^-H$	0.28	1.57×10^3		
Total	203.7	1.14×10^{6}		


Background processes, cross section in pb


2 1	,	•
$e^+e^- \rightarrow e^+e^-$ (Bhabha)	24.7	1.4×10^{8} be updated
$e^{+}e^{-} \rightarrow q\bar{q}\left(\gamma\right)$	54.1	3.0×10^{8}
$e^+e^- \rightarrow \mu^+\mu^- (\gamma) [\text{or } \tau^+\tau^- (\gamma)]$	5.3	3.0×10^{7}
$e^+e^- \to WW$	16.7	9.4×10^{7}
$e^+e^- \to ZZ$	1.1	6.2×10^{6}
$e^+e^- \rightarrow e^+e^-Z$	4.54	2.5×10^{7}
$e^+e^- \rightarrow e^+\nu W^-/e^-\bar{\nu}W^+$	5.09	2.6×10^{7}

Main differences with LHC

Production:

LHC: dominated by the QCD process \Rightarrow large theoretical uncertainties CEPC: pure electroweak process \Rightarrow precise theory calculations

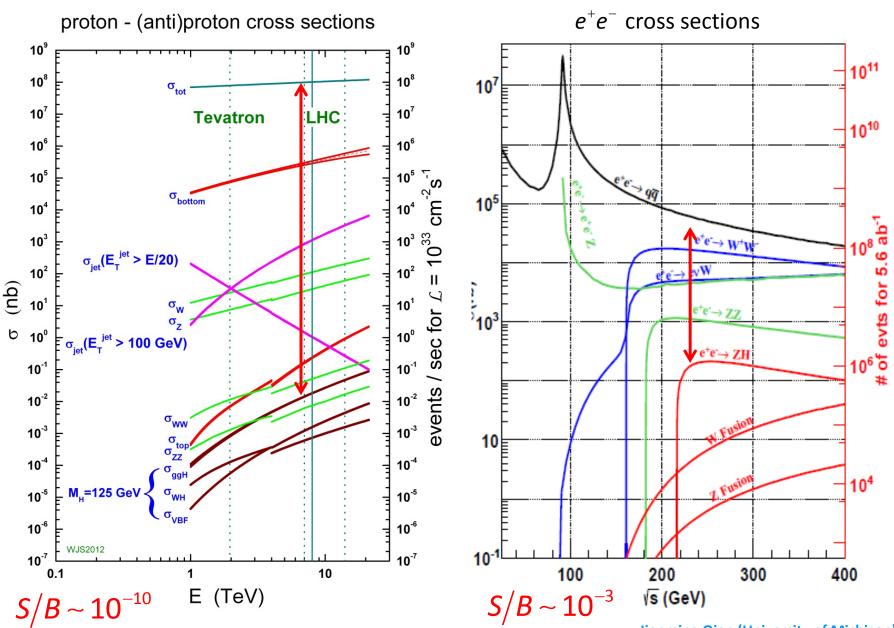
Trigger and identification:

LHC: based on specific Higgs boson decay signatures \Rightarrow measure $\sigma \times BR$

CEPC: Higgs boson decay blinded \Rightarrow measure σ and BR

Environment:

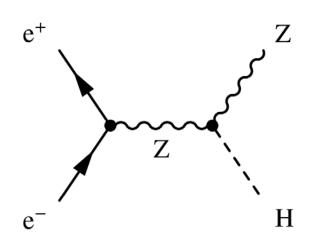
LHC: suffer from underlying event and pileup effects

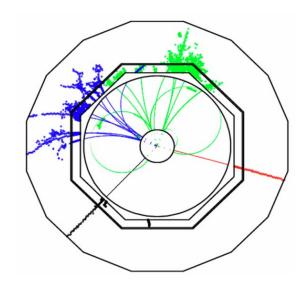

CEPC: clean

Statistics

HL-LHC: ~ 300 million Higgs bosons, recording about ~2%

CEPC: ~ 1 million Higgs bosons, every event is gold


Cross Sections and Initial S/B's



Decay-Blinded Tagging of Higgs Boson

Unique to lepton colliders, the energy and momentum of the Higgs boson in $ee \rightarrow ZH$ can be measured by looking at the Z kinematics

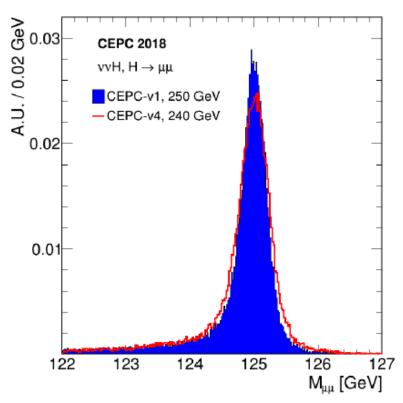
only:
$$E_H = \sqrt{s} - E_Z$$
, $\vec{p}_H = -\vec{p}_Z$

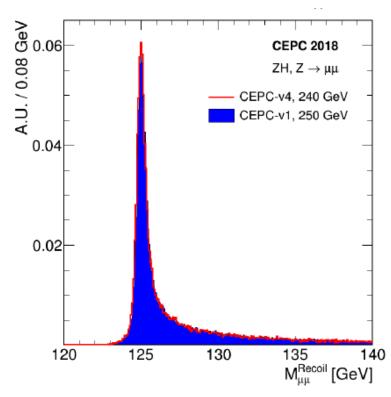
Recoil mass reconstruction:

$$m_{\text{recoil}}^2 = \left(\sqrt{s} - E_Z\right)^2 - \left|\vec{p}_Z\right|^2$$

⇒ identify the Higgs boson without looking at the Higgs boson.

Measure $\sigma(ee \rightarrow ZH)$ independent of its decay! (LHC always measures $\sigma \times BR$)


Simulation Studies


Most of the simulation studies were performed for CEPC-v1. The results were extrapolated to CEPC-v4, the setup for CDR.

CEPC-v1: B = 3.5 T, 250 GeV, 5×5 mm² ECAL

CEPC-v4: B = 3 T, 240 GeV, $10 \times 10 \text{ mm}^2$ ECAL

The largest impact on the performance is the degraded track momentum resolution, Other changes are small. The extrapolation takes into account cross section changes as well.

Accessible Decay Modes

SI	M decay	Acc	essible?
mode	branching ratio	(HL-)LHC	Higgs factories
$H \rightarrow bb$	57.7%	√,×*	✓
H o gg	8.57%	×	\checkmark
$H \rightarrow cc$	2.91%	×	\checkmark
$H \to ss$	2.46×10^{-4}	×	?
$H \to \tau \tau$	6.32%	✓	✓
$H o \mu \mu$	2.19×10^{-4}	\checkmark	\checkmark
$H \to WW$	21.5%	✓	✓
H o ZZ	2.64%	\checkmark	\checkmark
$H o \gamma \gamma$	0.23%	\checkmark	\checkmark
$H o Z \gamma$	0.15%	✓	✓

^{*} Not all production mode.

Limitations: statistics at Higgs factories, trigger and systematics at (HL-)LHC

Final States Studied

$H \rightarrow bb/cc/gg$

Z decay mode	$H \rightarrow b \bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$
$Z \rightarrow e^+e^-$	1.3%	12.8%	6.8%
$Z \! ightarrow \! \mu^+ \mu^-$	1.0%	9.4%	4.9%
$Z \rightarrow q \bar{q}$	0.5%	10.6%	3.5%
$Z \rightarrow \nu \bar{\nu}$	0.4%	3.7%	1.4%
Combined	0.3%	3.1%	1.2%

$H \rightarrow ZZ^*$

ZH final state		Precision
$Z \rightarrow \mu^+\mu^-$	$H \rightarrow ZZ^* \rightarrow \nu \bar{\nu} q \bar{q}$	7.2%
$Z \! o \! u \bar{ u}$	$H \! \to \! ZZ^* \! \to \! \ell^+\ell^-q\bar{q}$	7.9%
Combined		4.9%

$H \rightarrow Invisible$

ZH fi	inal	Relative precision	Upper limit on
state st	udied	on $\sigma \times BR$	$BR(H \rightarrow inv)$
$Z \rightarrow e^+e^-$	$H \rightarrow \text{inv}$	339%	0.82%
$Z \rightarrow \mu^{+}\mu^{-}$	$H \rightarrow \mathrm{inv}$	232%	0.60%
$Z\! o qar q$	$H \to \mathrm{inv}$	217%	0.57%
Comb	ined	143%	0.41%

$H \rightarrow WW^*$

	ZH final state	Precision
$Z \rightarrow e^+e^-$	$H \to WW^* \to \ell\nu\ell'\nu, \ell\nu q\bar{q}$	2.6%
$Z {\to} \mu^+ \mu^-$	$H \to WW^* \to \ell\nu\ell'\nu, \ell\nu q\bar{q}$	2.4%
$Z \to \nu \bar{\nu}$	$H \to WW^* \to \ell \nu q\bar{q}, q\bar{q}q\bar{q}$	1.5%
$Z {\to} q\bar{q}$	$H \to WW^* \to q\bar{q}q\bar{q}$	1.7%
	Combined	0.9%

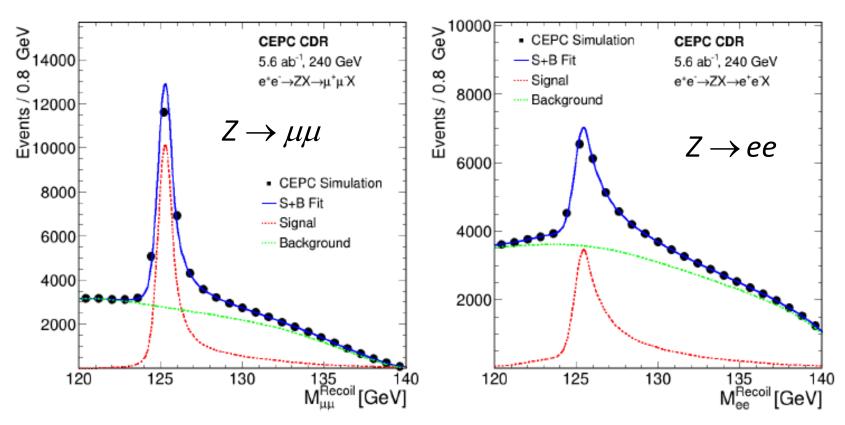
$H \rightarrow \tau \tau$

ZH final state		Precision
$Z \rightarrow \mu^+\mu^-$	$H \to \tau^+ \tau^-$	2.6%
$Z \to e^+e^-$	$H \to \tau^+ \tau^-$	2.6%
$Z \rightarrow \nu \bar{\nu}$ $H \rightarrow \tau^+ \tau^-$		2.5%
$Z \rightarrow q \bar{q}$ $H \rightarrow \tau^+ \tau^-$		0.9%
Combined		0.79%

Other final states:

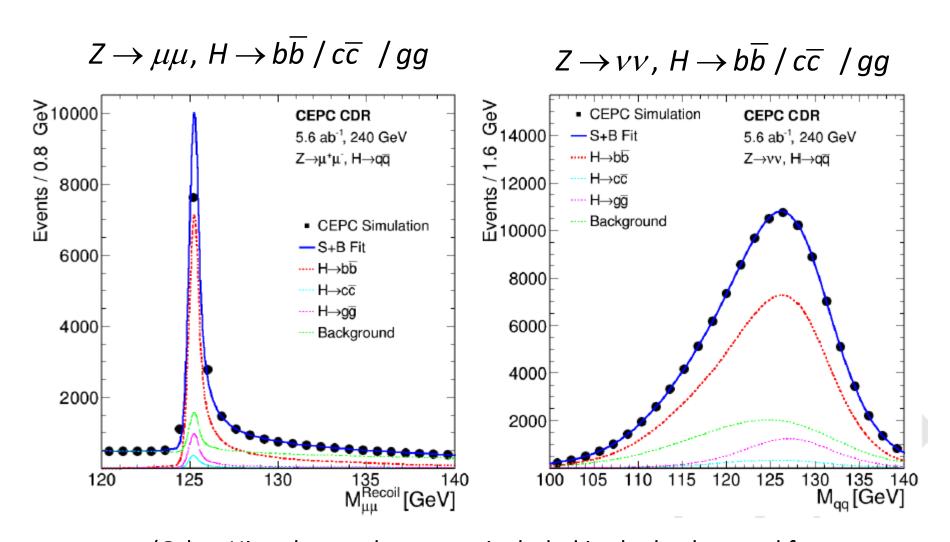
 $H \rightarrow \gamma \gamma$: $Z \rightarrow \mu \mu, \tau \tau, \nu \nu, qq$

 $H \rightarrow Z\gamma: ZZ \rightarrow vvqq$


 $H \rightarrow \mu\mu: Z \rightarrow \ell\ell, \nu\nu, qq$

 $ee \rightarrow vvH \rightarrow vvbb$

A lot final states have been studied, many more remain unexplored...


Recoil mass analyses

Peak position $\Rightarrow m_H$; peak height $\Rightarrow \sigma(ZH)$ (Inclusive Higgs boson decays)

No Bremstrahlung radiation recovery yet, ee channel suffers from the large two-photon background.

Higgs Boson Decay Analyses

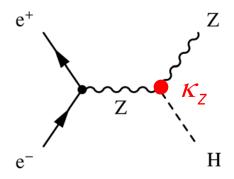
(Other Higgs boson decays are included in the background for individual analyses, but are treated as signal in the combination.)

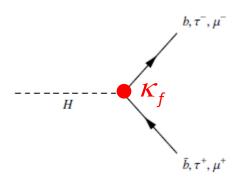
Expected Precision from Combination

Property	Estimated Precision
m_H	5.9 MeV
Γ_H	3.1%
$\sigma(ZH)$	0.5%
$\sigma(\nu\bar{\nu}H)$	3.0%

Statistical uncertainties only, but taking into account correlations among analyses.

Systematic uncertainties are expected to be small, but need studies


Width measurements:


$$\Gamma_{H} = \frac{\Gamma(H \to ZZ^{*})}{BR(H \to ZZ^{*})} \propto \frac{\sigma(ZH)}{BR(H \to ZZ^{*})}$$

$$\Gamma_{H} = \frac{\Gamma(H \to WW^{*})}{BR(H \to WW^{*})} \propto \frac{\sigma(\nu \overline{\nu} H)}{BR(H \to WW^{*})}$$

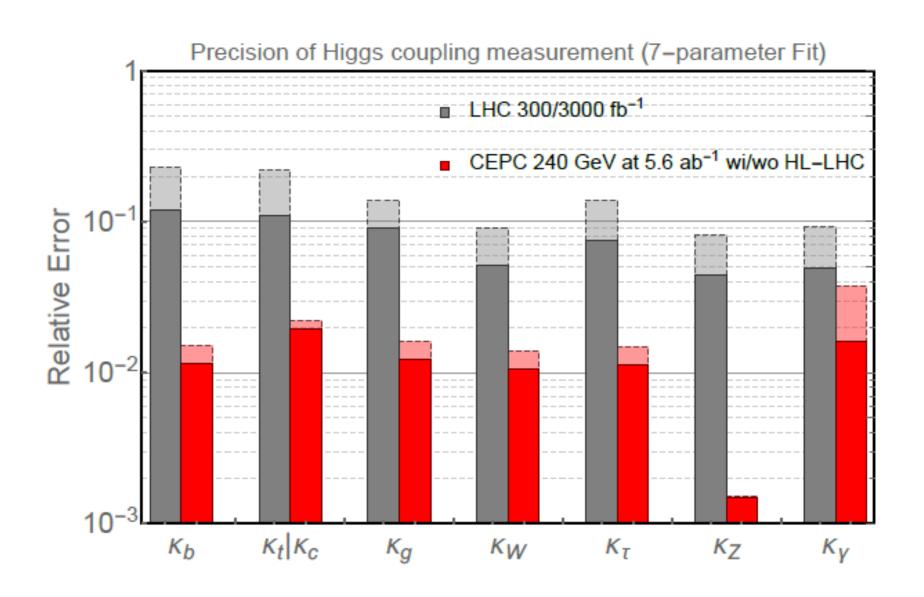
← 95% CL upper limit on BSM contribution

Relative Precision on Coupling Modifiers

$$\sigma(ZH) = \kappa_z^2 \cdot \sigma_{SM}(ZH)$$

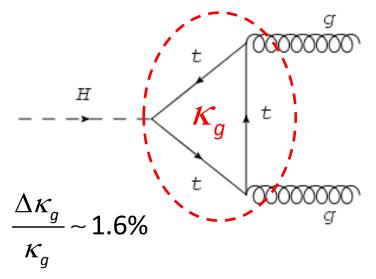
$$\sigma(ZH) = \kappa_Z^2 \cdot \sigma_{SM}(ZH)$$

$$BR_{inv}^{BSM} \text{ shown are 95\% CL upper limits}$$

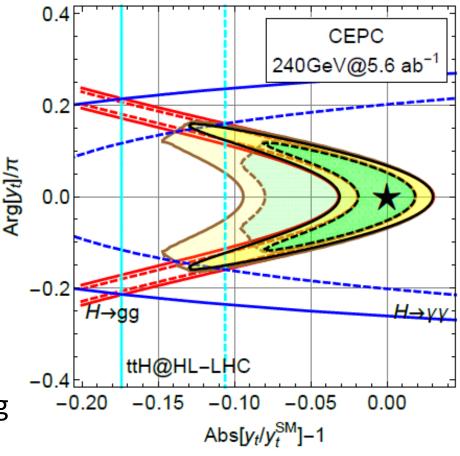

$$BR(H \to ff) = \kappa_Z^2 \cdot BR_{SM}(H \to ff)$$

$$T-\text{parameter fit assumes lepton universality and no BSM Higgs boson decays}$$

Relative percentage precision

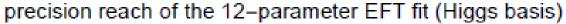

	10-parameter fit		7-parameter fit	
	CEPC	+HL-LHC	CEPC	+HL-LHC
Γ_H	3.1	2.5	_	_
κ_b	1.6	1.2	1.5	1.1
κ_c	2.2	1.9	2.2	1.9
κ_g	1.6	1.3	1.6	1.2
κ_W	1.4	1.1	1.4	1.0
$\kappa_{ au}$	1.5	1.2	1.5	1.1
κ_Z	0.25	0.25	0.15	0.15
κ_{γ}	3.7	1.6	3.7	1.6
κ_{μ}	8.7	5.0	_	_
BR_{inv}^{BSM}	0.30	0.30	_	_

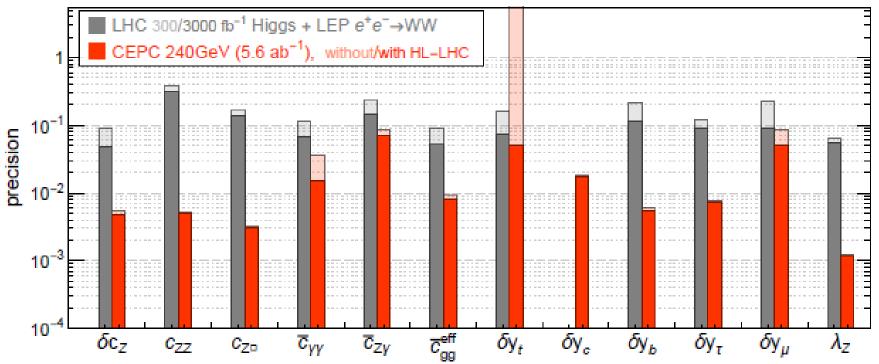
Comparisons with HL-LHC

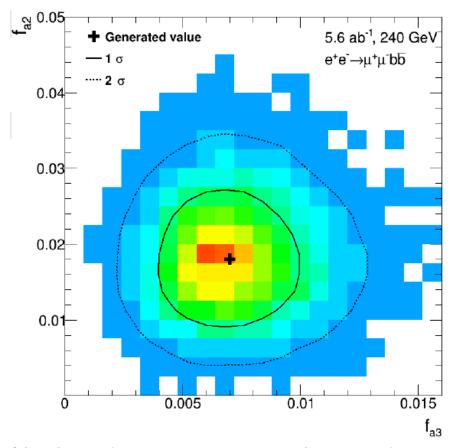


Higgs and Top Coupling

CEPC will be sensitive to the Higgs-Top coupling through the loop $H \rightarrow gg$ decay.




The expected high precision in the coupling measurement can be used to constrain the coupling as well as CP-violating phase


Precision of EFT Fits

A complete set of CP-even dimension-6 operators that contribute to the Higgs boson and diboson measurements, but not to the Z-pole observables, the W mass and fermion dipole interaction

Higgs Boson CP Studies

 f_{a2} : fraction of high-order CP-even contribution due to SM or BSM physics

 f_{a3} : fraction of CP-odd contribution due to BSM physics

 3σ discovery potential from $ZH \rightarrow \mu\mu bb$

$$f_{a2} > 0.018$$
 or $f_{a3} > 0.007$

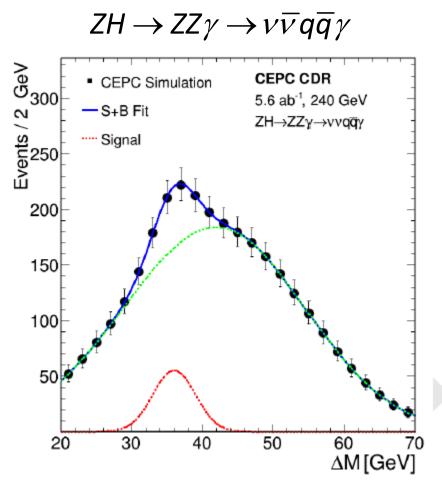
Summary

A preliminary assessment of CEPC's Higgs physics potential has been performed based on the simulation studies of the CEPC conceptual detector.

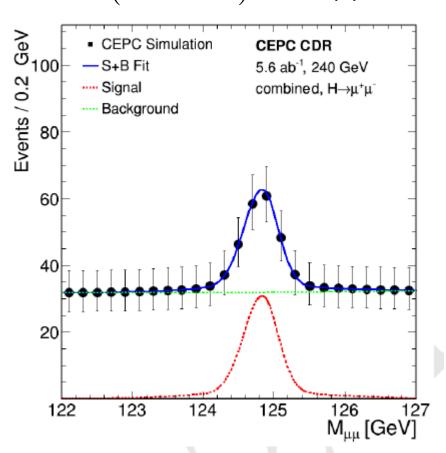
Percent-level precision or better can be achieved for many of the Higgs boson couplings, improving HL-LHC measurements by an order of magnitude in many cases.

More studies are needed to fully understand the potential of the CEPC as a Higgs factory. For some final states, significant further Improvements are expected.

CEPC will open a new frontier in precision physics and can "undress" the Higgs boson as what LEP has done to the Z boson. It has the potential to shed lights on new physics.


Comparison with FCC-ee

Relative precision of Higgs couplings


	CEI	PC	FCC-ee*
	5.6 ab^{-1} ,	240 GeV	$5 \text{ ab}^{-1}, 240 \text{ GeV}$
Correlations	included	ignored	ignored
Γ_H	3.1%	2.9%	2.8%
κ_b	1.6%	1.4%	1.4%
κ_c	2.2%	2.1%	1.8%
κ_g	1.6%	1.5%	1.7%
κ_W	1.4%	1.3%	1.3%
κ_Z	0.25%	0.25%	0.25%
κ_{γ}	3.7%	3.7%	4.7%
$\kappa_ au$	1.5%	1.4%	1.4%
$\kappa_{m{\mu}}$	8.7%	8.7%	9.6%
$BR_{inv}^{\dot{B}SM}$	< 0.3%	< 0.3%	_

 $^{^{\}ast}$ presented at ICHEP 2018

Higgs Boson Decay Analyses

$$Z \rightarrow (\ell\ell, \nu\nu, qq), H \rightarrow \mu\mu$$

$$\Delta M = M(q\overline{q}\gamma) - M(q\overline{q}) \text{ or } M(v\overline{v}\gamma) - M(v\overline{v})$$