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Jet measurement at CEPC

» Separation of W/Z bosons in their hadronic

decays translates into a jet energy resolution
requirement of ~ 30% /NE ( E<100GeV ).
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* Particle Flow Algorithm (PFA) is a very
promising approach to achieving the
unprecedented jet energy resolution of 3%-4%.

— All particles are individually reconstructed.

— Energy/momentum of each particle in a jet is determined
by making use of the optimal sub-detector.

* A highly segmented and full-contained
calorimeter system is required, and combined
with a transparent and high-resolution tracking
system.




PFA calorimeters

Micro
megas

* Analog ECAL options are considered for CEPC.




* A sampling calorimeter consisting of sensitive layers
of either silicon pads or scintillator tiles interleaved
with tungsten absorber layers.

— Tungsten (W): short radiation length, small Moliere
radius, large ratio of interaction length over radiation

length.
— Two detector options from the two sensitive materials:

* Si-W, Sci-W
* Highly segmented both transversely and

longitudinally for excellent particle shower
separation.

* Si-W is taken as the ECAL baseline option.




Design Optimisation (|

 Total absorber thickness = 84 mm
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* Number of sampling layers — 30
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Single photon energy resolution vs. Number of layers and Silicon thickness
Constant absorber layer thickness vs. Varying thickness

Baseline: 30 layers of 0.6mm silicon, 2.1mm W for first 20 layers and
4.2mm for the last 10 layers.




Design Optimisation

e Cell size > 10x10 mm?

Silicon sensor size

Higgs boson mass resolution

(mm) (with statistic error)
5 3.74 £0.02 %
10 3.75 £0.02 %
20 393 £0.02 %

Higgs mass in H—gg vs. cell size

Efficiency
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Di-photon reco. efficiency

Cell size (mm) | Percentage of inseparable photons
1 0.07%
5 0.30%
10 1.70%
20 19.6%

Percentage of inseparable photons
from t decays in Z—17 events
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A Si-W sandwich calorimeter

e Absorber

— 30 layers of W plates: 20 layers of 2.1mm plates
followed by 10 layers of 4.2mm plates.

— 84 mm thick in total (24 X,)
* Active medium

— 30 layers of Si plates, 0.5 mm thick each, divided
into square cells of 10*10 mm? each.




Sensor

* Silicon PIN diodes with high resistivity
— Stable operation
— Uniform response
— Flexible geometry

— High signal to noise ratio

— Costly




Layout and Structure

One cylindrical barrel + two disk-like endcaps
2.028 m in radius, and 5.270 m long.

8 barrel sections: 1 section - 8 staves, 1 stave - 5 modules,
1 module = 5 columns

Each endcap - 4 quadrants, 1 quadrant - 9 columns
Column: slabs integrated into supporting structures
Best possible hermeticity and minimum crack regions
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Numbers of channels

— 17.3 M for barrel, 7.43 M for endcaps

Dynamic range

— 9.6 fC (MIP) - 96pC (EM shower) - 10000
Timing

— ~1ns for 5MIPs with SKIROC. Can be enhanced with

dedicated electronics.
Power consumption

— 5 mW/ch from SKIROC in continuous mode, desirable to
be further reduced.

Occupancy

— Very low, room for ultra-low power electronics design




* Total power consumption
— 124 kW (SKIROC) + 22 kW (DIF) ~ 146 kW
* Active cooling is the baseline cooling scheme,

and a two-phase, low mass CO2 cooling
system is a promising technology option.

* Passive cooling is also considered, but requires
a reduced density of channels.

— May work for ECAL with a cell-size of
20mm*20mm
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Advent of compact photo sensors made this option
possible. Big advantage in cost due to use of scintillator.

Layout and structure quite similar to Si-W

The primary difference is in the thickness of active
layers

— 2 mm thick scintillator
Scintillator read out with SiPM

Explore strip configuration to get a higher effective
granularity

— Have adjacent scintillator strip layers placed perpendicular to
each other




Layout of a Sci-W module

Scintillator strip SiPM
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* More studies required to demonstrate the
effectiveness of the strip configuration




MPPC(p.e.)

SiPM dynamic range
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* A dynamic range of up to ~800 MIPs is required for H—>yy
measurement. This corresponds to ~10000 PEs assuming
15 PEs for a MIP.

* High-pixel SiPM (small pitch, e.g. 10 um, or large-area) is
needed.




SiPM output [p.e.]
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Scintillator Sensitive Unit

Bottom-center: the best coupling of SiPM to scintillator strip.

— Good uniformity

— Possible to employ large-area SiPMs
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ESR is a good reflector film
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* SPIROC chip can be a starting point for SiPM readout

of CEPC ECAL.

— Large dynamic range and good charge resolution

— Sub-ns timing resolution

— Modifications needed to accommodate the CEPC

continuous mode

* A SiPM monitoring and calibration system consisting
of pulse generators, chip LEDs, and notched fibers is

considered.
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Summar

* Baseline PFA ECAL for CEPC
— Si-W, 30 sampling layers
— Absorber layers

« 84 mm thick W (24 X,), 20 layers of 2.1mm W plates +
10 layers of 4.2mm W plates

— Active layers

* 0.5 mm thick Si plates divided into square 1010 mm?
cells

* Alternative option
— Sci-W
— 2mm thick scintilator read out with SiPM




