CEPC ECAL

Jianbei Liu

on behalf of the CEPC calorimeter working group State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

> CEPC CDR International Review Physics & Detector

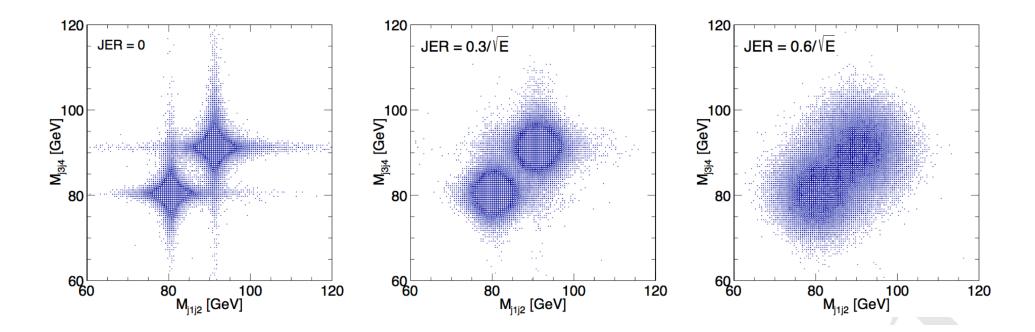
> > IHEP, Beijing September 14, 2018

ECAL CDR Team

• IHEP, China

 – Zhigang Wang, Mingyi Dong, Hang Zhao, Manqi Ruan, Bing Zhao, Tao Hu

• USTC, China

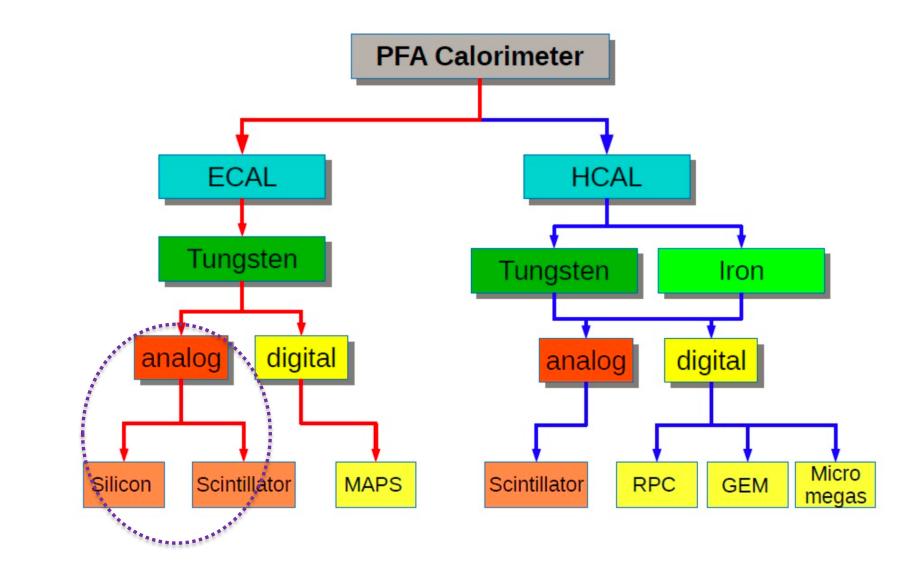

Yunlong Zhang, Yazhou Niu, Shensen Zhao,
Zhongtao Shen, Changqing Feng, Shubin Liu,
Jianbei Liu

• LLR, France

- Vincent Boudry, Jean-Claude Brient

Jet measurement at CEPC

• Separation of W/Z bosons in their hadronic decays translates into a jet energy resolution requirement of ~ 30% / \sqrt{E} (E<100GeV).

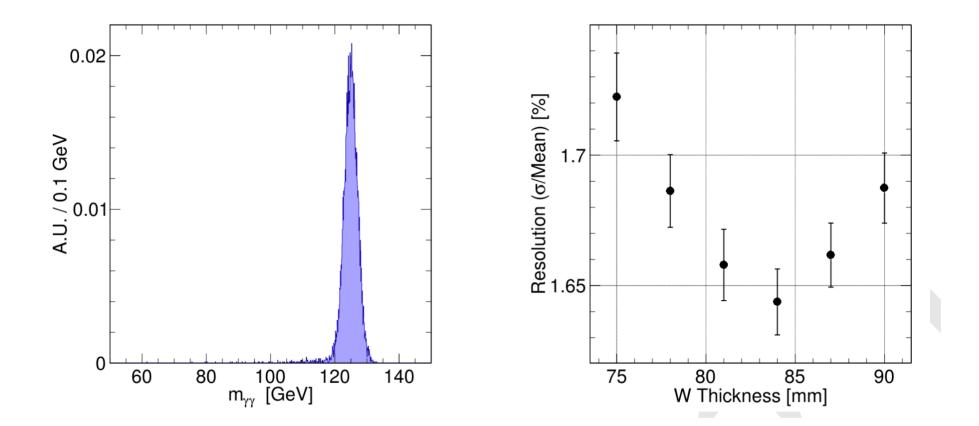


WW \rightarrow 4j and ZZ \rightarrow 4j

Particle Flow Algorithm

- Particle Flow Algorithm (PFA) is a very promising approach to achieving the unprecedented jet energy resolution of 3%-4%.
 - All particles are individually reconstructed.
 - Energy/momentum of each particle in a jet is determined by making use of the optimal sub-detector.
- A highly segmented and full-contained calorimeter system is required, and combined with a transparent and high-resolution tracking system.

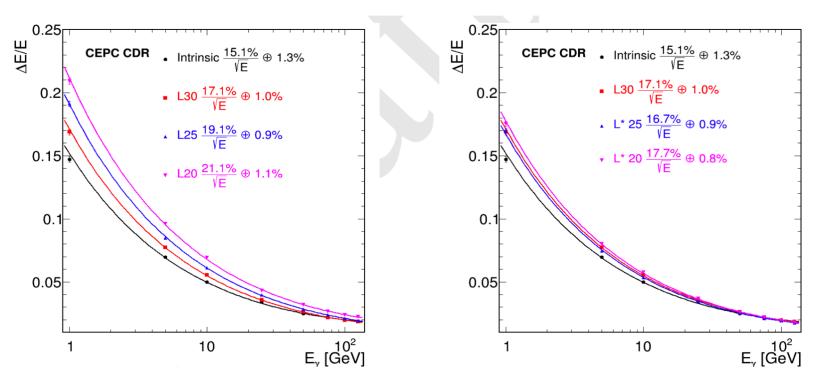
PFA calorimeters


Analog ECAL options are considered for CEPC.

ECAL Design Considerations

- A sampling calorimeter consisting of sensitive layers of either silicon pads or scintillator tiles interleaved with tungsten absorber layers.
 - Tungsten (W): short radiation length, small Moliere radius, large ratio of interaction length over radiation length.
 - Two detector options from the two sensitive materials:
 - Si-W, Sci-W
- Highly segmented both transversely and longitudinally for excellent particle shower separation.
- Si-W is taken as the ECAL baseline option.

Design Optimisation (I)

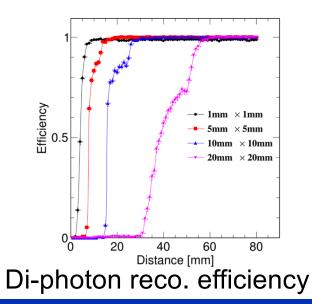

• Total absorber thickness \rightarrow 84 mm

Benchmarked with $H \rightarrow \gamma \gamma$: Higgs mass vs. thickness

Design Optimisation (II)

• Number of sampling layers \rightarrow 30

Single photon energy resolution vs. Number of layers and Silicon thickness Constant absorber layer thickness vs. Varying thickness


Baseline: 30 layers of 0.5mm silicon, 2.1mm W for first 20 layers and 4.2mm for the last 10 layers.

Design Optimisation (III)

• Cell size \rightarrow 10×10 mm²

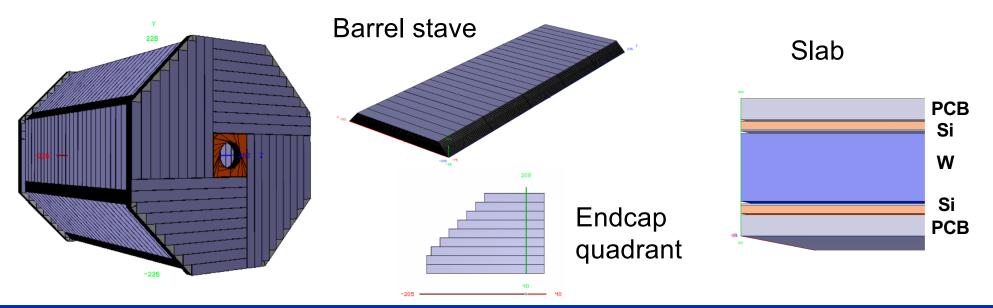
Silicon sensor size	Higgs boson mass resolution
(mm)	(with statistic error)
5	$3.74 \pm 0.02~\%$
10	$3.75\pm0.02~\%$
20	$3.93 \pm 0.02~\%$

Higgs mass in $H \rightarrow gg$ vs. cell size

Cell size (mm)	Percentage of inseparable photons
1	0.07%
5	0.30%
10	1.70%
20	19.6%

Percentage of inseparable photons from τ decays in $Z \rightarrow \tau \tau$ events

ECAL Baseline Design Profile


- A Si-W sandwich calorimeter
- Absorber
 - 30 layers of W plates: 20 layers of 2.1mm plates followed by 10 layers of 4.2mm plates.
 - -84 mm thick in total (24 X₀)
- Active medium
 - 30 layers of Si plates, 0.5 mm thick each, divided into square cells of 10*10 mm² each.

Sensor

- Silicon PIN diodes with high resistivity
 - Stable operation
 - Uniform response
 - Flexible geometry
 - High signal to noise ratio
 - Costly

Layout and Structure

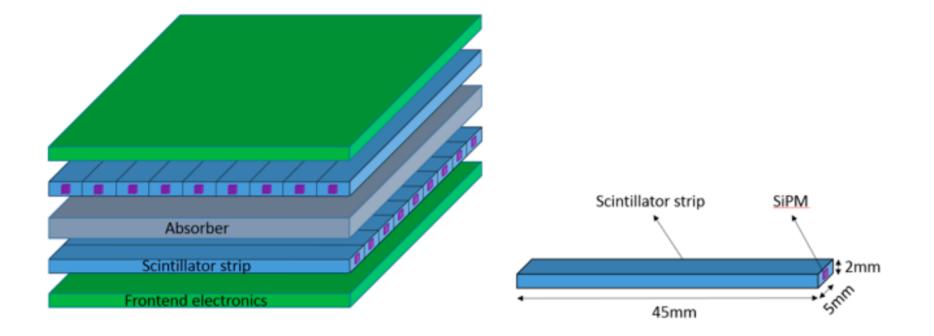
- One cylindrical barrel + two disk-like endcaps
- 2.028 m in radius, and 5.270 m long.
- 8 barrel sections: 1 section → 8 staves, 1 stave → 5 modules, 1 module → 5 columns
- Each endcap \rightarrow 4 quadrants, 1 quadrant \rightarrow 9 columns
- Column: slabs integrated into supporting structures
- Best possible hermeticity and minimum crack regions

Electronics Parameters

- Numbers of channels
 - 17.3 M for barrel, 7.43 M for endcaps
- Dynamic range
 - 9.6 fC (MIP) 96pC (EM shower) \rightarrow 10000
- Timing
 - ~1ns for 5MIPs with SKIROC. Can be enhanced with dedicated electronics.
- Power consumption
 - 5 mW/ch from SKIROC in continuous mode, desirable to be further reduced.
- Occupancy
 - Very low, room for ultra-low power electronics design

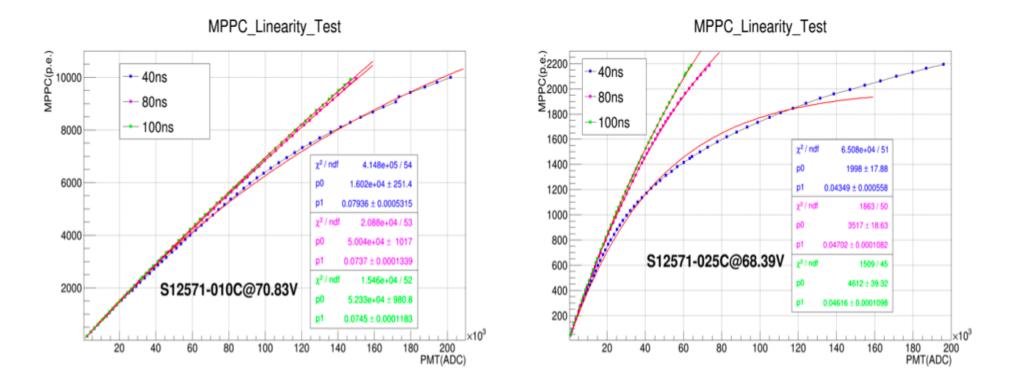
Power consumption and cooling

Total power consumption


- 124 kW (SKIROC) + 22 kW (DIF) ~ 146 kW

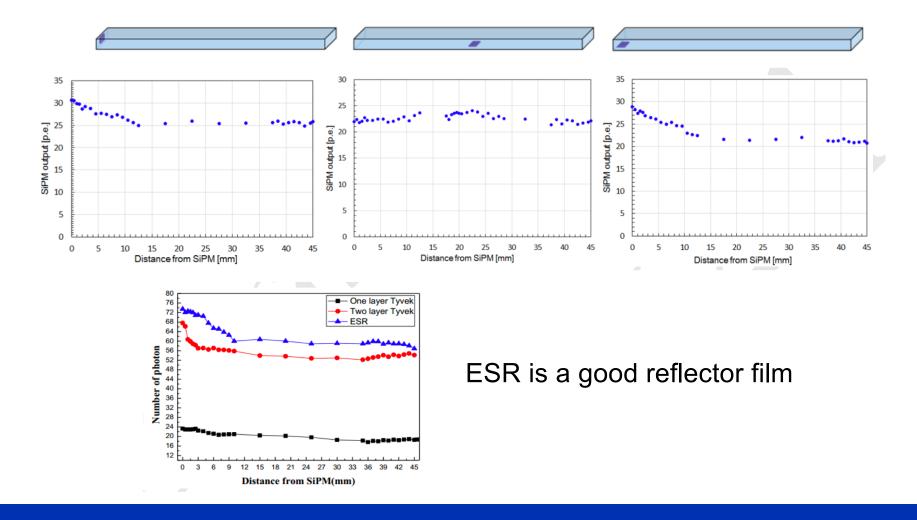
- Active cooling is the baseline cooling scheme, and a two-phase, low mass CO2 cooling system is a promising technology option.
- Passive cooling is also considered, but requires a reduced density of channels.
 - May work for ECAL with a cell-size of 20mm*20mm

An alternative ECAL: Sci-W

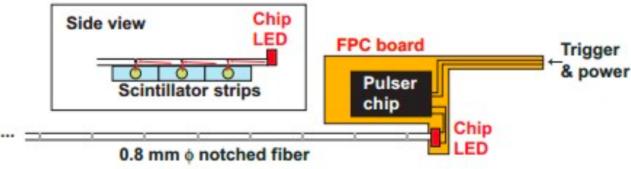

- Advent of compact photo sensors made this option possible. Big advantage in cost due to use of scintillator.
- Layout and structure quite similar to Si-W
- The primary difference is in the thickness of active layers
 - 2 mm thick scintillator
- Scintillator read out with SiPM
- Explore strip configuration to get a higher effective granularity
 - Have adjacent scintillator strip layers placed perpendicular to each other

Layout of a Sci-W module

• More studies required to demonstrate the effectiveness of the strip configuration


SiPM dynamic range

- A dynamic range of up to ~800 MIPs is required for H→γγ measurement. This corresponds to ~10000 PEs assuming 15 PEs for a MIP.
- High-pixel SiPM (small pitch, e.g. 10 μm, or large-area) is needed.


Scintillator Sensitive Unit

- Bottom-center: the best coupling of SiPM to scintillator strip.
 - Good uniformity
 - Possible to employ large-area SiPMs

SiPM Readout and Calibration

- SPIROC chip can be a starting point for SiPM readout of CEPC ECAL.
 - Large dynamic range and good charge resolution
 - Sub-ns timing resolution
 - Modifications needed to accommodate the CEPC continuous mode
- A SiPM monitoring and calibration system consisting of pulse generators, chip LEDs, and notched fibers is considered.

Summary

- Baseline PFA ECAL for CEPC
 - Si-W, 30 sampling layers
 - Absorber layers
 - 84 mm thick W (24 X₀), 20 layers of 2.1mm W plates + 10 layers of 4.2mm W plates
 - Active layers
 - 0.5 mm thick Si plates divided into square 10*10 mm² cells
- Alternative option
 - Sci-W
 - 2mm thick scintilator read out with SiPM