An ultra-light Drift Chamber with Particle Identification capabilities

F. Grancagnolo

INFN – Lecce, ITALY

CEPC CDR International Review

IHEP Beijing, Sept. 14, 2018

Road to IDEA D.C. proposal

- Ancestor chamber: KLOE at INFN LNF Daφne φ factory (commissioned in 1998 and currently operating)
- CluCou Chamber proposed for the 4th-Concept at ILC (2009)
- I-tracker chamber proposed for the Mu2e experiment at Fermilab (2012)
- DCH for the MEG2 upgrade at PSI (under commissioning at PSI)

KLOE Drift Chamber

fully stereo
4 m diameter
3.3 m length
C-fiber structure
90% He – 10% iC₄H₁₀
12,000 sense wires
52,000 total wires
80 μm Al field wires
2x2 and 3x3 cm² cells

MEG2 Drift Chamber

fully stereo 0.6 m diameter 2.0 m length C-fiber structure $85\% \text{ He} - 15\% \text{ iC}_4\text{H}_{10}$ 2,000 sense wires 12,000 total wires $40 \text{ }\mu\text{m}$ Al field wires $0.7\text{x}0.7 \text{ cm}^2$ cells cluster tim/cou

IDEA DCH "Innovations"

- Gas containment wire support functions separation
 - allows to reduce material to ≈ 10^{-3} X₀ for the inner cylinder and to a few x 10^{-2} X₀ for the end-plates, including FEE, HV supply and signal cables (Mu2e proposal design: 1.5×10^{-3} X₀ and 8×10^{-3} X₀, respectively).

Feed-through-less wiring

 allows to increase chamber granularity and field/sense wire ratio to reduce multiple scattering and total tension on end plates due to wires

Cluster timing

allows to reach spatial resolution < 100 μm for 8 mm drift cells in He based gas mixtures (such a technique is going to be implemented in the MEG2 drift chamber under construction)

Cluster counting

allows to reach dN_{cl}/dx resolution < 3% for particle identification (a factor 2 better than dE/dx as measured in a beam test)

IDEA DCH Angular coverage

IDEA DCH Material budget

Conservative estimates:

•	Inner wall (from CMD3 drift chamber)	$8.4 \times 10^{-4} X_0$
	200 μm Carbon fiber	
•	Gas (from KLOE drift chamber)	$7.1 \times 10^{-4} \text{ X}_0/\text{m}$
	90% He – 10% iC ₄ H ₁₀	
•	Wires (from MEG2 drift chamber)	1.3×10 ⁻³ X ₀ /m
	20 μ m W sense wires $4.2 \times 10^{-4} \text{ X}_0/\text{m}$	•
	40 μ m Al field wires $6.1 \times 10^{-4} \text{X}_0$ /m	
	50 μm Al guard wires 2.4×10 ⁻⁴ X ₀ /m	
•	Outer wall (from Mu2e I-tracker studies)	1.2×10 ⁻² X ₀
	2 cm composite sandwich (7.7 Tons)	
•	End-plates (from Mu2e I-tracker studies)	$4.5 \times 10^{-2} X_0$
	wire cage + gas envelope	•
	incl. services (electronics, cables,)	

IDEA DCH Layout

• 12÷15 mm wide square cells 5 : 1 field to sense wires ratio 56,448 cells

 14 co-axial super-layers, 8 layers each (112 total) in 24 equal azimuthal (15°) sectors (N_i = 192 + (i - 1) × 48)

 alternating sign stereo angles ranging from 50 to 250 mrad

IDEA DCH Electrostatic Stability

sagitta due to electrostatic forces on sense wire displaced by Δ from central symmetry position

$$\delta_{e.s.} = \frac{C^2 V_0^2 L^2}{4\pi \varepsilon T w^2} \Delta$$

 $C = \text{wire capacitance per unit length} \quad C = \frac{2\pi\varepsilon}{V_0 = \text{wire voltage}} \\ L = \text{wire length} \\ T = \text{wire mechanical tension} \\ w/2 = \text{wire distance from ground plane} \\ r = \text{sense wire radius}$

stability condition

$$T \ge \frac{\pi \varepsilon V_0^2 L^2}{w^2 \left(\ln \frac{w}{r}\right)^2}$$

For IDEA D.C.:

$$V_0 = 1500 \text{ V, } L = 4 \text{ m,}$$

 $w = 12 \text{ mm, } r = 20 \text{ }\mu\text{m}$:

$$T \ge 0.16N$$

or, for
$$T = 0.25 N$$

($\delta_{arav.} = 400 \mu m$):

$$L \le 4.9m$$

Smaller cell size (to mitigate higher occupancy at inner radius), e. g. w = 7 mm, would require higher tension: $T \ge 0.48 N$, which is at the limit of elasticity for $20 \mu m$ diameter tungsten sense wire ($YS \approx 1500 MPa$):

shorten the wires (and loose angular coverage) and/or increase the wire diameter (and mult. scatt. and $\delta_{\text{grav.}}$) or introduce new types of wires (C wire?) with further improvement of drift chamber transparency

IDEA DCH Expected resolution

Transverse Momentum Resolution

$$\frac{\Delta p_t}{p_t} = \frac{8\sqrt{5}\sigma_{xy}}{.3BR_{out}\sqrt{N}} p_t \oplus \frac{0.0523[GeV/c]}{\beta BL} \sin\theta \sqrt{\frac{L}{X_0}}$$

Angular Resolutions

$$\Delta \varphi_0 = \frac{4\sqrt{3}\sigma_{xy}}{R_{out}\sqrt{N}} \oplus \frac{0.0136[GeV/c]}{\beta p} \sqrt{\frac{L}{X_0}}$$

$$\Delta \theta = \frac{\sqrt{12}\sigma_z}{R_{out}\sqrt{N}} \frac{1 + \tan^2 \theta}{\tan^2 \theta} \oplus \frac{0.0136 \left[\frac{GeV}{c} \right]}{\beta p} \sqrt{\frac{L}{X_0}}$$

Momentum Resolution

$$\frac{\Delta p}{p} = \frac{\Delta p_t}{p_t} \oplus \frac{\Delta \theta}{\tan \theta}$$

no cluster timing, $7x7 \text{ mm}^2$ $12x12 \text{ mm}^2 \le 100 \mu \text{ m}$ cluster timing -> -20%

IDEA expected $\sigma_{xy} \approx 80 \mu m$

IDEA DCH Expected resolution

 σ_{xy} =100 μ m, σ_z =1.0mm, N=112, B=2T, R_{out} =2m, L/ X_0 =2.5×10⁻³

Cluster Timing/Counting

From the **ordered sequence of the electrons arrival times**, considering the average time separation between clusters and their time spread due to diffusion, **reconstruct the most probable sequence of clusters drift times:** $\{t_i^{el}\}$ $i = 1, N_{el}$

For any given first cluster (FC) drift time, the cluster timing technique exploits the drift time distribution of all successive clusters $\{t_i^{cl}\}$ to determine the most probable impact parameter, thus reducing the bias and the average drift distance resolution with respect to those obtained from with the FC method alone.

Particle Identification (in theory)

$$\frac{\sigma_{dE/dx}}{\left(dE/dx\right)} = 0.41 \cdot n^{-0.43} \cdot \left(L_{track} \left[m\right] \cdot P\left[atm\right]\right)^{-0.32}$$

from Walenta parameterization (1980)

versus

$$\frac{\sigma_{dN_{cl}/dx}}{\left(dN_{cl}/dx\right)} = \left(\delta_{cl} \cdot L_{track}\right)^{-1/2}$$

from Poisson distribution

dE/dx

truncated mean cut (70-80%) reduces the amount of collected information

n = 112 and a 2m track at 1 atm give, at best

 $\sigma \approx 4.3\%$

Increasing P to 2 atm improves resolution by 20% ($\sigma \approx 3.4\%$) but at a **considerable** cost of multiple scattering contribution to momentum and angular resolutions. dN_{cl}/dx

 δ_{cl} = 12.5/cm for He/iC₄H₁₀=90/10 and a 2m track give, in principle

 $\sigma \approx 2.0\%$

A small increment of iC_4H_{10} from 10% to 20% (δ_{cl} = 20/cm) improves resolution by 20% ($\sigma \approx 1.6\%$) at only a **reasonable** cost of multiple scattering contribution to momentum and angular resolutions.

μ/π separation at 200 MeV/c (exp.)

The data shown refer to a beam of μ and π at 200 MeV/c, taken with a gas mixture He/iC₄H₁₀=95/5, δ_{cl} = 9/cm, 100 samples, 2.6 cm each at 45° (for a total track length of 3.7 m, corresponding to N_{cl} = 3340, $1/\sqrt{N_{cl}}$ = 1.7%).

Setup: 25 µm sense wire (gas gain 2x10⁵), through a high BW preamplifier (1.7 GHz, gain 10), digitized at

2 GSa/s, 1.1 GHz, 8 bits

(NIM A386 (1997) 458-469 and references therein)

dN_{c}/dx

theory
Poisson distribution
σ = 1.7%
≈ 5σ separation

experiment σ = 2.5% ≈ 3.2σ separation

IDEA DCH expected Particle Id.

Particle Separation (dE/dx vs dN/dx)

Cluster Timing/Counting

Recipe for cluster timing/counting in He based gas mixtures:

FEE: 1 GHz BW, x10 gain (S/N ratio ≈ 8)

digitizer: 2 GSa/s sampling rate, >8 bits

expected results:

 $\sigma_{xy} \approx 80 \ \mu \text{m} - \text{dN}_{cl}/\text{dx} \approx 2.5\%$

IDEA integrated track simulation

Phi Resolution

IDEA integrated track simulation

60 cm, 144 cells prototype

Beam test at PSI last September

Beam test at CERN of a full IDEA slice: drift chamber, pre-shower, D.R. calo. μ -counter.

this week

Conclusions

- We have presented an innovative tracking system for the IDEA detector at CEPC, based on a "ultra-light drift chamber with peculiar particle identification capabilities" using cluster timing/counting techniques.
- It consists of a full stereo, single sense wire, square cells drift chamber:
 - R_{in} = 35 cm; R_{out} = 200 cm; L = 400 cm; 112 layers; 56,000 cells (12 to 15 mm); stereo angles ranging from 50 mrad to 150 mrad; fully efficient down to cosϑ = 0.97;
 - 2% X₀ in the barrel region
 - 5% X₀ (including services) to the end cap region
- Expected spatial resolutions: $\sigma_{r\phi} < 100 \mu m$, $\sigma_z < 1 mm$
- Expected momentum resolutions: $\Delta p/p^2 = 4 \times 10^{-5}$ (GeV/c)⁻¹, angular resolutions: $\Delta \vartheta = 2.0 \times 10^{-5}$ rad and $\Delta \phi = 3.0 \times 10^{-5}$ rad at p=100 Gev/c (with vertex detector and pre-shower)
- Expected π/κ separation > 3σ for p < 850 MeV/c and p > 1050 MeV/c