The sensitivitity expectation of LHAASO on cosmic-ray electron at energy above 1 TeV

Reporter : Wusha Coauthor: Hehuihai, Chensongzhan, Linsujie 2018.10.9

3 Electron-Hadron Separation

4 Result

5 Conclusion

Introduction of high energy cosmic ray electrons

Electrons in Cosmic Ray

The e⁺+e⁻ flux at 1 TeV is approximately **0.1%** of the flux of hadronic particles.

Above several hundred GeV, the

electrons and positrons observed at Earth must originate in Galactic sources < 1 kpc from the solar system.

The measurement of cosmic-ray leptonic

1、Below TeV the electron-positron excess Dark matter or astrophysical sources

2、Cut-off 1TeV cut-off (HESS、VERITAS、DAMPE) a single power law (MAGIC、Fermi-LAT 5GeV-2TeV)

3、Above TeV Local source、interesting structure (Dark matter or astrophysical sources)

Can LHAASO do it ?

HESS 2004 to 2007 Selection criteria :

Only the central 3.0° of the field-of-view was utilized (8.6e-3)sr 239 h of live time~10 days The effective area 5×10^4 m² at 1 TeV 10^{10} hadronic showers were simulated, 10^{-2} of these showers trigger the array, 10^{-6} fall into the regime $\zeta > 0.9$

LHAASO one year simulation:

zenith angles smaller than 30° The field-of-view ~8.4e-1 sr The effective area 1×10^5 m² at 4TeV The rejection efficiency of hadrons is about 1×10^3 at 4 TeV

LHAASO can do it !

Electron:

 $\frac{\text{LHAASO one year}}{\text{HESS 2004 to 2007}} = \frac{365}{10} \times \frac{8.4 \times 10^{-1}}{8.6 \times 10^{-3}} \times 2 \approx 7000$

Background:

 $\frac{\text{LHAASO one year}}{\text{HESS 2004 to 2007}} \approx 7000 \times 10 \approx 70000$

Significance:

 $\frac{\text{LHAASO one year}}{\text{HESS 2004 to 2007}} = \frac{7000}{\sqrt{70000}} \approx 26$

DOI: 10.1103/PhysRevLett.101.261104

2.1. The LHAASO Detectors

• KM2A

5195 EDs(2kHz), 1171 MDs(6kHz) >5TeV (200ns&100m)

• WCDA

150m × 150m , 900 detector(50 kHz) 300m × 110m , 1320 detector

100GeV - 20 TeV

• WFCTA

12 wide-field-of-view Cherenkov telescopes

2.2. LHAASO Detector Simulation

Electron:

100GeV to 1PeV, zenith angles 0° to 60°

reweighted to measurement by AMS/HESS

Gamma-Ray Background:

Galactic plane and potential gamma-ray sources are excluded.

diffuse extragalactic gammas is ignored

Hadronic Background:

proton,100GeV to 1PeV, zenith angles 0° to 60° reweighted to all particle flux derived by Gaisser

2.2. LHAASO Detector Simulation

Bin	1	2	3	4	5			
NfiltW	36-85	85-197	197-458	458-1000	>1000			
Energy (GeV)	405.27	505.88	1334.55	4091.23	15212.81			
Bin	6	7	8	9	10	11	12	13
NfiltE	6-24	24-36	36-54	54-79	79-117	117 - 258	258-567	$>\!567$
Energy (GeV)	3294.61	12383.83	20519.57	34160.11	56838.97	109301.13	365579.25	1465424.0

3.1. Electron-Hadron Separation in WCDA

Selection criteria :

3.1. Electron-Hadron Separation in WCDA

Wenying Liao et al ,2017,ICRC

3.2. Electron-Hadron Separation in KM2A

3.2. Electron-Hadron Separation in KM2A

Electron-Hadron Separation

4.1 Expect the Sensitivity of LHAASO for CREs

$$N_{t,i} = \text{Poisson}(N_{e,i} + N_{p,i})$$

4.1 Expect the Sensitivity of LHAASO for CREs

$$\xi = \frac{\sum N_{e,i}}{\sum N_{t,i}}$$

FCN	ξ	error	sig
5.70	1.71e-1	1.01e-3	1.69e2

4.1 Expect the Sensitivity of LHAASO for CREs

4.2 The expectant anisotropy spectrum of CREs

Suppose $N \pm \triangle N$ is the number of particles

The minimum detectable anisotropy at n sigma is simply

$$\delta_{0,n\sigma} = n\Delta N/N.$$

$$\begin{split} &\mathcal{S}_{e+p} = n / \sqrt{\sum N_{t,i}} \\ &N_e = \xi \sum N_{t,i} \qquad N_p = (1 - \xi) \sum N_{t,i} \\ &\mathcal{S}_e = \frac{N_e + N_p}{N_e} \mathcal{S}_{e+p} \end{split}$$

Kun Fang et al, arXiv:1706.03745v1

4.3 The limits on the annihilation cross section and decay lifetime

$$\frac{d\Phi_{e^{\pm}}}{dE}(E,\vec{x}) = \frac{v_{e^{\pm}}}{4\pi b(E,\vec{x})} \begin{cases} \frac{1}{2} \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right)^2 \sum_{f} \langle \sigma v \rangle_f \int_{E}^{M_{\rm DM}} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(annihilation)} \\ \left(\frac{\rho(\vec{x})}{M_{\rm DM}}\right) \sum_{f} \Gamma_f \int_{E}^{M_{\rm DM}/2} dE_{\rm s} \frac{dN_{e^{\pm}}^f}{dE}(E_{\rm s}) I(E,E_{\rm s},\vec{x}) & \text{(decay)} \end{cases}$$

The profiles of DM :NFW , 0.4GeV/cm³

dE

Propagation arxiv:1701.06149

4.3 The limits on the annihilation cross section and decay lifetime

5 Conclusion

- With high electron-hadron discrimination capability, LHAASO may realize direct measurement of the CREs flux.
- LHAASO would provide a powerful distinction of different scenarios for cosmic ray electrons at energy above 1 TeV.
- LHAASO has the the potential to give limits on the dark matter model.

