Gamma-ray variability analysis from Fermi to LHAASO

Jianeng Zhou(SHAO)

Collaborators:

- Zhongxiang Wang(SHAO), Liang Chen(SHAO), Paul J. Wiita (TCNJ), Jithesh Vadakkumthani(IUCAA), Nidia Morrell(LCO), Jujia Zhang(YNAO)
- Pengfei Zhang(YNU), Dahai Yan(YNAO)

2018/10/10 @ Linzhi

Gamma-ray variability analysis

Fermi large area telescope

Fermi (formerly GLAST): two Instruments

The Large Area Telescope (LAT) 20 MeV - 300 GeV >2.5 sr FoV

The Burst Monitor (GBM) 8 keV – 40 MeV 9.5 sr FoV

Tracker: US, Italy, Japan Calorimeter: US, France, Sweden

Gamma Ray Burst Monitor (GBM): correlative transient observations ~ 8 keV – 30 MeV

Spacecraft

Large Area Telescope (LAT):
~20 MeV --> 300 GeV

the LAT modular - 4x4 array γ 7 ton – 650watts Tracker (4x4 array of towers)

Precision Si-strip Tracker (TKR) 18 XY tracking planes with tungsten foil converters. Single-sided silicon strip detectors (228 µm pitch, 900k strips) Measures the photon direction; gamma ID.

ACD Segmented

Anticoincidence Detector (ACD) 89 plastic scintillator tiles. Rejects background of charged cosmic rays; segmentation mitigates self-veto effects at high energy.

Calorimeter

Hodoscopic Csl Calorimeter (CAL) Array of 1536 Csl(Tl) crystals in 8 layers. Measures the photon energy; image the shower.

Electronics System Includes flexible, robust hardware trigger and software filters.

Stefano Ciprini

Fermi Large Area Telescope third catalog sources map

	Identified	Associated
FSRQ	38	446
BL Lac	18	642
Unknown type	5	568

Fermi All-sky Variability Analysis

Up to now, with 479 weeks data, 4647 flares were detected. 518 sources are identified. 393 of which are blazars...

Abdollahi et al., 2017

"new" gamma-ray sources

Timing analysis

Timing analysis

This is the only case in more than 1700 Fermi detected blazars !!

QPOs on year-long timescale

PG 1553+113 – a 2.18 years QPO

- Intrinsic origin: Pulsational accretion
- Apparent origin: periodically Doppler factor changing

Cause of gamma-ray QPO in blazar - PG 1553+113

Assuming emission originating from a relativistically moving blob, if the emission in the frame of the blob is isotropic, and follows a power-law distribution of the form $F'_{\nu'} \propto \nu'^{-\alpha}$.

To observer, $F_{\nu}(\nu) = \delta_D^{3+\alpha} F'_{\nu'}(\nu)$ [Urry & Padovani 1995] δ_D is Doppler factor.

The relative variability amplitude is derived as: [D'Orazio et al. 2015; Charisi et al. 2018]

$$A = \frac{\Delta F_{\nu}}{F_{\nu}} \propto \frac{3+\alpha}{\delta_D}$$

The ratio between low and high gamma-ray energies is

$$\frac{A_H}{A_L} = \frac{3 + \alpha_H}{3 + \alpha_L}$$

Cause of gamma-ray QPO in blazar - PG 1553+113

Yan et al., 2018, ApJ accepted

Expectation on detecting blazar flares by LHAASO

3FHL SOURCE CLASSES (10

(10 GeV – 2 TeV)

Description	Identified		Associated	
	Designator	Number	Designator	Number
Pulsar	\mathbf{PSR}	53	\mathbf{psr}	6
Pulsar Wind Nebula	PWN	9	pwn	8
Supernova remnant	SNR	13	snr	17
Supernova remnant / Pulsar wind nebula			spp	9
High-mass binary	HMB	4	hmb	1
Binary	BIN	1		
Globular cluster			$\operatorname{\mathbf{glc}}$	2
Star-forming region	SFR	1	sfr	1
Starburst galaxy			sbg	4
BL Lac type of blazar	BLL	19	\mathbf{bll}	731
Flat spectrum radio quasar type of blazar	\mathbf{FSRQ}	30	fsrq	142
Non-blazar active galaxy			agn	1
Narrow-line seyfert 1	NYLS1	1		
Radio galaxy	RDG	4	rdg	9
Blazar candidate of uncertain type			bcu	290
Total	identified	136	associated	1220
Unclassified			unknown	23
Unassociated				177
Total in the 3FHL				1556

360 sources for 2FHL

Ajello et al. 2018, ApJS

Expectation on detecting blazar flares by LHAASO

By Songzhan Cher

Expectation on detecting blazar flares by LHAASO

Rate of excess events with N_{pad} >=100 observed from Mrk421 by ARGO-YBJ

✓ Flares

✓ High energy photons

All benefit from long-term monitoring by LHAASO

Aielli et al. 2010, ApJL

