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1 Introduction

This paper will compare and contrast two methods of parameterizing angular distri-
butions — the helicity formalism and the partial wave formalism. It will then describe
how to express the helicity amplitudes in terms of partial wave amplitudes and vice
versa. Several cookbook formulae will then be derived for angular distributions which
are frequently encountered in CLEO II analyses. Finally, a some examples will be
worked out. One of these examples, section 17.8, provides a clear illustration of how
CP violation can be observed in angular distributions.

The focus of the paper will be on two things: clear definitions of the minimum
of ideas needed to get results and careful exposition of several subtleties, most of
them elementary, which have confused the author in the past. The paper will also
answer the perennial question: “What happened to L and to conservation of J; in
the helicity formalism”. The interested reader can find a much more complete and
much more formal discussion in any of the standard references on the subject|[1, 2, 3].
Of these, the paper by Richman [3] has the most pedagogical approach. As this paper
neared completion another review of the subject has also become available [11]; that
paper includes many details about how to deal with polarized particles.

2 Rotation of Systems with Angular Momentum

Consider the system shown in figure 1. A system with total angular momentum J is
at rest and has a definite third component of J, m, along the z axis. Now perform an
active rotatation of the system by the Euler angles «, 3,7 so that the system now has
the same value of m along the 2’ axis. The operator which performs this rotation is
denoted R(«, 3,7). Following the rotation one can describe the system in either the
rotated basis (quantization axis is 2') or the original basis (quantization axis is z).
The rotation operator changes a basis state in the original basis, [jm), into a linear
combination of basis states in the new basis, |[jm’),
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An explicit representation of these D functions is,
Dym(0, B.0) = €y, (e, 2)

where the functions d’,, () are real and are tabulated in many places. One such
place is in the Particle Data Book on the page which also tabulates the Clebsch
Gordon coefficients and the spherical harmonic functions. In order to use that table
of the d functions one needs the identity,

i (B) = (=1)" "} (B) = Ly (B)- (3)

The domain of the angles is [0, 7] for 3 but [0, 27] for o and . Another important
property of the D functions is the orthogonality relation,

: . 872
/Dfn;(aﬂ’y)Dﬂn,n,(aﬁ'y)da dcosBdy = 7_7T 071 Ot Ot - (4)
27+1
Also, some of the D functions can be expressed in terms of the familiar spherical
harmonic functions,

20+1

Y"(0,9) = TDﬁz*o(@@,V)- (5)

Finally, the rotation matrices are unitary, R~! = R.

3 The Parital Wave Basis

Consider the decay 1 — 2 3. The particles have spins (sy, 2, s3) and spin components
(m1, ma, mg) along some quantization axis. For the purposes of this paper, the
quantization axis may be chosen arbitrarily and it will be chosen as the direction of
particle 1 in the lab frame. This direction is not changed by a boost from the lab
frame to the rest frame of particle 1. So, if particle 1 has helicity A; in the lab frame,
it will have a spin component m; = \; along this axis in its own rest frame. In
order to discuss the angular distributions in the decay of particle 1 it is necessary to
construct a coordinate system. This system is defined in the rest frame of particle 1
and has its z axis along the spin quantization axis of particle 1. For the time being
it will not be necessary to carefully define the  and y axes, except to say that z, 9, 2
form a righthanded orthonormal basis.

Consider an initial state in which particle 1 is at rest with some definite value
of my. Following the decay 1 — 2 3, one can measure the direction of particle 2
and the spin components of particles 2 and 3 along the z axis, mo and m3. When
all three particles are long lived, known as the narrow resonance approximation, this
fully specifies the final state. When the some of the particles are short lived then
P2 = |Pa|, measured in the rest frame of 1, is also needed to completely specify the
final state. As is usual for spin components, ms and m3 are defined, respectively, in
the rest frames of particles 2 and 3. The direction of the momentum of particle 2 is
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Figure 1: Rotation of a particle with Spin.

specified in the rest frame of particle 1 by the angles, Q2 = (0, ¢). The orbital angular
momentum of the final state particles, L, can be any of the values allowed by the
selection rule,

—

§i = L+8+5. (6)
If parity is conserved in the decay there is a second selection rule,

m = 772773(_1)L7 (7)

where 7; is the intrinsic parity of particle 7. This decay is shown schematically in
parts a) and b) of figure 2. Part a) of the figure shows the z axis and the initial state
with definite my. Part b) shows the final state in the partial wave basis; particle
2 travels along the direction (6, ¢) and the three angular momenta, si,s,, and L,
are quantized along the z axis. Conservation of angular momentum tells us that
m; = mo +mg+myg.

In the general case, the decay may proceed through several different partial waves
and the amplitude is given by any text on elementary quantum mechanics as,

APW(Q;mlam2am3) =

> Csyss(s mg;my ms) Cp g(sima;mpmy) Y7 (Q) M(L, s). (8)
L,s

In the above, the quantities M (L, s) are known as the partial wave amplitudes and the
quantities lejg (jm;mymy) are Clebsch-Gordon coefficients. These Clebsch Gordon
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Figure 2: Schematic diagram of the decay 1 — 2 3. Unless otherwise stated all
quantities are defined in the rest frame of 1; a) initial state; b) final state in the
partial wave basis. Here my and mjs are defined in their respective rest frames; c)
final state in the helicity basis.

coefficients enforce the conservation of the third component of angular momentum,
ms = my + mg and my = my; — my — m3. When all of the particles are long lived
the partial wave amplitudes are simply constants but, when some of the particles
are broad resonances, they are functions of py. Often this momentum dependence is
adequately approximated as being pl. The angular distribution is given by,

dr

il — Ao (e . ) |2
A my mms | Apw (S my, Mg, m3)|

= X {08283(3 mg;my m3) Csysy (s’ me;mg ms)
L,L’,s,s’
Crs(s1my;mpmy) CL/S/(slml; mmg) (9)

Y[ (Q) M(L,s) Y™ () M*(L',5')}

Here m;, = mp = my —my — mg3, mg = my = mq + my and the subscripts on the left
hand side denote quantities which are fixed. Notice that the sum over different partial
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waves is coherent; that is, there is no measurement one can make on the final state
particles which can be used to determine, on an event by event basis, through which
partial wave the decay went. Also, because mj = mys, this angular distribution has
no ¢ dependence.

For most decays, the partial wave amplitudes are unknown quantities which can be
measured. In a wavefunction model of decays, they are overlap integrals of momentum
space radial wave functions. In some cases, such as leptonic 7 decays, they can be
calculated from the Electroweak lagrangian.

Finally, it is important to reiterate one important bit of physics which might have
been lost in the above construction: the angle 6 is defined with respect to the the
spin quantization axis of particle 1, not with respect to some arbitrary “z axis”. In
up coming sections the physical meaning of ¢ will become clear.

4 The Helicity Basis

Now consider the same initial state as discussed above, particle 1 at rest with a
definite value of m;. However, in this case, the measurements made on the final
state particles will be the direction of particle 2, again specified by €2, and the two
helicities, Ay and A3. These dynamical variables also fully specify the final state but
they specify a final state which is distinct from that described in the previous section.
All quantities in this basis are defined in the rest frame of 1, whereas, in the partial
wave basis, the quantities mo and ms were defined, respectively, in the rest frames of
particles 2 and 3. Figure 2 shows, schematically, the difference between the helicity
basis and the partial wave basis. Parts a) and b) of the figure were discussed above.
Part c¢) shows the final state in the helicity basis; particle 2 makes the same angles
as before, (0, @), with the z axis but the quantization axis for the angular momenta
has changed. It is now the direction of particle 2. ( Actually particle 3 is quantized
along its own direction of motion but this is not really a new quantization axis, just
an additional sign convention.) The orbital angular momentum, L=7x p, must be
perpendicular to p; and, therefore, its component along the quantization axis is zero.
Therefore the final state has a component of angular momentum along the direction
of particle 2 of Ay —\3. Because the decay conserves angular momentum, the final
state has a total angular momentum of s;. Again the physics is that the angle 6 is
defined with respect to the spin quantization axis of particle 1.
Following reference [3], the amplitude, in the helicity basis, for the above process
is,
AH(Q; m1)\2/\3) = 2ot lel N (¢a 97 _¢) A/\Z/\s' (10)

4'/T m1A2—A3

Here the quantity A,,»,, known as the helicity amplitude, describes the strength of
this configuration compared to other configurations of helicities. The choice of v = —¢
is conventional and follows the use of [1] and [3]. In the following the argument of
the D function will be written simply as €2 and should be understood as a shorthand

for (QS, 95 *(ﬁ)



As the notation implies, there are (2so 4+ 1)(2s3 + 1) helicity amplitudes but not
all are independent. Conservation of angular momentum requires,

A2 — A3| < 51 (11)
If parity is conserved in the decay,

Ay = mipns(—1)2T0 A, (12)

In the end, there are exactly as many independent helicity amplitudes as there are
independent partial wave amplitudes. As will be shown in section 7, helicity am-
plitudes and partial wave amplitudes are simply linear combinations of each other.
When some of the particles are broad resonances, the helicity amplitudes will depend
on po. Because the partial wave amplitudes can often be approximated as being pro-
portional to p%, the helicity amplitudes can often be approximated as a power series
in po.

As in the partial wave basis, the angular distribution is found by squaring the
amplitude,

dl’ 251+ 1, 2
@ Ao = 47T “D’r)’11)\2—)\3 (¢7 07 —¢)‘ |A)\2)\3 |2 °
TM1A2A3
(13)
281 +1 s
= 4,“_ | TTtlAg—Ag (0)|2 |A>\2)\3 |2'

This is a much simpler form than is equation 9; in particular there are no coherent
sums. Also, there are no free parameters needed to describe the shape of this distri-
bution. Equation 9, on the other hand, depends on many parameters, the relative
magnitudes and phases of the partial wave amplitudes. An interesting consequence
of this is shown in example 17.4. Finally, equation 13, like equation 9 has no ¢
dependence.

Now, integrating equation 13 over () gives,

FM1)\2)\3 = |A)\2)\3|2' (14)

This makes clear the meaning of the helicity amplitude: its magnitude squared is
simply the decay rate into a final state with the specified helicities.

As mentioned earlier, the two final states shown in figure 2 are different and will
not, in general, have the same angular distribution. However, when one sums over
final state spins, the two final states are identical and they must, therefore, have the
same angular distribution,

dr dr’
e (15)
dQ mi )\2>\3 dQ ml)\gAs

_
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And, the total decay rate must also be the same in both bases,

r = Z|A/\2/\3|2 (16)

A2A3

= Y IM(L,s)]*.
Ls

These expressions do not depend on my, which is expected because the decay rate of
a free particle should not depend on which way its spin vector is pointing. To simplfy
the notation, the angular distributions will be denoted,

1dl’

5 What happened to Conservation of J,?

Now, how does conservation of angular momentum enter into this? Consider the
specific example of a W~ boson, at rest, which has m = +1 along the z axis. Let
it decay to e 7, and let the angles (6, ¢) be defined by the electron direction. In
figure 2 c), this corresponds to 1 = W™, 2 = ¢~ and 3 = 7,. In the limit that the
mass of the electron can be ignored, the final state will have a left handed electron
and a right handed anti-neutrino. The component of orbital angular momentum along
the electron direction is 0. This configuration is an eigenstate of J = Jy = 1 with a
component m = —1 along the the electron direction. When the electron is emitted
along the z axis, the quantization axes for the initial and final states are identical and
one can easily check conservation of angular momentum. The initial state has m =1
and the final state has m = —1 so the amplitude must vanish. When the electron
is emitted along the —z axis, the final state has m = 1 along the 42z axis so the
amplitude may be non zero. Moreover the overlap between the initial and final state
m is unity when the electron is emitted along the —z axis. Since unity is the largest
value for such an overlap, the most probable angle at which to emit the electron must
be along the —z direction.

When the electron is emitted at a general angle, (6, ¢), one must decompose the
final state in a basis in which spins are quantized along the original z direction.
This is done by using the inverse of equation 1. The amount of m = 1 basis state
in this decomposition is just, D;{%W/\S*_AF (6,0, —¢) = D} * (4,0, —¢). For simplicity,
consider the case that ¢ = 0 for which the amount of m = 1 basis state is just
d} ,(0) = (1 —cosf)/2. This function agrees with the limiting cases just discussed:
it vanishes when ¢ = 0 and is maximal when 6 = 7.

When one includes the electron mass in the above example, there will be a second
allowed configuration of final state helicities, a right handed electron and a right
handed anti-neutrino. This configuration has a component of m =0 along the electron
direction. Clearly this configuration must have zero amplitude when # =0 and when
0 =m. Again, one can decompose the final state in a basis in which J is quantized
along the z direction. The amount of m = 1 basis state in this decomposition is,
DY (9,0, —¢). For ¢ = 0, this function is — sin §//2, which agrees with the limiting
cases.



6 Spin Density Matrix

In the above two examples the intial state has always been prepared with a definite
value of m; and it has not been important to distinguish between m; and A\;. For
reasons which shortly will be come apparent, the following discussion will use A;.
Consider the case when the particles 1 are produced via the process,

ete” > 1X

L 93, (18)

Here X may be a single particle, many particles or even no particles. In cases that
X is more than a single particle, there are no measurements which can be made on
the initial and final state particles which will allow, on an event by event basis, a
measurement of A\;. In these cases the amplitude must contain a coherent sum over
A1. In the general case the amplitude will also depend on the lab direction of particle
1, on the spins and momenta of the initial state particles and on the degrees of freedom
needed to describe X. In order to discuss the structure of the amplitude for the above
process, the dynamical variables of the problem will be broken into 4 groups.

1. The quantities involved in the decay of 1; that is 2, A1, Ay and As.

2. All of the other continuous variables (angles and momenta). These will be
denoted by ©.

3. Those of the remaining spins which need to be summed incoherently. This
includes the spins of the inital state particles and the remaining final state
particles. These will be denoted by M.

4. All of the remaining spins - these need to be summed coherently and will be
denoted by N.

In treating the above process one other assumption is usually made: that the
decay products of X do not interfere with the decay products of 1. Here “interfere” is
used in its QM sense. The decay products of X may certainly affect how the detector
responds to the decays of 1 but that is a separate issue. With this assumption one
can write the amplitude for the above process as,

A = Y P(6; M)A M A )s), (19)

A1

where the symbol P stands for all of the messy dynamics of both the production of
the system (1 X) and the decay of X. Among other things, it will contain a coherent
sum over N. The differential decay rate is obtained by squaring the amplitude and
summing over spins,

Al =
S [P M)A M) P(6; MX) A N Az)s)

AN, A2 A3 M



(20)
= 3 A AN [PH(S; M) P(6; M) A N Ao)s) d.

)\1)\’1/\2/\3M

Here d® represents an element of Lorentz invariant phase space. Notice which sums
are coherent and which are incoherent. In order to calculate the angular distribution,
I(€2), one must integrate out all of the other continuous dynamical variables and sum
over all of the spins in the problem. In the above form, the dependence on all of the
uninteresting variables (é, M, N) is contained entirely within the square brackets. It
is common to define the spin density matrix of particle 1 as,

1 g — —
pr = = [ S P (6 MA)P(6; MX;)ab, (21)
M
where the production cross-section of particle 1, o, is given by,

o = / S PH(6; M) P(S; MA,)d6. (22)

MM

By construction, pyy is Hermitian and has a trace of 1. Also, if the production process
is parity conserving [2],

pv = (=DM Yposn (23)
With this definition, the angular distribution becomes,

1

)\1)\'1)\2/\3
12s + 1 s1 % S1 *
= f 1]:71_ Z DAl /\2—/\3 (Q) A)\z)\g p>\1/\’1 D)\,l }\2—>\3 (Q) A)\QAB‘

AL A2 A3

In most cases at CLEO II one should regard the spin density matrix as simply a
matrix of unknown constants which are either interesting to measure, if one wants to
study production dynamics, or a nuisance to measure, if one wants to study decay
dynamics. Finally, if the off diagonal elements of p are non-zero, then I(Q) will
depend on ¢. In this case one must ensure that the x and y axes are defined in a way
that is consistent with the definitions used to define the spin density matrix.

need a proper discussion of the meaning of ¢

Now that the spin density matrix has been defined, one can properly define the
terms alignment and polarization. A state is said to be polarized if for at least one
value of A1, px,n; # P-r, -, This requires parity violation in the production process.
An example of a polarized state is a spin 1 particle with p; # p_1 1. A state is said
to be aligned if it is unpolarized but there is at least one pair of diagonal elements,
(A1, A, AL # £A)), for which py,x, # pax,. An example of an aligned state is a spin
1 particle for which, p1; = p_y -1 # poo. If a spin 1/2 particle is unpolarized it is also
unaligned.



It is not necessary to quantize the spin of particle 1 along its direction in the lab
frame. It is only required that the spin quantization axis be the same in the defintion
of the decay amplitude as it is in the definition of py, y,. Because, in this paper, the
spin quantization axis of particle 1 was chosen as being along the direction of particle
1 in the lab, the indices on p are indeed A, not some generic “m”. Alternatively, one
could, for example, quantize s; along the positron direction. In this case the above
formalism can be repeated with three simple changes: the spin density matrix now
refers to spin components along the new quantization axis, the angles (6, ¢) are now
defined relative to the new quantization axis and relation 23 no longer holds. However
parity conservation will then lead to some different relationship among the elements
of p [2].

Finally, when the system X in equation 18 is either no particles or a single particle
it is possible to make measurements on the initial and final state particles which
determine, on an event by event basis, the helicity of particle 1. In these cases the
sum over \; will be incoherent. An example of such a case is the process ete™ —

vt

7 Jacob Wick Transformation

In the preceeding sections, the decay 1 — 2 3 has been described in two different
bases. In this section the transformation between the bases will be derived.

Consider the decay 1 — 2 3 when © = (0,0) and m; is fixed. In this case the
quantization axes for the final state particles are the same in both the partial wave
basis and helicity basis. Therefore the final states are identical and the two approaches
must give the same amplitude. Also Ay = my and A3 = —mg3. Therefore, we can set
equations 8 and 10 equal to each other and obtain,

281 + 1 s1 %
e D, 3, -2,(0,0,0) Ay, =
Y Csys5(s mg;mamsg) Cp g(simy;mpmy) Y'(0,0) M(L, s), (25)
Ls

where mg; = mgy + m3 = Ay — A3 and my = m; — m,. Now,

D81 * (07 07 0) _ { 07 mq ?é AZ - AS

A L, my =X — A

(26)

0, mrp, 75 0

Y(0,0) = 2L + 1
, mp = 0.
4
Therefore,
2L+1

A)\2>\3 = Z 231 1 03233 (S ma; )\2 —)\3) CLS(Slml; 0 ml) M(L, 8). (27)

Ls
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This can be inverted to give,

251+1

M(Ls) = \5r

Z 03233(8 my; )\2 —)\3) OLS(Slml; 0 ml) A)\Q)\S, (28)
A2A3

where the sum runs over all values of Ay and A3, not just over the independent
combinations.

8 Sequential Two Body Decays

Now consider the decay,

1 = 23

L 45, (29)

In order to describe the second decay, one must first construct a new coordinate
system in the rest frame of particle 2. This will be called the primed coordinate
system. For the helicity basis, one first rotates the unprimed axes by R(¢,0, —¢),
which rotates the z axis onto the flight direction of particle 2. Then this system is
boosted to the rest frame of 2 to define the primed coordinate system. In short, 2’ is
along the direction of 2 in the rest frame of 1, while 2’ and 3 are uniquely defined by
the formal procedure just given. The axes, (2,9, 2’) form a righthanded orthonormal
basis. This coordinate system was chosen so that, if particle 2 has helicity s in the
rest frame of 1, it will have a spin component in its own rest frame of my = Ay along
the 2’ axis. The partial wave basis will be discussed later.

The angles ' = (0', ¢') are defined by the direction of particle 4 in the primed
coordinate system. Again this means that the angle 6’ is defined with respect to the
spin quantization axis of particle 2. In the helicity formalism, the amplitude for the
above process is,

A(Q QIJ )\1) )\37 )\47 )\5) =

(251 +1) (22 +1) - 5o
\/ A A7 Z D)\ll)\zf/\g (Q) A/\2)\3D>\;>\4—)\5 (Ql) B/\4>\5' (30)
A2

Here B,,,, are the helicity amplitudes of the second decay. Notice that the sum over
A is coherent. It must be emphasized that if one changes the definition of the primed
coordinate system, then form of the amplitude must also change. In this sense there
is no freedom in selecting the coordinate system; it is fully specified by the formalism.
Again the angular distribution is obtained by squaring the amplitude and summing
over spins,

’ 1 281 —+ 1 282 + 1
I(Q2. Q) = / 1
@) = = A/\%‘ N pml{ (31)
1\ N2
A3 A4 A5

D3y 3, () D3t 0, () Al A D () D3, () B:4A5BA4A5.}
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While this expression may appear daunting, it is simple compared to the corre-
sponding expression in the partial wave basis. In the partial wave basis, the decay
1 — 2 3 produces particle 2 in its rest frame with a definite value of ms, along the
quantization axis of 1. One must then express this state in terms of basis states with
definite values of my along the axis z’ and then the calculation proceeds as above.
This introduces a new coherent sum into the amplitude, which already contains co-
herent sums over my and over the partial wave amplitudes of both decays. Constrast
this with equation 30 which has only one coherent sum. As a result, if one wishes to
obtain the angular distribution in the partial wave basis, it is often simpler to calcu-
late it the helicity basis and then to use the Jacob Wick transformation, equations 27
and 28, to convert it to the partial wave basis. An example of this is in section 17.4.

There is a second way to look at the partial wave basis. One can define the primed
axes as being at rest in the rest frame of 2 and parallel to the unprimed axes. Again
the direction ' is defined by the direction of particle 4 in this frame. Again this
means that ' is defined with respect to the spin quantization axis of particle 2. This
definition of €' is different from the one described above so the resulting angular
distribution will be different, even after sums over spins. With this definition, the
component of the spin of particle 2, my, is the same along both the z axis and the
2" axis. Therefore the extra coherent sum described in the previous paragraph is no
longer needed. Nevertheless the amplitude has three coherent sums whereas there is
only one in the helicity formalism. There are probably cases for which the second
definition of €' leads to simpler forms of the final equations. However the author is
not aware of any examples.

Now consider the term in the braces in equation 31. The part of this term which
depends on ¢ and ¢’ is,

el =X)6 iAo —X5) (¢ —¢) (32)

This is multiplied by a product of d functions which depend only on 6 and #'. It is
common to define y = ¢ — ¢ and to make change of variables so that the amplitude
depends on (6,6, ¢, x). The Jacobian of this transformation is -1, an unmeasurable
phase. The above definitions imply that x is just the angle between the production
and decay planes of particle 2, as measured in the rest frame of particle 2.

The measurement of all of the unknown parameters in equation 31 requires a
tremendous amount of data, probably thousands of almost background free events
for the case that s; = sy =1, s3 = s, = s5 = 0. However one can reduce the number
of observables to a manageable number by integrating out some of the angles. There
are three useful tricks when doing this: an integral over ¢ brings in a factor of dy, ,
an integral over x brings in a factor of dy,y, and there is the orthogonality relation,
equation 4.

Using the orthogonality relation on equation 31 gives the angular distribution in

1 (2554 1)
Fl FQ 4

Q) = > oD () Ao [Bans|” (33)

A1A2A3A1 5
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1 (282 + ]_) .
- r,r 4 IVZ ,0,\1,\1-| Z |d)\%z)\4*)\5 (91)‘2 |"4/\2/\3|2 |B>\4/\5|2
R b | raramons

This function has no dependence on ¢' and the trace of the spin density matrix is 1.
So the angular distribution in 6’ is,
1 2s9+41

10) = —="5— % | @F Al B (39
1t2 A2A3AgAs

It is interesting that this distribution does not depend in any way on the alignment
of the initial state. This occurs because, as remarked earlier, the helicity amplitudes
are independent of A;.

Similarly, one can use the orthogonality relation to integrate out the dependence
on €. This recovers equation 24.

Finally, the one can integrate out ¢ and x from equation 31,

1(0,0') = (35)

1 281 +1 282 +1 s s
P/\lAl‘dxllA2f>\3(9)|2 |d>\22,\47>\5(0’)|2 |A)\2)\3|2 |BA4A5|2-

[y Ty 2 2 A1 A2A3A4 5

9 Experimental Caveat

When the orthogonality relation was used to obtain equation 34, an unspoken as-
sumption was made, that the detector acceptance is flat in Q. If it is not, then I(¢')
will depend on the alignment or polarization of the initial state in a complicated way.
Moreover, one must be very careful with the common practice of cutting on cos# in
order to reduce backgrounds. In general, if one cuts on cos #, then the integral over
Q will leave I1(€') dependent on p. However, in some cases an integral over cos
in either of the domains [—1,0] or [0, 1] will also remove the dependence on p. In
these cases one can cut at cos = 0 and extract the helicity amplitudes using half of
the available data. This is a useful trick for the common situation that the detector
acceptance is flat over most of cos@ but dips near one of cosf = +1. This cut will
work either when the decay 1 — 2 3 is parity conserving or when it has only one
independent amplitude.

10 Real or Complex?

When a process is time reversal invariant, and when some other conditions hold, the
paper by Chung [2] shows that the helicity amplitudes are relatively real. However for
most cases which one might actually encounter at CLEO II there is no way to know
if these other conditions hold. Therefore one must consider the helicity amplitudes as
relatively complex. Because the partial wave amplitudes are just linear combinations
of the helicity amplitudes, they too must be considered relatively complex.

Many models seem to explicitly predict that the amplitudes will be relatively
real. One example is the Godfrey Kokoski [4] model of the decay of P-wave mesons

13
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Figure 3: Relationship between the ' and " coordinate systems. The figure is drawn
in three different rest frames. The momentum vectors of particles 2 and 3 are shown
in the rest frame of particle 1. The ' system is defined in the rest frame of particle 2
and the ” system is defined in the rest frame of particle 3.

containing one heavy quark. However, if one looks carefully at these models, most of
them are only calculated in the Born approximation of some effective Hamiltonian. If
a higher order of perturbation theory were used then these models would predict the
helicity amplitudes to be relatively complex. An equivalent statement to the above
is that final state interations may introduce phase shifts.

11 More Sequential Decays
In the helicity basis, consider the decay,

1 — 23
L 67 (36)
4 5.

In section 8, the primed coordinate system, in the rest frame of 2, was constructed
for the decay 2 — 4 5. In this section the double primed coordinate system, defined
in the rest frame of 3, will be constructed for the decay 3 — 6 7. This system is
obtained by rotating the unprimed basis by R(7 + ¢, 7 — 0, —t—¢) and then boosting
to the rest frame of 3. The axes of the prime and double prime systems, each in their
own rest frame, are shown in figure 3. The 2" axis points along the flight direction
of 3 in the rest frame of 1. It is therefore antiparallel to the 2’ axis. The y" axis is
parallel to the y’ axis and the z” axis is antiparallel to the z’ axis. The reason that
it is ¢”, not x”, which is parallel to the corresponding singly primed axis is buried in
the definition of the Euler angles, in which the [ rotation is made around the y axis.
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The angles (0", ¢") are defined by the direction of particle 6 in this coordinate system.
Again this means that the angle 6" is defined with respect to the spin quantization
axis of particle 3.

The amplitude for the above process is then,

(2s1+1) (259 +1) (253 + 1)

A(Q QIQ”§ A1, Ady As, /\6)\7) = \/

41 41 47
(37)
> D3, 0 () Aaoxs D32, 0 () Bains D3, an (1) Chgas-
A2 s
The angular distribution is given by,
(9,0, 0) = |A(Q D" Ay, Ay, g, Aghy)[2 ZoLE ) (22 £ 1) (285 4 1) (38)

4 Fl 4 F2 4 F3
(281 + ].) (252 + 1) (283 + 1) Z
Ar T, 4rD, 4n1Ts Py

D§\11A2—A3(Q) Dii*x?_xg(m Af\g/\gA)\{z)\g )\2/\4 (Q ) D,S\%fu /\5(Ql) Bf\4,\5B>\4A5

D3t (21) D () c;wcm} ,

where the sum runs over (A1, A}, Ao, Ay, Az, Aj, Ay, As, A, A7). When the dependence on
2 and on Q" are integrated out, one can show that (') is still given by equation 34.
Similarly, 1(6") is given by,

1 25341
0// —
(0") 0, 2

Z | ii,)\afk7(0”)|2 |A>\2>\3|2 |C>\6>\7|2' (39)

A2A3Ag A7

Again it should be emphasized that choosing a different set of coordinate systems will
change the form of these expressions.

One observable related to the proper definition of the double primed system is
the dihedral angle, x = ¢’ + ¢" between the decay planes of 2 and 3. This angle has
the same value when measured in the rest frame of any of particles 1, 2 or 3. It is
unfortunate that it is conventional to use the same notation, y, both for the variable
defined here and for the variable defined in section 8. In practice, one finds that the
angular distributions do not depend directly on ¢"” but rather that they depend on
X. See example 17.8. The physical interpretation of x is shown in figure 4. That
figure is drawn in the rest frame of 1 with the 2’ axis coming out of the page, the
2" axis going into the page, and the remaining axes as shown in the figure. Both
of these coordinate systems are right handed. The momenta of particles 4, 5, 6 and
7, as measured in the rest frame of 1, are also shown on the figure. While, in this
view particles 4 and 5 appear to be back to back, they are not back to back in three
dimensions. Similarly for particles 6 and 7. In a typical case both of particles 4 and
5 will be coming out of the page and both of particles 6 and 7 will be going into the
page. The angles ¢', ¢" and x = ¢" + ¢, are also shown. In this view, ¢’ increases in
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Figure 4: The definition of y.

the usual counter-clockwise sense while ¢” increases in a clockwise sense. The angle
X increases in a counter-clockwise sense from particle 7 to particle 4, or, equivalently,
from particle 6 to particle 5. Inspection of the figure shows that x can be expressed
in terms of the unit projections, p; and p7, of iy and p7 onto the plane perpendicular
to ﬁ?a

cosx = pr-pr

(40)

sinx = py X pi - b2
Here p, is the unit vector in the direction of particle 2 as measured in the rest frame
of 1. In the figure, p, comes out of the page. Finally the normals to the decay planes
are also shown,

o = DX D5 = Po X P (41)
D6 % P
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The angle x can also be expressed in terms of these,
cos(x) =n"-a" sin(y) =n" xn' - p, (42)

Now consider the case when 8’ =0 or 8” =0. In these cases one of the decay planes
has shrunk to a line and one cannot define the dihedral angle. In practice one has to
handle these cases specially but the correct procedure will usually be straightforward
to work out. In all cases so far encountered by the author, the terms containing
functions of y also contain the product sin #' sin #”. Therefore they vanish when y is
undefined.

12 Theoretical Caveat

Other authors might choose to work in very similar but subtly different coordinate
systems. For example one might define, x = m — ¢’ — ¢”, which changes the sign of all
terms in the amplitude which are proportional to cos x. Another variation is to define
the 2" axis as being in the same direction as the 2’ axis. Among other things, this
leads to the replacement 6” — m — 0" and changes the sign of all terms proportional
to cos §”. Such subtleties are rife in the literature on B — D*(v.

13 A Special Case in QED

Consider the decay of a virtual photon to a fermion anti-fermion pair. There are 4
possible helicity amplitudes for this process. Of these only two are independent and
one can take them to be A% and A% _1. Because of the Lorentz structure of the
QED vertex,

N
M

A
A

my
\/g?

where my is the mass of the fermion and /s is the mass of the virtual photon. This
property is often stated as, “at large s, efe™ — ff proceeds through a virtual photon
with J; = +17. Similarly, one can usually treat J/¢) — e*e™ in the limit that
A1 = A% =0.

2

N
N

x (43)

[N
[N

_1
2

D=

14 Decay of spin zero particles

There is a simple and well known argument for working out the angular distributions
in decays of the form,

1 — 23
Ly 45, (44)

when particles 1, 3, 4 and 5 have spin 0 and particle 2 has spin sy. There is only
one partial wave allowed for the first decay, M (sz,ss), and only one partial wave
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allowed for the second decay, M(sq,0). Because the initial state has spin zero, the
third component of the total angular momentum in the first decay must be zero
along every direction. This allows one to choose the direction of particle 2 as the
quantization axis. The component of the orbital angular momentum along this axis
is 0 and, therefore, particle 2 is produced only with helicity 0. Therefore particle
2 will decay with the angular distribution 1(6) oc [Y)(€',¢')|*. The decay chain
D, — ¢m,¢ — KT K~ is a familiar example. See example 17.3.

The above argument works because the only interesting quantization axis in the
problem is the flight direction of particle 2. When particle 1 has a nonzero spin there
is a second axis of interest, the quantization axis of the intial state, and one must
resort to the full formalism to calculate the angular distributions.

15 Yet Another Method

There is another method of calculating decay angular distributions, sometimes known
as the Zeemach formalism [5]. The advantages of this method are that it is manifestly
covariant and that it is simple to include the exchange (anti-)symmetry between iden-
tical (fermions)bosons in the final state. This method will not be discussed further.

18



16 The Cookbook

Consider the process,

ete” -5 1X
Lo23 (45)
L 45,

the momentum of particle ¢ as measured in the rest frame of particle j.

0 the angle between 52(1) and ﬁle+e_, measured in the rest frame of 1.

ﬁi(j)

0" the angle between ﬁ4(2) and 13’2(1), measured in the rest frame of 2.

A; the helicity of 7 measured in the rest frame of its parent. The parent frame
of particle 1 is the CM frame of the ete ™.

Pa,x, spin density matrix of 1, measured in the CM frame of the ete.

Ay, Helicity amplitudes for 1 — 2 3.
e B,,), Helicity amplitudes for 2 — 4 5.
The selection rules for the helicity amplitudes are,

A2 — Ag| < s Ay, = mmens(—=1)%21587 51 Ay 5,

(always) (if parity is conserved in the decay) (46)
10,0 = (47)
I 2s1+12s0+1 < <
' Z PA1A1|d>\11,\2—>\3(0)|2 | )\3)\4—)\5(01”2 |A)\2)\3|2 |B)\4)\5|2
Ihly 2 2 At A2 A3 A\
1 25,41 .
1(0') = - Yo 1A O [ [ [ Baars [ (48)
Iy Ty 2 PESTIVY
12s1+1 st 9 9
10) = T2 A;A Paa 3 s (O)]7 [Arans | (49)
1A2A3
These can be expressed in terms of partial wave amplitudes, M (L, s),
2L+ 1
Axrne = D4/ 5——=Csys5(5A15 00 —A3) Cpg(s1A1;0 M) M(L,s)  (50)
L s 281 + 1
251 +1
M(L, S) = ! Z 03233(8A1; /\2 —)\3) CLS(Sl)\l; 0 )\1) A/\2z\3’ (51)
2L +1 Ao

where )\1 = )\2 — )\3.
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17 Examples

171 A—-Vy

The decay of an axial vector meson to a vector meson and a photon illustrates a
complication which occurs in the partial wave basis. Because this is an electromag-
netic decay it is parity conserving and the the selection rules 6 and 7 give three
allowed partial wave amplitudes, M(L,s) = (M(2,2), M(2,1),M(0,1)). However,
in the helicity basis, Ay, »,, there are only two independent amplitudes: the three
amplitudes Ay, ¢ vanish because the photon does not have a helicity zero state; the
amplitudes A; _; = A_; 1 = 0 because they violate the selection rule 11; finally, parity
conservation gives, A1 = —A_; 1 and Ay = —Ap .

This discrepancy arises because, in the partial wave basis, there is no simple way to
account for the missing helicity state of the photon. Using the Jacob Wick relations,
equations 27 and 28, one can show that only two of (A (2,2), M(2,1), M(0,1)) are
independent. Similar discrepancies may arise in decays which contain a photon,
a neutrino or a highly relativistic massive fermion. They do not necessarily arise
because the A\, = 0 amplitude may already be forbidden by one of the selection rules.
An example of this is the decay D* — D ~, in which the amplitude Ay is already
forbidden by the selection rule 12.

17.2 D* — Dn

These next two examples are included to give the reader some confidence by using
the formalism to obtain well known results. In the partial wave basis there is only
one amplitude allowed, M(1,0), and in the helicity basis there is only one amplitude
allowed, Ago. For this decay, equation 49 reads,

3 sin® 0 sinZ @
1(9) = ) [Pn 5 + Poo cos® 0 + P 5 ]
3 sin” ¢
= 5 [(1 — Poo) 5 T Poo cos’ 9.] (52)

The shape of this distribution does not depend on the helicity or partial wave ampli-
tudes, which is a general feature of any decay with only one independent amplitude.
The amplitudes do, however, do affect the decay rate. While the distribution does
depend on the alignment of the initial state it is insensitive to any polarization. There-
fore this form is correct even when the D* is produced in a parity violating process
such as B meson decay. When the state is unaligned pyy = 1/3 and I(6) is flat.

17.3 Dy, — ¢m, ¢ - K"K~

In the partial wave basis the first decay has only one amplitude, M(1,1), and the
second decay has only one amplitude, M (1,0). In the helicity basis the allowed helicty
amplitudes are Ay for the first decay and By for the second decay. The amplitudes
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Ao vanish because of selection rule 11. As in the previous example these amplitudes
do not affect the shape of the angular distributions. For this decay equation 48 reads,

3
16 = §COSQ 6. (53)

17.4 Dy(2420) — D*r, D* — Dx
Consider the production and decay of the D;(2420), a J* = 1% meson,
etes — Dy X
L prr (54)
L> D .

In the partial wave basis the two independent amplitudes for the decay of the D; are
S =M(0,1) and D = M(2,1), while in the helicity basis they are Ajg = +A 19 and
Ago. Recall that,

I = 2|A5)* +|Awl* (55)

The one independent amplitude for the D* decay does not affect the shape of angular
distributions. For this decay equation 30 reads,

3
AQ Q5 %) = =3 D35, (Q) DA, () Axo
A2
3 ) g
= E 262)\1¢ eZ/\2(¢ ®) dil Ag (9) di\g 0(9/) A)\Z 0 (56)
A2

The angular distribution is then given by equation 24. It is common to define y =
¢' — ¢ and then to make a change of variables so that the amplitude is given in terms
of (0,0',¢,x). The variable y defined here is different from the variable x defined
in section 11. After integrating the angular distribution over ¢, which removes any
dependence on the off-diagonal elements of the spin-density matrix, one obtains,

, sin? ¢/

100,60, x) o &riF { | Ao [(1 + cos? 9) + poo (1 — 3 cos” 9)]

I [(1 — cos? 9) — Poo (1 — 3cos” 9)] (57)
B % |Alo|2 (1 —3ppy) sin® 6 sin” #' cos(2x)

+ R(AjyA00) (1 —3pgo) sinf cosfsin b cos b cos X} :

This distribution is the simplest distribution which contains all of the information
about the helicity amplitudes for the decay of the D;. The shape of this angular
distribution depends on three parameters which one can choose to be |A14]*/T; poo
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and cos ¢g, where ¢19 = arg(A%,Ag). Instead of |A;4]?/T, one could have chosen
one of the free parameters to be |Ag/A0|. However, when fitting distributions, it is
often more useful to have a parameter which is bounded by [0, 1], than it is to have
a parameter which is bounded by [0, co].

In practice, it can be difficult to determine all of the free parameters in the above
equation by fitting an experimental I(6,6', x) distribution. The difficulty lies in know-
ing how the background behaves in #, # and y. In such a case one can determine the
parameters by fitting the appropriate one dimensional distributions. For this decay
chain equations 48 and 49 are,

10) % {|A10|2 sin? 8’ + | Ago|? cos? 9'} (58)
3
10) x| (1 poo) sl + (1= poo) [ Aao] (59)

+ (1 — 3p00) (|A10‘2 — |A00|2) COS2 9

These also could have been obtained by integrating equation 57. The distributions 57
and 59 are are flat in 0 for two cases, an unaligned initial state or when |Agy| = | A1
The I(0") distribution is independent of the alignment of the initial state and it is flat
when ‘A00| == |A10|.

Because I(6') has the form 1+ C cos? f, where C'is a constant, it is possible to de-
termine two parameters from a fit to an experimental 7(6") distribution. One of these
is the overall normalization, leaving only one measurable shape parameter. Inspection
of equation 59 shows that one can measure |A;q]*/T from a fit an experimental I(6")
distribution. Similarly, one can measure both |A;|?/T and pyy from a simultaneous
fit to experimental I(#) and I(#') distributions. However one cannot measure cos ¢y
from these distributions.

Determining cos ¢o from a one dimensional distribution is a little more compli-
cated. Firstly, one might think to integrate cos# and cos ' out of equation 57. This
gives,

Aol

I(x) o QL 1 — (1= 3poo)

- cos(2x) |, (60)

which cannot be used to determine cos ¢1p. The right answer is to consider how the
signs in equation 57 behave in the four quadrants of the (cos#, cos ') plane. The sign
of the first three terms does not depend on the sign of either cosf or cosf’. But the
sign of the fourth term does. The sign is positive in the first and third quadrants of
the plane, while it is negative in the second and fourth quadrants. Now, let It (x)
denote the angular distribution in y when cos@ > 0 and cos@ > 0. Similarly, let
I (x) denote the angular distribution in y when cosf > 0 and cos® < 0, and so
on. Finally, consider the following combination of angular distributions,

| A1o]|Aool

TO0™ 4 1007 = 100%™ = 1007 = 5(1 — 3pue) 220

cos ¢rgcosx. (61)



Inspection of the above equations show that one can measure all of |A1y]2/T, poo
and cos ¢ from a simultaneous fit to experimental distributions of 1(f), I(#') and
equation 61.

The relationship between the partial wave amplitudes and the helicity amplitudes
is given by equations 27 and 28,

D
Am = % (62)

Ay = \f (63)

These relations differ from those given in Rosner [6] by an overall, unphysical, minus
sign. In the partial wave basis, the equations 58 and 59 become,

m@\o}

) 2
100 « — z¢+£lh5—3m§®—3md1—3m§m] (64)
AT | 2
—V2|S| |D| cos sp(1 — 3pen) (1 — 3 cos” )]
r 2
10) % |5|2+|D|QW+¢§|5| 1D cos dsp (1—3c0520’)],(65)

where ¢sp = arg(S*D) and where T' = |S|> + |DJ*.

This example illustrates one of the advantages of the helicity formalism. In the
helicity basis it was possible to determine |A19|?/T" from a fit to an experimental I(6")
distribution. In the partial wave basis, however, the shape of this distribution depends
on two parameters, |S|?/T" and cos ¢sp, so neither can be determined by fitting an
experimental 7(6') distribution. Instead, one can only obtain an allowed region in
the plane of the two parameters, as has been done by CLEO II[16]. Similarly, the
two distributions () and I(¢') depend on three parameters, |S|*/T, cos¢sp and
poo- Therefore, the parameters are again underdetermined by a simultaneous fit to
experimental I(6) and I(#') distributions.

Finally, equation 61 is given in the partial wave basis as,

IO +100™ 100" 1)~ =
4 1
21~ 300) (|52 - IDP — IS0} cos asSD) cos . (66)

One can determine all of |S|?/T, cos ¢sp and pyo from a simulateous fit to experimental

distributions for 1(6), I(¢') and equation 66.

175 B KU K* 5 KU — utyu-

There are three independent partial waves for the first decay, M(2,2), M(1,1),
M(0,0) in the partial wave basis, or Ay, Ago and A_; _; in the helicity basis. As
discussed in section 13, the amplitude C 11 can be neglected when describing the de-
cay of the W. This leaves only one 1ndependent amplitude for each of the secondary
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decays, neither of which can affect the shape of the angular distributions. For the
decay of the K*, equation 48 reads,

: 29/ . 29,
I(gl) x |A11|2 SlIl2 + |A00|2COSZ 0’ + |A_1 _1|281n2
2r
x 1+ (—L — 1) cos” . (67)
Ly
For the decay of the ¥, equation 39 reads,
1 2 0" 1 2 9//
I(0") o IAnIQjLC% + | Ago|?sin® 0" + A, ﬂz%
I'—3r
x 1+ ﬁ COS2 0. (68)

Here, and in some of the subsequent examples, overall factors of 1/I" and (2s + 1)/2
have been left out, hence the o instead of equal signs. In the above, the longitudinal
width is given by I';, = |Agg|?, the transverse width by 'y = |42+ |A 1 1]? and the
total width by I' = 'y +1'7. The nomenclature “longitudinal” and “transverse” refers
to the direction of the polarization vector, which is perpendicular to the direction of
the spin vector|[7].

The reason that the above two angular distributions are different is simply that
the U is decaying into a pair of spin 1/2 particles while the K* is decaying into a pair
of spin 0 particles.

176 B — K*y,K* = Kn

In this decay there are two independent helicity amplitydes, Ay, and A . The
amplitude Agy vanishes because photons have only transverse polarizations. The
second decay has only one independent amplitude, which does not affect the shape
of the angular distributions. For this decay, equation 48 reads,

3
10 = 1 sin? ¢/, (69)

17.7 A = X.w

The lowest lying excitations of the A, (J = %+), are believed to be a doublet of P-
wave states with JZ = (37,37) [8, 9]. Isospin invariance implies that, if kinematically

allowed, the strong decays of these states should proceed via the decay chain,
Ar = n
L A, (70)

+
2 )

orviaa X;, (JF = %Jr) In this section the angular distributions for all of these decays

will be derived. One further assumption will be made: since CLEO II analyses look for

Here the notation Zg*) means that the decay can proceed either via a ., (JF =
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Decay Helicity Partial Wave 1(0) I(0')
Amplitudes Amplitudes

A — X7

{_}éﬁ)_ Arg=+A4, S/\2 flat  flat
o300 A =—-4A, D/V2  flat
530 Ay =-Ay, ~Dv2 flat
5=, atg- Ase=FA4e (S-D)/2
> 72V Ayy=+4A,  (S+D)2

Eg*) — A
550 Ay =—-A1, ~P/V2
%4——)%_‘_07 A%OZ-FA 1 —}—P\/§

Table 1: Partial wave and helicity amplitudes for various strong decays of P-wave
charm baryons.

these charmed baryons in continuum production, one may assume that the A’ states
are unpolarized. For the spin 1/2 states, this means that they are also unaligned.

Table 1 lists the helicity and partial wave amplitudes for the decays in process 70.
Those entries above the line list quantities for the 4 possibilities for the first decay
and those below the line list quantities for the 2 possibilities for the second decay.
The first column of the table lists the specific decay by giving the J¥ of the initial
and final state particles. The second column lists the helicity amplitudes. Because
these decays conserve parity the helicity amplitudes come in pairs which are equal
to each other up to a sign; only one of each pair is an independent quantity. The
third column lists the partial wave amplitudes for the decay, where the numerical
factors were obtained using the Jacob Wick relation 27. The sign convention is that
the partial wave amplitude is equal to the first amplitude of the corresponding pair
in column 2.

For entries above the line there are an additional two columns in the table that
indicate which angular distributions are trivially flat. Recall that 6 is the polar angle
in the first decay and that 6’ is the polar angle in the second decay. Any state which
is produced unaligned will have a flat distribution for cos @ — therefore the first two
entries in the fourth colunm show flat distributions. In the first and third decays, both
of the helcity states of the Y. are equally populated, therefore the cosf' distribution
is flat. The non-flat angular distributions are given below.

For %_ — %+0’,

1) = < (1+3c0sd). (71)

| =
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For £~ — 70~
I(0) = (3—4%%)—2(1—4%%)@#9_ (72)
For 2~ — 370",
10) = 5 (381450 + 143 o7) — 405 3 (450" — |43/°)
3(1 1py 1) (143 of* = |43[*) cos” 0] (73)
10 = [( 5ol + A1 of?) + 3 (| Ay of” — |43 [*) cos® ] (74)

Here I' = 2|4y o* + 2|Ag ol %

Inspection of these last two equations shows that when [A; ol = Az o/? both
distributions are flat. Not surprisingly, this happens when the decay occurs in a pure
S wave but it also happens when the decay occurs in a pure D wave. In the limit
that the charmed quark mass is very heavy all of the above decays are predicted to
be either pure S wave or pure D wave [17]. Therefore any deviation from flatness
indicates a violation of the heavy quark limit.

178 Dy,—¢p
17.8.1 The angular distributions.

Consider the decay,

Df — ¢p*
L) aat (75)
Kt K.
The first decay in this chain has three allowed amplitudes, [M(0,0), M (1,1), M(2,2)]
in the partial wave basis, or [A1, Ago, A1 1] in the helicity basis. In order to sim-
plify the notation these will be written as [S, P, D] in the partial wave basis and as
[H., Hy, H_] in the helicity basis. The two secondary decays each have only one

independent amplitude and neither of these can affect the shape of the angular dis-
tribution. For the full decay chain, the angular distribution is given by equation 38,

1(6',6", x)
x [H | dio(0)P|dio(0)17 + [H [ d0(0) PldLso(0")
+ [Hol” [dgo(¢) |d1o (6"
+ 2 [R(H Hy) cos x — S (Hy Hy)sin x] dig(6") dog(6') dio(0") doo(6")
+2 [R(HoH" ) cosx — S (HoH" ) sin x| dgo(6) dLyo(6) dgo(6") dLy(0")
+ 2 [% (H+Hi) cos(2y) — (H+H—) sin(2x)} dio(0') dLio(0') dig(0") dLy(6")
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(76)
= i { |H|*sin® @' sin” §" + |H_|*sin® @ sin® §"
+ 4 |Ho|* cos* 0 cos® "
+ 2 [%(H+Hf) cos(2x) — S(HL HY) sin(2x)} sin? @' sin® 6"
+ 4 [R(H Hj)cosx — S(Hy H) sin x] sin @' cos 8 sin 6" cos 0"
+ 4 [§R(H0Hf) cos x — S(HoH*) sin X} sin @' cos @' sin " cos 9"}

Here y = ¢+ ¢', as discussed in section 11. To get a properly normalized distribution
the right hand side of the above equations must be multiplied by 9/87T.
Now consider the decay,

Dy — ¢p”

L 70 - (77)
K K.

This decay is the charge conjugate of decay 75, and its decay angular distribution
will be denoted by I(¢',6",x). Careful reading of section 11 shows that the angles
0, 0" and x are defined in a way which is symmetric under charge conjugation. The
following statement of those definitions shows the symmetry,

¢': the angle, in the domain [0, 7], between the momentum of the kaon with the
same charge as the Dy, measured in the rest frame of the ¢, and the momentum
of the ¢, measured in the rest frame of the D,.

0": the angle, in the domain [0, 7], between the momentum of the 7° measured in
the rest frame of the p, and the momentum of the p, measured in the rest frame
of the D;.

X: Consider a righthanded orthonormal coordinate system. Look at the decay
from the viewpoint that the momentum of the ¢ is along the z axis and the
momentum of the charged pion is along the x axis. Because the D, has spin
zero this is not a special configuration. The angle x is the azimuth of the kaon
with the same charge as the D.

While the above definition of the angles is symmetric under charge conjugation
the weak interactions are not. Therefore one should not expect to find I(¢',6", x) =
I1(0',60",x). In the standard model, however, this decay does conserve CP: every
Feynman diagram which one can draw is proportional to V V.5, but, to observe CP
violation, one requires that at least two diagrams have different CKM phases. This
will be further explained in section 17.8.3.

The consequences of CP conservation for this decay are illustrated in figure 5.
Part a) of that figure shows the decay 75 with some particular values of 6', 60", x. The
momentum vectors of the ¢ and of the p are drawn in the rest frame of the D}, while

those of the two pions are drawn in the rest frame of the p and those of the two kaons
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are drawn in the rest frame of the ¢. The inset, which defines y is to be viewed with
the momentum of the ¢ coming out of the page. Therefore the main part of this figure
shows the decay of the p taking place in the plane of the page while the K comes out
of the page, by an angle x. Because the D, has spin zero this is a completely general
configuration. Part b) shows the CP conjugate of this configuration: particles have
been changed into their anti-particles and the directions of all momenta have been
reversed. There are no observable spin components in the final state; if there were,
they would not have been reversed. Again the inset shows the sense of x, which is
that the K~ is now going into the page. Finally, part c¢) shows the CP conjugated
state rotated by 180 degrees about an axis perpendicular to the plane of the page.
Because the Dy has spin zero, the configuration shown in part c) is indistinguishable
from the configuration shown in b); that is, part c) is also the CP conjugate of part
a). If one compares parts a) and ¢) it can be seen that momentum of the 7~ from
the D, decay is coincident with that of the 7 from the D decay. Similarly for the
70, However this is not the case for the decay products of the ¢: in part a), the kaon
with the same charge as the D, comes out of the page whereas, in part c), it goes
into the page. Refering to the above definition of the angles, one sees that the CP
conjugate of a DY decay to the configuration (¢,60", x) is simply the decay of a D}
to the configuration (¢',6"”, —y). If CP is a good symmetry, then the decay rates to
these configurations must be equal,

100", x) = I(0.60",—x). (78)

That is, 1(6',6", ) is given by equation 76 but with the sign flipped for the terms
proportional to sin y and sin(2x). The significance of this sign flip is simple: while the
process under consideration is symmetric under CP but not C, it has been described
by angles whose definition is symmetric under C. One could redefine x for the D to
be the CP conjugate of x for the D and the angular distributions would then have
the same form, regardless of the sign of the charge of the initial state.

Another view of this sign flip is as follows: instead of thinking of the dynamic
variables as €', #” and x, one can choose cosf', cos ", cos y and sin . Recall that the
two polar angles are defined in the domain [0, 7] but that x is defined in the domain
[0,27]. Therefore sin#" and sin 6" are not independent dynamic variables. Of these
four dynamic variables, the three cosines are defined by dot products of momenta and
are, therefore, invariant under P. However sin x is defined as a triple scalar product of
momenta, equation 40, and does change sign under P. Further, the angles are defined
in a way which does not change sign under C. Therefore, in a CP conserving angular
distribution, all terms which are proportional to sin y must change sign. The jargon
is that the polar angles and cos x are “CP-even” variables while sin y is a “CP-odd”
variable. Similarly the coefficient of a term containing a CP-even combination of
variables is a CP-even observable while the coefficient of a term containing a CP-odd
combination of variables is a CP-odd observable.

28



17.8.2 Another new basis

Using the Jacob Wick relations 27 and 28, the helicity amplitudes and the partial
wave amplitudes for decay 75 are related by,

H - =2 ,.DP_ P

MV RV R
S 2

Hy = ———+44/=D 79
S D P

H = =42+

V3 V6 V2

Each of the partial wave amplitudes is either parity conserving or parity violating:
P is parity conserving while S and D are parity violating. An helicity amplitude, on
the other hand, can contain both parity conserving and parity violating parts,

P S D S 2
HS = ——— HS = =5 + = H°:——+\/7D. 80
LG ERVCRRY. i=—ETs (80)
Here the superscript e denotes a parity conserving amplitude and the superscript o

denotes a parity violating amplitude. As required by equation 12, the amplitude H
has no parity conserving part. Therefore one can rewrite the helicity amplitudes as,

H, = H® + H°, Hy = H, H = H®+H°

¢ . Fr0 (81)
— —H° + H°,

where H$, H?, HS are taken to be the independent amplitudes. The angular distri-
bution 76 is then,

I (cost',cosb”, x) (82)
= [|Hfi|2 sin® x + |HS|* cos® x — S(HSHL") sin(2x)] sin® ¢ sin” 0"
+ 2 [%(Hng*) cos x — S(HSHJ") sin X} sin @' cos @' sin 6" cos 0"
+  |Hg?cos® ) cos? 6.

Again the missing normalization factor is 9/87[. As discussed in the previous sub-
section the angular distribution for D, decay will be equation 82 but with a sign
change for the terms which contain sin x or sin(2x). When the angular distribution
is written in this way, one sees that the CP-odd observables are the imaginary parts
of interference terms between parity even and parity odd amplitudes.

At first glance, equation 82 is identical to equation 1.3 in reference [14]. However
the definitions of the angles used in that note, fg, 0., x, are different from the ones
used in this note, #',60”,x. They are related by, g = 7 — 0, 6, = © — 0" and
X = —x[15]. If one writes equation 82 in terms of g, 0., x then the form changes:
the two CP odd observables change sign. Therefore the helicity amplitudes used in
that paper do not mean the same thing as the helicity amplitudes used in this paper:
they differ by a sign change in HS. ( Equivalently, one can say that they differ by a
sign change in both H¢ and Hg ). Provided one fully understands the sign conventions
both of these equations are correct.
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17.8.3 Aside on CP violation

While the decay just discussed does conserve CP, it suggests a framework in which
to discuss CP violation. Consider a decay of the form,

0 — 1717
Lo o (83)
0" 0",

in which the first decay is weak and the subsequent decays are strong. Here each
particle is labeled by its spin-parity, J*. The allowed amplitudes for the first decay
are as dicussed above, H,, H and Hy. There is only one independent helicity
amplitude for each of the subsequent decays and neither of these can affect the angular
distributions. To further simplify the problem, consider that each of the 4 final state
particles is distinguishable from the others. Now consider that there are several
different Feynman diagrams which contribute to the decay. Following [12] and [13],
the helicity amplitudes for this decay have the form,

= T i+0}), (84)

where the sum runs over all of the diagrams, ¢, is the CKM phase of the k™ diagram
and where hfe’ % is the rest of the amplitude for that diagram. The quantities h%, ¢y
and % are all real. The jargon is that ¢, are the weak phases and &5 are the strong
phases. The angular distribution for this process is simply equation 76.

Now consider the charge conjugate decay, for which the helicity amplitudes will
be denoted H,. The angular distribution for the charge conjugate decay is simply
equation 76, without any sign changes, but with all of the H) replaced by H,. This
is true whether or not CP is conserved in the decay. Following [12] and [13], the
amplitudes for the charge conjugate decay are,

th ¢l —or %, (85)

Notice that the weak phases change sign while the strong phases remain unchanged.
Also notice the sign change on the helicity index of hfe?x

If CP is conserved in the first decay, substitution of equations 84 and 85 into
equation 76 must recover the relation, I(0',0",x) = I(0',0",—x). In the example
considered above, D, — ¢p, there is only one CKM phase which is common to all
diagrams and the helicity amplitudes can be written as,

Hy = €3 hke®s (86)
k

H, = e_id’Zhli)\ei‘siA.
k

If one substitutes these expressions into equation 76, it is easily shown that the angular
distribution conserves CP, that is that I(¢',6",x) = I1(6',0", —x).
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Finally, the partial widths of the particle and anti-particle decays are given by,
r = Z | H,|? (87)
A

I = ZA: [H . (88)

Now consider what is necessary to observe CP violation. There are three sorts of
observables in which one might observe CP violation:

e the partial rates, I' and I'. If CP is conserved these are equal.

e the coefficients of the CP-even interference terms. If CP is conserved then these
coefficients are the same for a given decay and for its charge conjugate decay.

e the coefficients of the CP-odd interference terms. If CP is conserved these
change sign in the charge conjugate decay.

Any deviation from the above pattern is a manifestation of CP violation. By substi-
tution of equations 84 and 85 into equation 76, one can verify,

e If there is only one term in the sum over k then the angular distribution will
conserve CP, as will the partial rates.

e [f there are several terms in the sum but all have the same CKM phase then,
again, both the angular distribution and the partial rates will conserve CP.

e If there are two or more diagrams with different CKM phases, and if all of the
h% are relatively real, then one can see a CP violating asymmetry in the coef-
ficients of the CP-odd interference terms. However there will be no observable
CP violation in either the partial widths or in the coefficients of the CP-even
interference terms.

o If there are two or more diagrams with different CKM phases and if some of
the h% are relatively complex, then one can observe CP violation in all of the
observables.

One can also show that the CP violating parts of the CP odd interference terms
contain factors of, sin(¢, — ¢p) cos(0¥ — 6%). On the other hand, the CP violating
parts of the decay rate and of the CP even interference terms contain factors of
sin(¢y — ¢p) sin(6§ — 05).

Also, if there are two terms in the sum, and if one of them is due to particle-anti-
particle mixing in the initial state, then the CP violating observables will depend on
the decay time of the initial state. Depending on details of the production mechanism,
the time integral of these asymmetries may vanish. Such is the case for asymmetries
arising from B°B0 mixing in decays of the Y(4S5).

Another bit of jargon found in the literature is “direct” CP violation. This simply
refers to a CP violating observable which comes from the interference of two diagrams,
neither of which involves particle anti-particle mixing. These observables do not
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depend on the decay time of the initial state and the CP asymmetries will remain
when the measurements are integrated over all decay times.

Finally, when the amplitude is given simply by the product two weak currents
there are no strong phases, 65. This also goes by the names “factorization” and “no
final state interactions”.

179 B — D"y

Consider the decay chain,

BY — Dt W
Lo v (89)

DO 7t

Here W~ denotes a virtual W. The three independent helicity amplitudes for the first
decay are [Ay1, Ago, Ay _1] and these depend on ¢?, the invariant mass squared of the
virtual W. A more conventional notation for these amplitudes is, H, (¢*), Hy(q?),
H_(q?). There is only one independent helicity amplitude for the D* decay and, in
the limit of massless leptons, there is only one independent helicity amplitude for
the W=* decay. The angular distribution is independent of the helicity amplitudes of
these last two decays. The dynamical variables for this decay are defined as follows:

0" the angle between the D direction, measured in the rest frame of the D*, and
the D* direction, measured in the B rest frame.

0" the angle between the ¢ direction, measured in the W* rest frame, and the W*
direction measured in the B rest frame.

x: Consider a righthanded orthonormal coordinate system. Look at the decay
from the viewpoint that the momentum of the D* is along the 2z axis and the
momentum of the charged lepton is along the x axis. The angle x is the azimuth
of the 7.

These definitions are appropriate both for the decay of a B and for the decay of a B.

Now consider the allowed form of these amplitudes. There are only two Feynman
diagrams which contribute to this decay, a direct diagram and a mixing diagram.
These do have different CKM phases. At CLEO II, however, all of the B mesons are
produced by the process T(4S) — BB and the angular distributions are integrated
over all decay times. Therefore the interference between the direct and mixing terms
vanishes. Therefore there are two contributions to the decay rate, the time integrated
square of the direct term and the time integrated square of the mixing term. These
are identical. Also, because the W materializes into a lepton and an anti-lepton, there
are no strong final state interactions. Therefore the strong phases vanish and one can
write, Hy(q?) = Vpha(¢?), where hy(q?) is a real function of ¢
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Using the above notation, the angular distribution for decay 89 is given by equa-

tion 38,
1(6',0", x)

1
g {1hs(g*)sin® @ (1 — cos 0")° + |h_(¢*)[* sin® 0/ (1 + cos 0")
+ 4 |ho(q?)|? cos® #' sin? §”
— 2 hy(¢*)h—(q*) cos(2x) sin® @' sin* #”
+ 4 hy (¢*)ho(q?) cos x sin @' cos 0’ sin 0" (1 — cos ")
— 4 ho(¢*)h_(¢*) cos x sin @' cos @' sin 6" (1 4 cos 9”)}

0.8

(90)
= % { (|h+(q2)|2 + |h_(q2)|2) sin? @' (1 + cos? 9”)
=2 (I (@) = |h=(*)[?) sin® ' cos 0"
+ 4 |ho(¢*)|? cos? @' sin? 6"
— 2 hy(¢*)h_(¢*) sin® @' sin® 0" cos 2
+ 4 (h+(q2)h0(q2) — ho(qQ)h,(qz)) sin @' cos @' sin 0" cos
—4 (h+ (¢*)ho(q?) + ho(q2)h_(q2)) sin 0’ cos @' sin " cos §” cos X}

The normalization factor is 9/8xT.
Now consider the charge conjugate decay chain,

B — D* Wt
Ny (91)
DO 7.

For this decay the helicity amplitudes will be denoted by, H, (¢%), H_(¢?), Ho(¢?). In
terms of these amplitudes, the angular distribution 1(¢',6", x) is given by equation 90
but with sign changes in front of the terms proportional to (|, (¢*)]* — |h_(¢*)[?)
and (hy(¢*)ho(q?) — ho(¢?)h_(¢?)). These sign changes arise from the change in the
handedness of the leptons, A\;- — Ay = —1 while A\p+ — A\, = +1. These factors enter
into the second index of the D function for the decay of the W*. However, from
equations 84 and 85 one has hy(¢%) = h_x(¢?). This cancels the above sign changes
and one finds that equation 90 is correct both for the decay of a B® and for the decay
of a B,

When comparing different calculations of this angular distribution one must check
three things: the signs in front of each of the terms, the definition of the angles and
the definition of the helicity amplitudes. That is, one must know whether h, (¢?) is
the amplitude for a B° to decay into a D** with helicity +1 or whether it is the
amplitude for a B° to decay into a D*~ with helicity +1.

For example, equation 90 can be compared with the same angular distribution
as derived by Korner and Schuler [10]. Their angular variables, (0xs, 05, XKs) are
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related to the ones defined in this section by Ok = 0', 05 = 1—0" and xxs = 7+ X.

Both equation 90 and their equation 22 are for the decay of a EO; therefore their
helicity amplitudes are the same as the ones used in equation 90. In order to compare
their results with the above equation one must also drop the terms proportional to the
lepton mass from their equation. If one expresses their equation using the variables
from this paper, equation 90 from this paper is reproduced.
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Figure 5: The decay a) D; — ¢p* and b) its CP conjugate. Part c¢) also shows the
CP conjugate of a). The angles 6" and 0" are defined, respectively, in the rest frames
of the ¢ and the p. The angle y is the same when measured in the rest frame of any
of the ¢, the p or the D,. The sign change in yx is discussed in the text.
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