Nucleon - Light Dark Matter Annihilation through Baryon Number Violation

Mingjie Jin (金明杰)

IHEP

collaborated with Yu Gao (高宇)

base on arXiv:1808.10644

November 11, 2018

Mingjie Jin (金明杰) (IHEP)

Nucleon-LDM Annihilation through BNV

November 11, 2018 1 / 27

2 Dark matter and nucleon annihilation

Background

Neutron decay (β decay):

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Two experiments: Bottle and beam

$$\tau_{\textit{bottle}} = 879.6 \pm 0.6 \text{ s}$$

 $\tau_{\textit{beam}} = 888.0 \pm 2.0 \text{ s}$

$$\Delta \tau \approx 8s ~(\sim 1\%)$$

Mingjie Jin (金明杰) (IHEP)

November 11, 2018 3 / 27

B. Fornal and B. Grinstein (arXiv:1801.01124) proposed:

$$n \rightarrow \chi + \gamma \quad (\sim 1\%)$$

 $0.782 \text{ MeV} < E_{\gamma} < 1.664 \text{ MeV}$

< 1[™] >

э

A color triplet, iso-singlet scalar Φ with $Y\!=\!-\frac{1}{3}$ or $+\frac{2}{3}$ and a fermionic dark matter (DM) χ

$$\mathcal{L}_{1} = \lambda_{1} \Phi^{*} \chi d_{R} + \lambda_{1}^{\prime} \Phi u_{R} d_{R} + m_{\Phi}^{2} |\Phi|^{2} + \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi + \text{c.c.}$$
(I)
$$\mathcal{L}_{2} = \lambda_{2} \Phi^{*} \chi u_{R} + \lambda_{2ij}^{\prime} \Phi d_{Ri} d_{Rj} + m_{\Phi}^{2} |\Phi|^{2} + \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi + \text{c.c.}$$
(II)

In model II, two down-type quarks in the second term must be different flavor due to antisymmetric color indices. Here DM is Majorana or Dirac fermion.

If the scalar $m_\Phi \gg \mathcal{O}({\sf TeV})$ and $m_\chi \sim \mathcal{O}({\it GeV})$,

$$\mathcal{L} \supset \frac{\beta \lambda' \lambda}{m_{\Phi}^2} (\chi u_R d_R d_R),$$

where $\beta_{udd} \approx 0.0144 \text{ GeV}^3$ (~ Λ^3_{QCD}) from LQCD (only 1st gen.).(Aoki et al. 1705.01338).

Obviously, the (anti-) dark matter (χ) mixes with neutron (*udd*).

• If $m_\chi > m_p + m_e$, DM decay

$$\chi \rightarrow p + e^- + \bar{\nu}_e$$

 $\rightarrow \bar{p} + e^+ + \nu_e$

• If
$$m_\chi < m_p - m_e$$
, Proton decay $p o \chi + e^+ +
u_e$

Thus,

$$m_p - m_e < m_\chi < m_p + m_e$$

э

Image: A matrix

The Lagrangian

$$\mathcal{L} \supset rac{eta \lambda' \lambda}{m_{\Phi}^2} (\chi u_R d_R d_R)$$

Define the mixing parameter

$$arepsilon = rac{eta\lambda'\lambda}{m_{\Phi}^2}$$

The mixing angle heta in mass eigenstate basis when $arepsilon \ll m_n - m_\chi$

$$\theta = \frac{\beta \lambda' \lambda}{m_{\Phi}^2 (m_n - m_{\chi})}$$

where $\beta_{udd} \approx 0.0144 \text{ GeV}^3$, $m_n \approx 0.94 \text{ GeV}$ and assume $\lambda, \lambda' \sim \mathcal{O}(1)$. Note the Min $(\lambda, \lambda') \sim \mathcal{O}(0.07)$ at $m_{\Phi} \sim \mathcal{O}(\text{TeV})$ from collider constraint.

Nucleon - Dark matter Annihilation

The nucleon - DM annihilation cross section $\sigma_{N\chi}$,

The $\sigma_{N\bar{n}}$ is the annihilation cross section of nucleon - antineutron, fixed by experimental data.

Nucleon - Dark matter Annihilation

The nucleon - DM annihilation cross section $\sigma_{N\chi}$,

$$\sigma_{N\chi} = \theta^2 \sigma_{N\bar{n}}$$

$$\theta = \frac{\beta \lambda' \lambda}{m_{\Phi}^2 (m_n - m_{\chi})}$$

The $\sigma_{N\bar{n}}$ is the annihilation cross section of nucleon - antineutron, fixed by experimental data.

The $\bar{n} - p$ annihilation cross section at low energy,

$$\sigma_{p\bar{n}}^{ann}(\mathrm{mb}) = a + b/P_{\bar{n}}(\mathrm{GeV})$$

where a, b are fixed by data.

At low energy,

- s-wave is the most dominant contribution for $\sigma_{p\bar{n}}^{ann}$
- $\sigma_{p\bar{n}}^{ann} \propto v^{-1}$ if only *s*-wave

• $\sigma v(P_{\bar{n}} = 0) = 44 \pm 3.5$ mb when $v \rightarrow 0$ (Mutchler et al.PRD38, 742)

Besides, $\sigma_{\bar{n}A}^{ann}$ with six different nuclei (C, Al, Cu, Ag, Sn and Pb targets)

$$\sigma(\boldsymbol{P}_{\bar{\boldsymbol{n}}},\boldsymbol{A}) = \sigma_0(\boldsymbol{P}_{\bar{\boldsymbol{n}}})\boldsymbol{A}^{2/3}, \quad (r = r_0\boldsymbol{A}^{1/3})$$

where A is atomic number and $\sigma_0(P_{\bar{n}})$ is antineutron – nucleon cross section.

$$\sigma_0 = \alpha \sigma_{p\bar{n}}(P_{\bar{n}}) + (1-\alpha)\sigma_{n\bar{n}}(P_{\bar{n}})$$

where $\alpha = Z/A$, Z is proton number.

For $\alpha = 0.5$ (carbon) and 0.4 (lead), the cross section σ_0 is insensitive to α . (Astrua et al. Nucl. Phys. A697, 209)

Therefore,

$$\sigma_0(P_{\bar{n}}) \simeq \sigma_{p\bar{n}}(P_{\bar{n}}) \approx \sigma_{n\bar{n}}(P_{\bar{n}})$$

Then the annihilation cross section for dark matter and nucleon (nucleus)

$$\begin{split} \sigma_{\chi N} \mathbf{v}_{\chi} &\approx 44 \times \frac{(\beta \lambda' \lambda)^2}{m_{\Phi}^4 (m_n - m_{\chi})^2} \\ \sigma_{\chi A} \mathbf{v}_{\chi} &\approx 44 \times \frac{(\beta \lambda' \lambda)^2 A^{2/3}}{m_{\Phi}^4 (m_n - m_{\chi})^2} \end{split}$$

November 11, 2018

э

Constraint

Due to same final state, the constraint from $n-\bar{n}$ oscillation search at Super Kamiokande (SK) or SNO.

$\overline{n}+\rho$		$\bar{n}+n$	$\bar{n}+n$	
$\pi^{+}\pi^{0}$	1%	$\pi^{+}\pi^{-}$	2%	
$\pi^{+}2\pi^{0}$	8%	$2\pi^{0}$	1.5%	
$\pi^{+}3\pi^{0}$	10%	$\pi^{+}\pi^{-}\pi^{0}$	6.5%	
$2\pi^{+}\pi^{-}\pi^{0}$	22%	$\pi^{+}\pi^{-}2\pi^{0}$	11%	
$2\pi^{+}\pi^{-}2\pi^{0}$	36%	$\pi^{+}\pi^{-}3\pi^{0}$	28%	
$2\pi^+\pi^-2\omega$	16%	$2\pi^{+}2\pi^{-}$	7%	
$3\pi^{+}2\pi^{-}\pi^{0}$	7%	$2\pi^{+}2\pi^{-}\pi^{0}$	24%	
		$\pi^+\pi^-\omega$	10%	
		$2\pi^+2\pi^-2\pi^0$	10%	

Table: The branching ratios for the \bar{n} +nucleon annihilations. These factors were derived from $\bar{p}p$ and $\bar{p}d$ bubble chamber data.(SK,1109.4227)

Figure: SK (from SK homepage)

In SK, the dark matter can annihilate with proton and oxygen nucleus.

The corresponding event rate,

$$R = \frac{\mathrm{d}N_{\mathrm{t}}}{\mathrm{d}t} = A_{eff}\phi_{\chi} = \eta N_{\mathrm{t}}n_{\chi}\sigma_{\chi\mathrm{t}}v_{\chi}$$

where the effective area of target $A_{eff} = \eta \sigma_{\chi t} N_t$ and the flux density $\phi_{\chi} = n_{\chi} v_{\chi}$. $\eta = 12.1\%$, $n_{\chi} \simeq 0.43 \text{ cm}^{-3}$, $N_p \simeq 6.13 \times 10^{33}$, $N_o \simeq 3.06 \times 10^{33}$ (SK, 1109.4227). Here 22.5 kton water during 1489 live-day.

If the dark matter is the Majorana fermion, $\mathcal{L} \supset \frac{\beta \lambda' \lambda}{m_{\Phi}^2} (\chi u_R d_R d'_R)$ is $\Delta B = 1$ operater, it generates $n \cdot \bar{n}$ oscillation.

Only know about $\beta_{udd} = 0.0144 \text{GeV}^3$ (1st gen.).

The $n-\bar{n}$ oscillation time

$$\tau_{n\bar{n}} \simeq \begin{cases} \left(\frac{\beta^2 \lambda_2'^2 \lambda_2^2 m_{\chi}}{m_{\Phi}^4 (m_n^2 - m_{\chi}^2)}\right)^{-1} & (1st \text{ gen.}) \\ \\ \left(\frac{\lambda_1'^4 \lambda_1^2 m_{\chi} \ln(m_{\Phi}^2 / m_{\chi}^2) \Lambda_{QCD}^6}{(16\pi^2 m_{\Phi}^6)}\right)^{-1} & (3rd \text{ gen.}) \end{cases}$$

where $\tau_{n\bar{n}} > 2.7 \times 10^8 \text{ s} (SK)$ and $\Lambda^6_{QCD} = \beta^2 \sim \mathcal{O}(10^{-4}) \text{ GeV}^6$ (S. Rao, R. E. Shrock, Nucl. Phys. B232).

Since $m_{\chi} < m_n$, adding neutron magnetic moment $\bar{n}\sigma^{\mu\nu}nF_{\mu\nu}$

$$\frac{\varepsilon}{m_n - m_\chi} \bar{\chi} \sigma^{\mu\nu} F_{\mu\nu} n$$

Mingjie Jin (金明杰) (IHEP)

Nucleon-LDM Annihilation through BNV

November 11, 2018

$m_{\Phi} - \Delta m$ limits

 $\chi - N$ annihilation: $m_{\Phi} \sim \mathcal{O}(10^7)$ GeV, Majorana & Dirac fermion.

Mingjie Jin (金明杰) (IHEP)

Nucleon-LDM Annihilation through BNV

November 11, 2018 19 / 27

If $m_{\chi} > m_p + m_e$,

$$\begin{array}{lll} \chi & \rightarrow & p + e^- + \bar{\nu} & (m_p + m_e < m_\chi < m_p + m_e + m_\pi) \\ \chi & \rightarrow & 3 \ {\rm jets} & (m_\chi > 10 \ {\rm GeV}) & (b - {\rm quark}) \end{array}$$

where $\tau_{\chi} = 10^{24}$ s from PLANCK with e^+e^- and $b\bar{b}$ channels. (Slatyer et al. 1610.06933)

In addition, the mixing angle $\theta = \frac{\beta \lambda' \lambda}{m_{\Phi}^2(m_n - m_{\chi})}$ and there exits a pole in mixing angle when $m_{\chi} = m_n$.

$m_{\Phi} - \Delta m$ limits

 $\chi - N$ annihilation: $m_{\Phi} \sim \mathcal{O}(10^7)$ GeV, Majorana & Dirac fermion.

Mingjie Jin (金明杰) (IHEP)

November 11, 2018

$m_{\Phi} - \Delta m$ limits

 $\chi - N$ annihilation: $m_{\Phi} \sim \mathcal{O}(10^7)$ GeV, Majorana & Dirac fermion.

Mingjie Jin (金明杰) (IHEP)

November 11, 2018

Alternative searches-Indirect detection

- The DM annihilates with hydrogen and helium of ISM (Interstellar medium).
- The differential γ -flux,

$$\frac{\mathrm{d}\phi_{\gamma}(\chi N)}{\mathrm{d}E\mathrm{d}\Omega} = \theta^{2} \frac{\langle v\sigma_{\chi N} \rangle}{8\pi m_{\chi} m_{N}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E} \int_{\mathrm{los}} \rho_{\chi} \rho_{B} \mathrm{d}s$$
$$\frac{\mathrm{d}\phi_{\gamma}(\chi \chi)}{\mathrm{d}E\mathrm{d}\Omega} = \frac{\langle v\sigma_{\chi \chi} \rangle}{8\pi m_{\chi}^{2}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E} \int_{\mathrm{los}} \rho_{\chi}^{2} \mathrm{d}s$$

- ρ_B smaller than ρ_χ two orders of magnitude.
- The $\theta^2 \langle \sigma \mathbf{v} \rangle (\pi^0)_{\gamma \gamma} \sim \mathcal{O}(10^{-41}) \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$ for $m_{\Phi} \sim \mathcal{O}(10^7) \,\mathrm{GeV}$, while $\langle \sigma \mathbf{v} \rangle (\chi \bar{\chi})_{\gamma \gamma} \geq 10^{-30} \,\mathrm{cm}^3 \mathrm{s}^{-1}$ from Fermi-LAT, thus it is impossible to detect the signal from χN annihilation at present.

Alternative searches-Neutron star (NS) heating

(a) DM elastically scatter off neutron in NS.

(b) DM annihilation in NS.

Total Energy: $E_t \approx 1.35 m_{\chi}$, at saturation(100%), when heating \leftrightarrow radiation

T=1750 K T=2480 K

Alternative searches-Neutron star (NS) heating

(c) DM elastically scatter off neutron in NS.

(d) DM annihilation in NS.

Total Energy: $E_t \approx 1.35 m_{\chi}$, at saturation(100%), when heating \leftrightarrow radiation

T=1750 K T=2480 K

Alternative searches-Neutron star (NS) heating

- The DM annihilates with neutron in NS, $E_t \sim 2.2$ GeV.
- For an typical old NS, $M = 1.5 M_{\odot}$, R = 10 km.
- The heating rate: $\dot{E} = E_t \dot{N} f$, where $\dot{N} = \pi b^2 v_{\chi} n_{\chi}$ is the number rate of dark matter flux, f is the capture efficiency, $f = \min [\sigma_{\chi N} / \sigma_{th}, 1]$.
- The NS luminosity is $L = \dot{E} = 4\pi\sigma_B R^2 (T/\sqrt{1-2GM/R})^4$.
- For relativistic DM, $\sigma_{\chi n}^{ann} \approx \theta^2 (38.0 + 35.0/P_{\bar{n}}(\text{GeV})), P_{\bar{n}} \approx 0.85 \text{GeV}.$
- When DM heating \leftrightarrow black-body radiation, at $m_{\Phi} \sim \mathcal{O}(10^7) \text{ GeV}$, surface temperature $T_s \simeq 134 \text{ K}$.
- For a distant observer, $T_o \simeq 100$ K due to gravitational redshift, and is below the current experimental sensitivities.

$\Lambda - \bar{\Lambda}$ oscillation search @ BES-III

 The Λ − Λ oscillation time at BES-III(10×10⁹ J/Ψ and 3×10⁹ Ψ(2S)) (X. W. Kang et al. 0906.0230)

$$\tau_{\Lambda-\bar{\Lambda}} > 10^{-6} \text{ s} \quad (\Lambda = \textit{uds})$$

• The $\Lambda - \overline{\Lambda}$ oscillation is $\Delta s = 2$ process. $pp \to K^+K^+$ search in ${}^{16}\text{O} \to {}^{14}\text{C}K^+K^+$ at SK, $\Lambda - \overline{\Lambda}$ oscillation times (at tree level)(K. Aitken et al. 1708.01259)

$$\tau_{\Lambda-\bar{\Lambda}} > \mathcal{O}(10^6) \text{ s}$$

where
$$\beta_{uds} \sim 10^{-2}$$
.

s/b quark contribution

 $\Delta b = 2$ at loop-level

(f) $n+\chi \rightarrow \pi+K (\Delta s=1)$

 $\sigma_{\pi K} \sim \sigma_{\pi \pi}$

Except K, π mass difference in the final state. $m_{\Phi} \sim \mathcal{O}(10^{6-7})$ GeV for $\Delta s = 1$ operator.

NI 1 44

Summary

- DM can directly annihilate with baryons through BNV. Assuming color-triplet, iso-singlet scalar(s) and a fermionic dark matter (Majorama or Dirac).
- From the $n \bar{n}$ oscillation at the SuperK experiment, we constrain the stringent limit m_{Φ} up to 10^7 GeV.
- For Majorana-DM, the constraint is one order in magnitude lower than n - n
 oscillation.
- In the Dirac case, DM nucleon annihilation gives much stronger bounds than neutron decay (n → χ + γ).
- In DM decay($m_{\chi} > m_p + m_e$), the SuperK bounds exceed that from DM stability (from PLANCK) at a small mass range.
- We also consider indirect detection, neutron star heating, which are significantly below the reach of current experiments at $m_{\Phi} \sim 10^7$ GeV.

Summary

- DM can directly annihilate with baryons through BNV. Assuming color-triplet, iso-singlet scalar(s) and a fermionic dark matter (Majorama or Dirac).
- From the $n \bar{n}$ oscillation at the SuperK experiment, we constrain the stringent limit m_{Φ} up to 10^7 GeV.
- For Majorana-DM, the constraint is one order in magnitude lower than n - n
 oscillation.
- In the Dirac case, DM nucleon annihilation gives much stronger bounds than neutron decay (n → χ + γ).
- In DM decay($m_{\chi} > m_p + m_e$), the SuperK bounds exceed that from DM stability (from PLANCK) at a small mass range.
- We also consider indirect detection, neutron star heating, which are significantly below the reach of current experiments at $m_{\Phi} \sim 10^7$ GeV.

Thank you!