A unified interpretation for EDGES 21 cm signal and ARCADE-2 excess

Ding Ran

CHEP, PKU

Collaborated with Yuan Qiang & Yue Bin

BNU Dark Matter Workshop 10 November, 2018

First claim of observation: The EDGES 21cm result

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen and N. Mahesh, Nature 555, 67 (2018)

• What is EDGES experiment measuring ?

Global vs fluctuations

Chronology of the Universe

Why we care 21 cm signal

• Dark Ages

- Period from recombination (~380,000 years) to first star formation (~4 million years).
- No light-producing structures such as stars and galaxies.
- Only two sources of photons:
- CMB photons (had redshifted out of visible light to infrared) ,
- 21 cm photons from spin line of neutral hydrogen (microwave range of frequencies).
- No visible light photons, the universe was truly dark.
- It is crucial to probe structure formation in the Universe.

• Spin-flip transition of neutral hydrogen can be used to probe temperature and distribution of the neutral gas in the early universe prior to reionization (z > 6).

Basic picture of global 21 cm signal evolution

21cm absorption/emission signal strength depends on "spin temperature" T_{spin}, measure # of neutral hydrogen in ground vs excited state - expected to lie between gas temperature T_{gas} and CMB temperature T_{CMB}.

Detailed balance implies

$$T_s = \frac{T_R(z) + (y_c + y_{\text{eff},\alpha})T_{\text{gas}}}{1 + y_c + y_{\text{eff},\alpha}}$$

 2_2P_3

Phases of the Global 21 cm Signal's Evolution

- Gas becomes too dilute for collisions to keep T_{gas} and T_{spin} in equilibrium,
- Absorption and emission of 21 cm photons makes $T_{spin} = T_{CMB}$, no net absorption or emission.
- Phase IV: First Stars and Galaxies Form
- First stars create Ly-photons which have the right energy to cause the hyperfine transition. This causes coupling between T_{gas} and T_{spin} via the Wouthuysen-Field effect.
- $T_{spin} = T_{gas} < T_{CMB}$, absorption.
- Phase V: X-ray reheating
- X-rays from early stars heat the IGM, T_{gas} is still coupled to T_{spin} because of the Wouthuysen-Field effect.
- Electrons undergo all sorts of atomic transitions, $T_{spin} = T_{gas} > T_{CMB}$, emission.
- Phase VI: Reionization
- No more signal, since the the signal disappears when the neutral hydrogen disappears

Observable signal : brightness temperature

Pritchard & Loeb 2010

- Claim is a deep absorption trough corresponding to $z\sim15-20$ implies $T_S < T_{CMB}$
- Measurement of T_{gas}/T_R (z=17) < T_S/T_R < 0.105 (99% confidence).

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen and N. Mahesh, Nature 555, 67 (2018)

The discrepancy between data and fiducial prediction

- If T_R is taken to be the CMB temperature, this gives $T_{gas} < 5.2$ K
- But assuming standard decoupling and no stellar heating, one gets T_{gas} ~7 K
- It is possible due to instrumental effects and/or unappropriate recast of foregrounds.

How to solve this puzzle ? —— Exotic result requires exotic model !

 Recipe I: "Heating the CMB", introducing new radiation backgrounds [Feng and Holder 1802.07432], which could arise from either novel astrophysics, i.e. radio emission from early black holes [Ewall-Wice et al 1803.01815] or from more exotic sources [Fraser et al 1803.03245, Pospelov et al 1803.07048].

• Recipe II: "Cooling the gas", introducing additional cooling sources of the gas, which could be due to modified recombination history (earlier decoupling from CMB), or scattering of the gas on a colder (some fraction of) DM [Barkana, Nature 555, no. 7694, 71 (2018); Munoz & Loeb 1802.10094; Berlin et al 1803.02804; Barkana et al 1803.03091]

Recipe III: "Changing the cosmology ",

Cooling the gas

R. Barkana, Nature 555, no. 7694, 71 (2018) [arXiv:1803.06698 [astro-ph.CO]].

T. R. Slatyer and C. L. Wu, Phys.Rev. D98 (2018) no.2, 023013

Heating the CMB

M. Pospelov, J. Pradler, J. T. Ruderman and A. Urbano, Phys.Rev.Lett. 121 (2018) no.3, 031103 T. Moroi, K. Nakayama and Y. Tang, Phys.Lett.B 783, 301 (2018)

Changing the cosmology

- Modified cosmology/Friedmann equation, thus for H(z)
- New interactions betwwen DE and DM (difficult to realize in particle physics)

DM annihilation /decay

- Injection of energy into intergalactic gas suppress 21cm absorption signal.
- The observation of any 21cm absorption signal thus impose an upper limit on cross secton/lifetime.
- DM annihilation /decay during the cosmic dark ages cause additional ionization of the hydrogen gas.
- Resulting free electrons scatter the CMB photons and modify the measured anisotropies of the CMB.
- Three ingredients to calculate this effect:
- The spectrum of stable electromagnetically interacting particles produced by DM annihilation /decay and their redshift dependence of the energy injection.
- Calculating the cooling and energy losing of these electromagnetically interacting particles, the fraction of their energy converted into IGM and the duration of cooling process.
- Calculating the modification of ionization history due to these extra ionizing energy, and their effects on the anisotropies of the CMB.

- Primarily depending on how much of the injected power deposits into electromagnetically interacting particles.
- Secondly depending on the spectrum of the injected electrons, positrons and photons.

T. R. Slatyer, [arXiv:1506.03811,1506.03812].

• The observation of 21cm signal as an upper limit

On DM annihilation: by requiring injection induced ΔT_{21} < +100 or +150 mK

G. D' Amico, P. Panci, A. Strumia 1803.03629K. Cheung J-L Kuo, K-W Ng Yue-Lin S. Tsai,arXiv:1803.09398S.Clark, B.Dutta, Y.Gao, Y.-Z.Ma, L.E.Strigari, 1803.09390H. Liu and T. R. Slatyer, arXiv:1803.09739

A unified interpretation for the EDGES anomaly and ARCADE-2 excess

- Recipe I: requiring σ~v⁻⁴ scattering between sub-GeV DM and baryons in order to cool the gas enough, without violating CMB bounds.
- Recipe II: requiring ultra-light axion-like particle/dark photon with tiny mixing with photon in order to create sufficient new radiation backgrounds.
- Both above recipes potentially conflict with the WIMP scenario.
- Can we interpret EDGES result within conventional WIMP framework?

——Not perfect, but possible!

- The DM annihilation can produce secondary particles that can heat the gas (also produce extra ionization, extra photons, etc). At the same time, the electron-positron final states also produce synchrontron radiation in the intergalactic magnetic field, e.g., DM annihilation can heat gas and radiation background (CMB) simultaneously.
- If two "heating effects" can reach a certain balance, the EDGES anomaly can be explained by only using DM annihilation effect.

A hint from ARCADE-2 observation

Fiducial calculation

- Compton scattering initially dominates heating/cooling post-recombination. Thermal decoupling when scattering CMB photons can no longer heat gas at z_{dec}~150, thereafter gas cools adiabatically as non-relativistic particles T_{gas} ~ (1 + z)².
- After first galaxies form, gas is reheated by X-ray and Ly-alpha photons. X-ray heating can be efficient, while Ly-alpha heating less efficient, unless gas very cold.
- The evolution of Tgas can be described by standard evolution equations

$$\frac{dT_{\text{gas}}}{dz} = \frac{2T_{\text{gas}}}{1+z} + \frac{8\sigma_T a_R T_\gamma^4 x_e (T_\gamma - T_{\text{gas}})}{3H(z)(1+f_{\text{He}} + x_e)m_e c},$$
$$\frac{dx_e}{dz} = \frac{C}{(1+z)H(z)} \left[n_H \alpha_B (T_{\text{gas}}) x_e^2 - (1-x_e)\beta_B (T_\gamma) e^{-E_{12}/T_\gamma} \right]$$

Peebles C-factor
$$C = \frac{1 + K\Lambda_{2s \to 1s}n_H(1 + x_e)}{1 + K\Lambda_{2s \to 1s}n_H(1 - x_e) + K\beta_B(T_\gamma)n_H(1 - x_e)}$$

Fiducial calculation

 Taking into account X-ray and Lyman-alpha heating from first star formation, introducing additional terms in evolution equations

$$J_{X}(E,z) = \frac{(1+z)^{3}}{4\pi} \int_{z}^{\infty} \epsilon_{X}(E',z') \frac{dr_{p}}{dz'} dz'$$

$$= \frac{(1+z)^{3}}{4\pi} \int_{z}^{\infty} \epsilon_{X}(E',z') \frac{c}{(1+z')H(z')} dz'$$

$$\epsilon_{X}(E',z') = L_{X}(E')[\rho_{\Pi\Pi}^{SFR}(z') + \rho_{\Pi}^{SFR}(z')]$$

$$J_{\alpha}(\nu_{\alpha},z) = \frac{(1+z)^{3}}{4\pi} \int_{z}^{z_{\max}} \epsilon_{\alpha}(\nu',z') \frac{dr_{p}}{dz'} dz'$$

$$= \frac{(1+z)^{3}}{4\pi} \int_{z}^{z_{\max}} \epsilon_{\alpha}(\nu',z') \frac{c}{(1+z')H(z')} dz'$$

$$\epsilon_{\alpha}(\nu',z') = \epsilon_{\alpha}^{\Pi\Pi}(\nu',z') + \epsilon_{\alpha}^{\Pi}(\nu',z')$$

$$= s_{\Pi\Pi}(\nu') \rho_{\Pi\Pi}^{SFR}(z') + s_{\Pi}(\nu') \rho_{\Pi}^{SFR}(z')$$

Fiducial calculation

Effect of DM annihilation

Extra contributions from DM annihilation T. Kanzaki, M. Kawasaki, K. Nakayama, arXiv:0907.3985 $\frac{dx_e}{dz} = -\sum_{i} \int \frac{dz'}{H(z')(1+z')} \frac{n_{\rm DM}^2}{2n_H(z')} \langle \sigma v \rangle B(z', M_{\rm min}) \mathrm{Br}_i \frac{m_{\rm DM}}{13.6 \mathrm{eV}} f_{\rm eff}(m_{\rm DM}, i, z', z)$ $\frac{dT_{\text{gas}}}{dz} = -\sum_{i} \int \frac{dz'}{H(z')(1+z')} \frac{n_{\text{DM}}^2}{3n_H(z')} \langle \sigma v \rangle B(z', M_{\text{min}}) \text{Br}_i m_{\text{DM}} f_{\text{eff}}(m_{\text{DM}}, i, z', z)$ • The effective energy deposit $f_{\rm eff}(m_{\rm DM}, i, z', z) = \int dE \frac{E}{m_{\rm DM}} \left[2 \frac{dN_{e^+e^-}(i, m_{\rm DM})}{dE} f_{\rm eff}^{e^+e^-}(E, z', z) + \frac{dN_{\gamma}(i, m_{\rm DM})}{dE} f_{\rm eff}^{\gamma}(E, z', z) \right]$ rate (ionization, excitations, 10⁰ heating) $\int_{\rm eff}^{\rm eff} 10^{-1}$ e^- , 5GeV $\mu^+\mu^-$, 50GeV $\mu^+ \mu^-$, 5GeV $au^+ au^-$, 50GeV $au^+ au^-$, 5GeV bb, 50GeV e^+e^- , 10GeV $^+e^-$, 100GeV $\mu^+\mu^-$, 10GeV $\mu^+ \mu^-$, 100GeV $au^+ au^-$, 10GeV $au^+ au^-$. 100GeV $b\overline{b}$, 10GeV bb. 100GeV e^+e^- , 50GeV 10⁻² 10^{2} 10^{3} 10 z

Extragalactic synchrotron emission due to DM annihilation

• Isotropic spectrum of synchrotron emission

halo mass function

$$1 + \frac{\Delta_{c}}{3\bar{\rho}_{m,0}} \int_{M_{\min}}^{\infty} dMM \frac{dn}{dM} (M, z) f[c(M, z)]$$
function of concentration parameter
function of concentration parameter

$$\phi_{\nu}^{\text{syn}}(E_{\text{syn}}, z) = \frac{c(1+z)^{2}}{4\pi} \frac{\langle \sigma v \rangle \bar{\rho}_{\text{DM},0}^{2}}{2m_{\text{DM}}^{2}} \int_{z}^{\infty} dz' \frac{(1+z')^{3}}{H(z')} [B(z', M_{\min}) - 1] \frac{dN_{\text{syn}}}{dE'_{\text{syn}}} (E'_{\text{syn}}).$$
Hubble function

$$H_{0}\sqrt{\Omega_{m}(1+z)^{3} + (1-\Omega_{m})}$$
synchrotron radiation spectrum

$$H_{0}\sqrt{\Omega_{m}(1+z)^{3} + (1-\Omega_{m})}$$

$$\frac{4\sqrt{3}e^{3}Bm_{\text{DM}}^{2}}{m_{e}c^{2}\langle \sigma v \rangle \bar{\rho}_{\text{DM}}^{2}} dE'F(E/E_{c})\frac{dN_{e^{\pm}}}{dE}(E')$$
DM injection spectrum

$$\frac{\langle \sigma v \rangle \bar{\rho}_{\text{DM}}^{2}}{2m_{\text{DM}}^{2}b(\vec{x},E)} \int_{E}^{m_{\text{DM}}} dE' \frac{dN_{e^{\pm}}}{dE}(E')$$

- B(z) quickly drop-off at high redshift for massive halo, implies smaller M_{min} is favored.
- On the other hand, large B(z) also contributes to DM annihilation.
- Isotropic intensity of radiation background $I'(\nu, z) \simeq \frac{2\nu^2 k_B}{c^2} [T_{\rm CMB} + T_{\rm syn}(\nu, z)]$ $T_{\rm syn}(\nu, z) \equiv \frac{c^2 \phi_{\nu}^{\rm syn}(\nu, z)}{2\nu k_B}$
- ARCADE-2 excess corresponding to

 $T_{\rm syn}(\nu, z=0)$

spin-temperature with synchrotron emission

$$T_R(z) \equiv T_{\text{CMB}} + T_{\text{syn}}(\nu_{21}, z)$$
$$T_s = \frac{T_R(z) + (y_c + y_{\text{eff},\alpha})T_{\text{gas}}}{1 + y_c + y_{\text{eff},\alpha}}$$

Preliminary results

