

(Semi-) leptonic decays of $D^+_{(s)}$ at BESIII

<u>Huijing Li¹</u> and Tao Luo¹ 1. Fudan University

(On behalf of BESIII Collaboration)

November 11th, 2018

BESIII 粲物理强子物理研讨会 Nov.10th - Nov.11th, 2018

Outline

Introduction

> Pure leptonic decay: $D_s^+
ightarrow \mu^+
u_\mu$

Semi-leptonic decay:

$$D_{s}^{+} \rightarrow \eta^{(\prime)} e^{+} v_{e}$$

$$D_{s}^{+} \rightarrow K^{(*)0} e^{+} v_{e}$$

$$D^{0(+)} \rightarrow \pi^{-(0)} \mu^{+} v_{\mu}$$

$$D^{0} \rightarrow K^{-} \mu^{+} v_{\mu}$$

$$D^{0/+} \rightarrow a_{0} (980)^{-/0} e^{+} v_{e}$$

$$D^{+/0} \rightarrow \pi^{-} \pi^{+/0} e^{+} v_{e}$$

> Summary

Main goals

- **Constant** $f_{D_s^+}$, form factor $f_+^K(0)$: better calibrate Lattice QCD;
- **CKM matrix element** $|V_{cs}|$: better test the unitarity of the CKM matrix;
- Lepton flavor universality test.

Beijing Electron Positron Collider (BEPCII) in China

A double-ring collider with high luminosity

BESIII detector

$D^{0(+)}$ and D_s^+ data set at BESIII

- ➤ D⁰⁽⁺⁾ data:
 - Taken @ *E_{cms}* = 3.773 GeV
 - Integrated luminosity = 2.93 fb⁻¹ (The world's largest e⁺e⁻annihilation sample taken at the mass-threshold)
 - cross section: $\sigma(e^+e^- \rightarrow D^0\overline{D}^0)$ ~ 3.6 nb \Rightarrow 21 M D^0 produced!
 - cross section: $\sigma(e^+e^- \rightarrow D^+D^-) \sim 2.9 \text{ nb} \Rightarrow 16 \text{ M } D^+ \text{ produced}!$

 $\succ D_s^+$ data:

- @ *E_{cms}* = 4.009 GeV
 - Integrated luminosity = 0.482 fb⁻¹
 - $\sigma(e^+e^- \rightarrow D_s^+D_s^-) \approx 0.3 \text{ nb} \Rightarrow 0.3 \text{ M} D_s \text{ produced}$
 - D_s is produced in pair with equal mass

■@ *E_{cms}* = 4.178 GeV.

•Based on the data accumulated in 2016!

•Integrated luminosity = 3.19 fb⁻¹

• $\sigma(e^+e^- \rightarrow D_s^*D_s)$ ~ 1 nb \Rightarrow ~ 6 M D_s produced!!

D⁺_s pure leptonic decay

In the SM:
$$\Gamma(D_{(s)}^+ \to l^+ \nu) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} \left| V_{cd(s)} \right|^2 m_l^2 m_{D_{(s)}^+} \left(1 - \frac{m_l^2}{m_{D_{(s)}^+}^2} \right)^2$$

Measure the product of $f_{D_s^+}$ and $|V_{cs}|$ directly

Bridge to precisely measure

- Decay constant $f_{D_s^+}$ with input $|V_{cs}|^{\text{CKMfitter}}$
- CKM matrix element $|V_{cs}|$ with input $f_{D_s^+}^{
 m LQCD}$

 $D_s^+ \rightarrow \mu^+ \nu_{\mu}$

 $e^+e^-
ightarrow D_s^{*+} D_s^-$ 3.19 fb⁻¹ @4.178 GeV

$$M_{rec} = \sqrt{\left(E_{cm} - \sqrt{|\vec{p}_{D_s^-}|^2 + m_{D_s^-}^2}\right)^2 - |-\vec{p}_{D_s^-}|^2}$$

: closest to the D_s^* nominal mass

From 14 decays, we obtain about 0.389M ST D_s^- mesons

Charge conjugated processes are implied

$$M_{miss}^{2} = \left(E_{cm} - E_{tag} - E_{\gamma(\pi^{0})} - E_{\mu}\right)^{2} - \left|-\vec{p}_{tag} - \vec{p}_{\gamma(\pi^{0})} - \vec{p}_{\mu}\right|^{2}$$

 $4C + D_s^+$, D_s^- , D_s^* nominal mass constraint

Fitting result of M_{miss}^2

Unbinned fit

- M_{miss}^2 fit:
- 1. Constraining signal/BKGI ratio via signal MC
- 2. Fixing BKGII via inclusive MC

 $N(D_s^+ \to \mu^+ \nu) = 1135.0 \pm 33.1$ $B(D_s^+ \to \mu^+ \nu) = (5.28 \pm 0.15 \pm 0.14) \times 10^{-3}$

Comparisons of $f_{D_s^+}$

$$f_{D_s^+}|V_{cs}| = 242.5 \pm 3.5_{\text{stat.}} \pm 3.7_{\text{syst.}} \text{ MeV}$$

• Taking $|V_{cs}|^{\text{CKMfitter}}$ as input, we obtain

 $f_{D_s^+} = 249.1 \pm 3.6_{\text{stat.}} \pm 3.8_{\text{syst.}} \text{ MeV}$

Comparisons of $|V_{cs}|$

$$f_{D_s^+}|V_{cs}| = 242.5 \pm 3.5_{\text{stat.}} \pm 3.7_{\text{syst.}} \text{ MeV}$$

• Taking $f_{D_s^+}^{\mathrm{LQCD}[\mathrm{PRD}\ 90(2014)074509]}$ as input, we obtain

 $|V_{cs}| = 0.974 \pm 0.014_{\text{stat.}} \pm 0.016_{\text{syst.}}$

D_s semi-leptonic decay

Differential rates: $\frac{d\Gamma}{dq^2} = X \frac{G_F^2 p^3}{24\pi^3} |f_+(q^2)|^2 |V_{cd(s)}|^2 (X = 1 \text{ for } K^-, \pi^-, \overline{K}^0, \eta^{(\prime)}; X = \frac{1}{2} \text{ for } \pi^0)$ **Bridge to precisely measure**

-- Modified pole model

-- Series expansion

 $f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{M^{2}}\right)\left(1 - \alpha \frac{q^{2}}{M^{2}}\right)}$

 $f_{+}(t) = \frac{1}{P(t)\Phi(t,t_{0})}a_{0}(t_{0})(1 + \sum_{k=1}^{\infty}r_{k}(t_{0})[z(t,t_{0})]^{k})$

- Form factor $f_+(0)$, with input $|V_{cs}|^{\text{CKMfitter}}$
 - -- Single pole model

$$f_+(q^2) = \frac{f_+(0)}{1 - q^2/M_{pole}^2}$$

-- ISGW2 model

$$f_{+}(q^{2}) = f_{+}(q^{2}_{max}) \left(1 + \frac{r^{2}}{12}(q^{2}_{max} - q^{2})\right)^{-2}$$

• CKM matrix element $|V_{cs}|$ with input $f_{+}^{LQCD}(0)$ •Lepton flavor universality

$D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$

 $e^+e^-
ightarrow D_s^{*+} D_s^-$ 3.19 fb⁻¹ @4.178 GeV

 $B(D_s^+ \to \eta e^+ \nu_e) = (2.32 \pm 0.06 \pm 0.06)\%$ $B(D_s^+ \to \eta' e^+ \nu_e) = (0.82 \pm 0.07 \pm 0.03)\%$

The measured branching fraction using two different mode are constrained to be same.

$\eta - \eta'$ mixing angle ϕ_P

η-η' mixing angle

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\phi_P & -\sin\phi_P \\ \sin\phi_P & \cos\phi_P \end{pmatrix} \begin{pmatrix} |\eta_q\rangle \\ |\eta_s\rangle \end{pmatrix}$$
$$\frac{\Gamma(D_s^+ \to \eta' e^+ \nu) / \Gamma(D_s^+ \to \eta e^+ \nu)}{\Gamma(D^+ \to \eta' e^+ \nu) / \Gamma(D^+ \to \eta e^+ \nu)} \simeq \cot^4\phi_P$$

The contribution of the gluonic component is canceled; provides a complementary constraint for the gluonium contribution to $\eta^{(\prime)}$, thus improving our understanding of nonpertubative QCD dynamics and allowing for more precise theoretical calculation of *D* and *B* decays involving $\eta^{(\prime)}$; Paper only reported one uncertainty, but include both statistical and systematic

Form factor

Case	Simple pole			Modified pole			Series 2 Par.		
	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	$M_{ m pole}$	χ^2/NDOF	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	α	χ^2/NDOF	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	r_1	χ^2/NDOF
$\eta e^+ \nu_e$	0.450(5)(3)	3.77(8)(5)	12.2/14	0.445(5)(3)	0.30(4)(3)	11.4/14	0.446(5)(4)	-2.2(2)(1)	11.5/14
$\eta' e^+ \nu_e$	0.494(45)(10)	1.88(54)(5)	1.8/4	0.481(44)(10)	1.62(91)(11)	1.8/4	0.477(49)(11)	-13.1(76)(11)	1.9/4

$D_s^+ \rightarrow K^{(*)0} e^+ \nu_e$

 $e^+e^-
ightarrow D_s^{*+}D_s^-$ 3.19 fb⁻¹ @4.178 GeV

Cabibbo-suppressed

	Currently measurements are only from one single experiment						
• $\Gamma(D_s^+ \to h)$	$K^{*}(892)^{0}e^{+}\nu_{e}$)/ Γ_{total}				1	Γ ₂₉ /Γ	
VALUE (10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT		
$0.18 \pm 0.04 \pm 0.04$	0.01 32	HIETALA	2015		Uses CLEO data		
••• We do not u	use the following data for av	erages, fits, limits, etc. • • •					
$0.18 \pm 0.07 \pm 0.07$	0.01 7.5	YELTON	2009	CLEO	See HIETALA 2015		
• $\Gamma(D_s^+ \to I)$	$K^0 e^+ u_e$)/ $\Gamma_{ m total}$					Γ ₂₈ /Γ	
VALUE (10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT		
$0.39 \pm 0.08 \pm 0.08$	0.03 42	HIETALA	2015		Uses CLEO data		
••• We do not use the following data for averages, fits, limits, etc. •••							
$0.37 \pm 0.10 \pm 0.00$	0.02 14	YELTON	2009	CLEO	See HIETALA 2015		

arXiv:1811.02911

Branching fraction of $D_s^+ \rightarrow K^{(*)0} e^+ \nu_e$

 $B(D_s^+ \to K^0 e^+ \nu_e) = (3.25 \pm 0.38 \pm 0.16) \times 10^{-3}$ $B(D_s^+ \to K^{*0} e^+ \nu_e) = (2.37 \pm 0.26 \pm 0.20) \times 10^{-3}$

Consistent with the PDG.
Still, statistically limited.
Fitting error dominates systematics.

First measurement

Form factor

arXiv:1811.02911

Parameterizations	$f_+^K(0) V_{cd} $	$f_+^K(0)$
Simple pole [22]	$0.172 \pm 0.010 \pm 0.001$	$0.765 \pm 0.044 \pm 0.004$
Modified pole [22]	$0.163 \pm 0.017 \pm 0.003$	$0.725 \pm 0.076 \pm 0.013$
z series (2 par.) [23]	$0.162 \pm 0.019 \pm 0.003$	$0.720 \pm 0.084 \pm 0.013$

$$D_s^+ \rightarrow K^{*0} e^+ \nu_e$$

$$r_V = \frac{V(0)}{A_1(0)} = 1.67 \pm 0.34 \pm 0.16$$

$$r_2 = \frac{A_2(0)}{A_1(0)} = 0.77 \pm 0.28 \pm 0.07$$

$D^{0(+)} \rightarrow \pi^{-(0)} \mu^+ \nu_{\mu}$

$e^+e^- ightarrow \psi(3770) ightarrow D\overline{D}$ 2.93 fb⁻¹ @3.773 GeV

PRL 121 (2018) 171803

Mode	$N_{\rm ST}^{0(+)}$ (×10 ⁴)
$\pi^-\mu^+ u_\mu \ \pi^0\mu^+ u_\mu$	232.1(02) 152.2(02)

PRL 121 (2018) 171803

$$E_{\text{miss}} = E_{\text{beam}} - E_{\pi^{-}(0)} - E_{\mu^{+}}$$
$$\vec{p}_{\text{miss}} = -\vec{p}_{D^{-}} - \vec{p}_{\pi^{-}(0)} - \vec{p}_{\mu^{+}}$$

 $\begin{array}{l} {\rm BKGI:} \ D^{0(+)} \to \pi^{-(0)} \pi^+ \overline{K}{}^0 \\ {\rm BKGII:} \ D^0 \to K^- \pi^+, D^{0(+)} \to \pi^{-(0)} \pi^+, \\ D^{0(+)} \to \pi^{-(0)} \pi^+ \pi^0 \end{array}$

BKGIII: other non-peaking backgrounds

 $B(D^{0} \rightarrow \pi^{-} \mu^{+} \nu) = (0.272 \pm 0.008 \pm 0.006)\%$ $B(D^{+} \rightarrow \pi^{0} \mu^{+} \nu) = (0.350 \pm 0.011 \pm 0.010)\%$

PRL 121 (2018) 171803

Lepton flavor universality: [EPJC78(2018)501] SM expectation: 0.985 ± 0.002

$$R_{LFU}^{\pi^{-}} = \frac{\Gamma(D^{0} \to \pi^{-} \mu^{+} \nu_{\mu})}{\Gamma(D^{0} \to \pi^{-} e^{+} \nu_{e})} = 0.922 \pm 0.030 \pm 0.022$$

1. 7σ consistent

$$R_{LFU}^{\pi^{0}} = \frac{\Gamma(D^{+} \to \pi^{0} \mu^{+} \nu_{\mu})}{\Gamma(D^{+} \to \pi^{0} e^{+} \nu_{e})} = 0.964 \pm 0.037 \pm 0.026$$

0.5 \sigma consistent

$D^0 \to K^- \mu^+ \nu_\mu$

 $e^+e^-
ightarrow \psi(3770)
ightarrow {
m D}\overline{
m D}$ 2.93 fb⁻¹ @3.773 GeV

 $U_{miss} = E_{miss} - |\vec{p}_{miss}|$ $B(D^{0} \to K^{-} \mu^{+} \nu_{\mu}) = (3.413 \pm 0.019 \pm 0.035)\%$ $I_{0} = \frac{1}{2} \int_{0}^{1} \int_$

No evidence for LFU violation is found within current statistics.

Comparisons of $f_+^K(0)$

BESIII: higher precision; consistent with others.

arXiv:1810.03127

$$D^{0/+} \to a_0(980)^{-/0} e^+ \nu_e$$

PRL 121 (2018) 081802

The first time the $a_0(980)$ meson measured in a D^0 semileptonic decay The nature of the puzzling $a_0(980)$ states: $q\overline{q}$ [1] or tetraquark [2]

[1] PRD48(1993)1185[2] PRD 81 (2010) 074031

 $D^{+/0} \rightarrow \pi^- \pi^{+/0} e^+ \nu_e$

 $e^+e^-
ightarrow \psi(3770)
ightarrow D\overline{D}$ 2.93 fb⁻¹ @3.773 GeV

arXiv:1809.06496

The $\pi^+\pi^-$ **S**-wave contribution is observed for the first time, with the significance greater than 10σ .

Hadronic form factor ratios of $D \rightarrow \rho e^+ \nu_e$ at $q^2 = 0$:

$$r_{2} = \frac{A_{2}(0)}{A_{1}(0)} = 0.845 \pm 0.056 \pm 0.039$$
$$r_{V} = \frac{V(0)}{A_{1}(0)} = 1.695 \pm 0.083 \pm 0.051$$
$$\rho_{r_{V},r_{2}} = -0.206$$

Proposed by [PRD82(2016)034016]: A model-independent way

$$R = \frac{B(D^+ \to f_0(980)e^+\nu_e) + B(D^+ \to f_0(500)e^+\nu_e)}{B(D^+ \to a_0(980)e^+\nu_e))}$$

 $R = 1.0 \pm 0.3$ for two-quark description for $f_0(500)$ and $f_0(980)$; $R = 3.0 \pm 0.9$ for tetraquark description. Favor

 $B(f_0(500) → π^+π^-) = 67\%$ [PDG 2016] $B(a_0(980) → π^0 η) = 85\%$ [PDG 2016]

Neglect the $f_0(980)$ component and assume that the dominant decays are $\pi\pi$ for $f_0(500)$ and $\pi\eta$ and $K\overline{K}$ for $a_0(980)^0$.

Other analyses at **BESIII**

$D^+ \to \eta(\eta') e^+ \nu_e$	PRD 97 (2018)092009
$D^+ \to \overline{K}{}^0 \mu^+ \nu_\mu$	EPJC 76 (2016) 369
$D^+\to \overline{K}{}^0(\pi^0)e^+\nu_e$	PRD 96 (2017) 012002
$D^+ \to \gamma e^+ \nu_e$	PRD 95 (2017)071102(R)
$D^+ \rightarrow D^0 e^+ \nu_e$	PRD 96 (2017)092002
$D_s^+ \to \phi \mu/e^+ \nu, \eta^{(\prime)} \mu$	ι ⁺ ν PRD 97 (2018)012006

• • •

Summary

↔ With 2.93 and 3.19 fb⁻¹ data taken at 3.773 and 4.18 GeV, BESIII have studied the pure and semi-leptonic $D_{(s)}$ decay, and measure their branching fractions, decay constant $f_{D_s^+}$, form factor $f_+^K(0)$ and $f_+^{\eta^{(\prime)}}(0)$, and the CKM matrix element $|V_{cs}|$, the lepton universality test, as well as $\eta - \eta'$ mixing angle.

• Improved measurements of decay constant $f_{D_s^+}$ and form factor $f_+^K(0)$ and $f_+^{\eta^{(\prime)}}(0)$, which are important to test and calibrate LQCD calculations.

• Improved measurements of CKM matrix element $|V_{cs}|_{,}$ which are important to test the CKM matrix unitarity.

***** Based on 3.19 fb⁻¹ data at 4.178 GeV accumulated in 2016, the measurements of $f_{D_s^+}$ and $|V_{cs}|$ by other D_s^+ decays can be expected in the near future.

Thanks for your attention!

Back up

$D_s^+ \to K^0 e^+ \nu_e$

The correlation matrix including both statistical and systematic Uncertainties. [preliminary]

	$0.00 < q^2$ <	$<= 0.35 \ 0.35 < q^2 <= 0.70$	$0.70 < q^2 <= 1.05$	$1.05 < q^2 <= 1.40$	$1.40 < q^2 <= q_{\max}^2$
$\rho_i^{\rm stat+syst}$	1.000	-0.154	0.016	-0.000	0.001
	-0.154	1.000	-0.117	0.011	-0.001
	0.016	-0.117	1.000	-0.102	0.008
	-0.000	0.011	-0.102	1.000	-0.075
	0.001	-0.001	0.008	-0.075	1.000

In the calculation of the systematic covariance matrix, we have considered the systematic uncertainties arising from the uncertainties in the number of D_s^- tags, D_s^+ lifetime, MC statistics, $E_{\gamma max}$ cut, M_{Ks0e+} cut, fits to MM² distribution, tracking and PID efficiencies.

$D_s^+ \to K^{*0} e^+ \nu_e$

The differential decay rate for $D_s^+ \to K^{*0} e^+ \nu_e$ can be expressed in terms of three helicity amplitudes $(H_+(q^2), H_-(q^2) \text{ and } H_0(q^2))$

$$\begin{aligned} \frac{d^{5}\Gamma}{dm_{K\pi}dq^{2}d\cos\theta_{K}d\cos\theta_{e}d\chi} &= \frac{3}{8(4\pi)^{4}}G_{F}^{2}|V_{cd}|^{2}\frac{p_{K\pi}q^{2}}{M_{D_{s}}^{2}}\mathcal{B}(K^{*0}\rightarrow K^{+}\pi^{-})|\mathcal{BW}(m_{K\pi})|^{2} \\ &\times [(1+\cos\theta_{e})^{2}\sin^{2}\theta_{K}|H_{+}(q^{2},m_{K\pi})|^{2} \\ &+ (1-\cos\theta_{e})^{2}\sin^{2}\theta_{K}|H_{-}(q^{2},m_{K\pi})|^{2} \\ &+ 4\sin^{2}\theta_{e}\cos^{2}\theta_{K}|H_{0}(q^{2},m_{K\pi})|^{2} \\ &+ 4\sin\theta_{e}(1+\cos\theta_{e})\sin\theta_{K}\cos\theta_{K}\cos\chi H_{+}(q^{2},m_{K\pi})H_{0}(q^{2},m_{K\pi}) \\ &- 4\sin\theta_{e}(1-\cos\theta_{e})\sin\theta_{K}\cos\theta_{K}\cos\chi H_{-}(q^{2},m_{K\pi})H_{0}(q^{2},m_{K\pi}) \\ &- 2\sin^{2}\theta_{e}\sin^{2}\theta_{K}\cos2\chi H_{+}(q^{2},m_{K\pi})H_{-}(q^{2},m_{K\pi})]. \end{aligned}$$

The helicity amplitudes of $H_{+}(q^{2})$, $H_{-}(q^{2})$ and $H_{0}(q^{2})$ take the form of $H_{\pm}(q^{2}) = (M_{D_{s}} + m_{K\pi})A_{1}(q^{2}) \mp \frac{2M_{D_{s}}P_{K\pi}}{M_{D_{s}} + M_{K\pi}}V(q^{2})$ and $H_{0}(q^{2}) = \frac{1}{2m_{K\pi}q}[(M_{D_{s}}^{2} - m_{K\pi}^{2} - q^{2})(M_{D_{s}} + m_{K\pi})A_{1}(q^{2}) - \frac{4M_{D_{s}}^{2}p_{K\pi}^{2}}{M_{D_{s}} + M_{K\pi}}A_{2}(q^{2})],$ $A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/M_{A}^{2}}$ and $V(q^{2}) = \frac{V(0)}{1 - q^{2}/M_{V}^{2}}$, $r_{V} = \frac{V(0)}{A_{1}(0)}$ and $r_{2} = \frac{A_{2}(0)}{A_{1}(0)}.$ The Breit-Wigner function of K^{*0} line shape takes the form as $\mathcal{BW}(M_{K\pi}) = \frac{\sqrt{m_{0}\Gamma_{0}(p/p_{0})}}{m_{0}^{2} - m_{K\pi}^{2} - im_{0}\Gamma(m_{K\pi})}\frac{B(p)}{B(p_{0})}$ where $B(p) = \frac{1}{\sqrt{1 + R^{2}p^{2}}}$ with R = 3 GeV⁻¹ and $\Gamma(m_{K\pi}) = \Gamma_{0}(\frac{p}{p_{0}})^{3}\frac{m_{0}}{m_{K\pi}}(\frac{B(p)}{B(p_{0})})^{2}.$

$D_s^+ \to K^{*0} e^+ \nu_e$

Following the same parametrization used in;

[1] BESIII Collaboration, M. Ablikim, et al., Phys. Rev. D 94, 032001 (2016).
[1] CLEO Collaboration, S. Dobbs, et al., Phys. Rev. Lett. 110, 131802 (2013).

 $r_{\rm V}$ =1.67±0.34 ±0.16 and r_2 =0.77 ± 0.28±0.07

The first errors are statistical and the second are systematic.

computed results are more and more important. At present, the main uncertainty of the apex of the B_d unitarity triangle (UT) of B meson decays is dominated by the theoretical errors in the LQCD determinations of the *B* meson decay constants $f_{B_{(s)}}$ and decay form factor $f_{+}^{B \to \pi}(0)$ [3]. Precision measurements of the charmed-sector form factors $f_{+}^{K(\pi)}(q^2)$ can be used to establish the level of reliability of LQCD calculations of $f_{+}^{B \to \pi}(0)$. If the LQCD calculations of $f_{+}^{K(\pi)}(q^2)$ agree well with measured $f_{+}^{K(\pi)}(q^2)$ values, the LQCD calculations of the form factors for B meson semileptonic decays can be more confidently used to improve measurements of B meson semileptonic decay rates. The improved measurements of B meson semileptonic decay rates would, in turn, improve the determination of the B_d unitarity triangle, with which one can more precisely test the SM and search for NP.

$D^+ o \overline{K}{}^0 \mu^+ u_\mu$

EPJC 76, 369(2016)

37

$e^+e^- o \psi(3770) o D^+D^-$ 2.93 fb⁻¹ @3.773 GeV

Simultaneous fit: The double tag production yield has been constrained to be same for the two modes, which is corrected by the detector efficiency and daughter decay branching fractions: $N_{DT}^{prd} = 132712 \pm 1041$

 $B\left(D^+ \to \overline{K}^0 \ \mu^+ \ \nu_\mu \ \right) = (8.72 \pm 0.07 \pm 0.18)\%$

Search for the radiative leptonic decay $D^+ \rightarrow \gamma e^+ \nu_e$

- Not subject to the helicity suppression rule due to the presence of a radiative photon.
- Predicted rates are reachable range :

e.g., J.-C. Yang and M.-Z. Yang predict B(D⁺ $\rightarrow \gamma e^+ v_e$) ~ 2×10⁻⁵ via Factorization.

ი

Search for the rare decay $D^+ \rightarrow D^0 e^+ v_e$

Applying the SU(3) symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation, and its theoretical value is 2.78 x 10⁻¹³ [EPJC 59, 841 (2009)]

 $B(D^+ \rightarrow D^0 e^+ v_e) < 8.7 \times 10^{-5} at 90\% C.L.$

$D^+ \rightarrow \overline{K}^0(\pi^0) e^+ \nu_e$

PRD 96 (2017) 012002

 $e^+e^- o \psi(3770) o D^+D^-$ 2.93 fb⁻¹ @3.773 GeV

A binned extended maximum likelihood fit

 $B(D^+ \to \overline{K}{}^0 e^+ \nu_e) = (8.60 \pm 0.06 \pm 0.15)\%$ $B(D^+ \to \pi^0 e^+ \nu_e) = (0.363 \pm 0.008 \pm 0.005)\%$

Comparisons of $f_+^K(0)$ for $D \to K e^+ \nu_e$

BESIII: higher precision; consistent with others.

Weights of measurement on $|V_{cs(d)}|$

