

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P, P \rightarrow V, V \rightarrow V \dots}$

Chang Qin (常钦)

Henan Normal University

Collaborated with 李晓楠, 李新强, 苏芳, 杨亚东

arXiv:1810.00296[hep-ph]

2018 BESIII 粲强子物理研讨会

Nov. 2018. @ 武汉大学

Outline

1 Motivation

- 2 Brief review of theoretical framework
- **3** Example 1: f_P and f_V
- 4 Example 2: f_A
- **5** Covariance of CLF QM: $f_{V,A}$
- 6 Example 3: $\mathcal{F}^{P \rightarrow V}$

Self-consistency and covariance of light-front quark models: testing via $\overline{f_{P,V,A}}$ and $F_{P \to P}$, $P \to V$, $V \to V$

- Motivation

1. Motivation

Standard light-front quark model (SLF QM);

M. V. Terentev, SJNP 24 (1976) 106; P. L. Chung et al., PLB 205 (1988) 545.

The SLF QM is a relativistic constituent QM based on the LF formalism, which provides a conceptually simple and phenomenologically feasible framework for calculating the non-perturbative quantities of hadrons.

two problems: non-manifestation of covariance; zero-mode issue

Covariant light-front quark model (CLF QM);

H. Y. Cheng et al., Phys. Rev. D 57 (1998) 5598; W. Jaus, Phys. Rev. D 60 (1999) 054026; It provides a systematic way to explore the zero-mode effects; the results are guaranteed to be covariant after the spurious contribution proportional to $\omega = (0, 2, 0_{\perp})$ is canceled by the inclusion of zero-mode contributions.

"Exclusive $D_s \to K$, K^* , ϕ decays" W. Wang and Y. L. Shen, PRD 78 (2008) 054002; " J/ψ weak decays" Y. L. Shen and Y. M. Wang PRD 78, 074012 (2008); " $\Xi_{cc}^{++}, \Xi_{cc}^{+}, \Omega_{cc}^{+}$ weak decays $(1/2 \to 3/2 \text{ case})$ " Z. X. Zhao, EPJC 78 (2018) no.9, 756; " $\eta_c \to \gamma^* \gamma$ " H. Y. Ryu, H. M. Choi and C. R. Ji, Phys.Rev. D98 (2018) no.3, 034018; " $D(D_s) \to (P, S, V, A)\ell v_\ell$ decays" H. Y. Cheng and X. W. Kang, EPJC 77 (2017) no.9, 587; "Heavy pentaquark transition (Θ_c, Ξ_{5c})" H. Y. Cheng , C. K. Chua and C. W. Hwang, PRD 70 (2004) 034007

"Radiative decays of charmed vector mesons" H. M. Choi, PRD 75 (2007) 073016

.....

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}, P \to V, V \to V$

- Motivation

Two problems:

Self-consistency problem of CLF QM

 $[f_V]_{\mathrm{CLF}}^{\lambda=0} \neq [f_V]_{\mathrm{CLF}}^{\lambda=\pm}$

due to the additional contribution characterized by the $B_1^{(2)}$ function to $[f_V]_{CLF}^{\lambda=0}$.

Possible solution: H. M. Choi and C. R. Ji, Phys. Rev. D 89 (2014) no. 3, 033011. PHYSICAL REVIEW D 69, 074025 (2004)

Covariant light-front approach for s-wave and p-wave mesons: Its application to decay constants and form factors

```
Hai-Yang Cheng and Chun-Khiang Chua
Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China
```

Chien-Wen Hwang Department of Physics, National Kaohsiang Normal University, Kaohsiang, Taiwan 802, Republic of China

²When \mathcal{A}_{k}^{V} is contracted with the longitudinal polarization vector $e^{\mu}(0), f_{V}$ will receive additional contributions characterized by the *B* functions defined in Appendix B [see Eq. (3.5) of [14]] which give about 10% corrections to f_{V} for the vertex function h_{V}^{i} used in Eq. (2.11). It is not clear to us why the result of f_{V} depends on the polarization vector. Note that the new residual contributions are

$$\sqrt{2N_c}\frac{\chi(x,k_{\perp})}{1-x} \rightarrow \frac{\psi(x,k_{\perp})}{\sqrt{x(1-x)\hat{M}_0}}, \qquad D_{V,\rm con} \rightarrow D_{V,\rm LF}, \qquad ({\sf type-I})$$

 $\chi(x, k_{\perp})$: CLF expressions \longleftrightarrow SLF ones via Z.M. independent f_P or $f_{P \to P}^+$. D: $D_{V, \text{con}} = M + m_1 + m_2$ and $D_{V, \text{LF}} = M_0 + m_1 + m_2$

$$\sqrt{2N_c}\frac{\chi(x,k_{\perp})}{1-x} \rightarrow \frac{\psi(x,k_{\perp})}{\sqrt{x(1-x)\hat{M}_0}}, \qquad M \rightarrow M_0. \quad \text{(type-II)}$$

 $\Rightarrow [f_V]_{CLF}^{\lambda=0} = [f_V]_{CLF}^{\lambda=\pm} = [f_V]_{SLF}$ Questions: (i) f_A , $F_{P \to V}$? (ii) $[f_V]_{SLF}^{\lambda=0} = [f_V]_{SLF}^{\lambda=\pm}$? self-consistency of SLF QM? (iii) zero-mode contribution? Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}$, $P \to V$, $V \to V$

- Motivation

Covariance problem of CLF QM

PHYSICAL REVIEW D. VOLUME 60, 054026

Covariant analysis of the light-front quark model

Wolfgang Jaus

wourgang Jaus The manifest covariance is a remarkable Institut für Theoretische Physik der Universität Zürich, Winterhurerstrasse 190, CH-8057 Zürich, Switzerland (Received 21 December 1998; published 9 August 1999) feature of CLF QM relative to SLF QM.

However.

the covariance is in fact violated when the LF vertex function and operator are used (especially for spin-1 system).

The formulas for coupling constants and form factors have been derived in a manifestly covariant framework. However, if these formulas are evaluated with the symmetric light-front vertex function (5.2), the covariance conditions (3.32) are violated, i.e., the integrals of Eq. (3.32) are nonzero. Consequently, some residual ω dependence is introduced into these expressions if Eqs. (5.2) and (5.3) are used for the vertex function. This remaining ω dependence is **minimal** in the sense that only the B coefficients $B_n^{(m)}$ in the

Taking $\mathcal{A} \equiv \langle 0 | \bar{q}_2 \Gamma q_1 | M(p) \rangle$ as an example

$$\hat{\mathcal{A}}_V^\mu = M_V(\epsilon^\mu f_V + \omega^\mu g_V)\,,$$

 $\hat{\mathcal{A}}^{\mu}_{V}$ is obviously not covariant unless the unphysical decay constant $q_{V}=0$ since ω^{μ} is a fixed vector.

(i) Is the covariance violation minimal? (ii) Can the strict covariance be recovered ?

> Self-consistency, Covariance. Zero-mode contribution

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

Brief review of theoretical framework

2. Brief review of theoretical framework

The main task:

$$\mathcal{A} \equiv \langle 0|\bar{q}_2\Gamma q_1|M(p)\rangle; \qquad \mathcal{B} \equiv \langle M''(p'')|\bar{q}_1''\Gamma q_1'|M'(p')\rangle$$

6

e

2.1 The SLF QM

$$|M\rangle = \sum_{h_1,h_2} \int \frac{\mathrm{d}k^+ \mathrm{d}^2 k_\perp}{(2\pi)^3 2 \sqrt{k_1^+ k_2^+}} \Psi_{h_1,h_2}(k^+,k_\perp) |q_1:k_1^+,k_{1\perp},h_1\rangle |\bar{q}_2:k_2^+,k_{2\perp},h_2\rangle \,,$$

one-particle states: $|q_1\rangle = \sqrt{2k_1^+}b^{\dagger}|0\rangle$ with $\{b_h^{\dagger}(k), b_{h'}(k')\} = (2\pi)^3\delta(k^+ - k'^+)\delta^2(k_{\perp} - k'_{\perp})\delta_{hh'}$.

Wavefunction:

$$\begin{split} \Psi_{h_1,h_2}(x,k_\perp) &= S_{h_1,h_2}(x,k_\perp) \; \psi(x,k_\perp) \; , \\ \text{Radial WF} \quad \psi_s(x,k_\perp) &= 4 \frac{\pi^{\frac{3}{4}}}{\beta^{\frac{3}{2}}} \sqrt{\frac{\partial k_z}{\partial x}} \exp\left[-\frac{k_z^2 + k_\perp^2}{2\beta^2}\right] \; , \qquad \text{s-wav} \\ \psi_p(x,k_\perp) &= \frac{\sqrt{2}}{\beta} \; \psi_s(x,k_\perp) \; . \qquad \text{p-wave} \\ \text{Spin-orbital WF} \quad S_{h_1,h_2} &= \frac{\bar{u}_{h_1}(k_1) \; \Gamma' \; v_{h_2}(k_2)}{\sqrt{2} \hat{M}_0} \; , \end{split}$$

obtained by the interaction-independent Melosh transformation, where

$$\Gamma'_{P,V;1A,3A} = \gamma_5 \;, - \; \not \ell + \frac{\hat{\epsilon} \cdot (k_1 - k_2)}{D_{V,\mathrm{LF}}} \;, - \frac{\hat{\epsilon} \cdot (k_1 - k_2)}{D_{1A,\mathrm{LF}}} \; \gamma_5 \;, - \frac{\hat{M}_0^2}{2\sqrt{2}M_0} \left[\not \ell + \frac{\hat{\epsilon} \cdot (k_1 - k_2)}{D_{3A,\mathrm{LF}}} \right] \; \gamma_5 \;.$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}, P \rightarrow V, V \rightarrow V \dots$

Brief review of theoretical framework

Equipped with the formulae given above, one can obtain

$$\begin{split} \mathcal{A} &= \sqrt{N_c} \sum_{h_1,h_2} \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3 2 \sqrt{x\bar{x}}} \psi(x,k_\perp) \, S_{h_1,h_2}(x,k_\perp) \, C_{h_1,h_2}(x,k_\perp) \, , \\ \mathcal{B} &= \sum_{h_1',h_1'',h_2} \int \frac{\mathrm{d}k'^+ \mathrm{d}^2 k'_\perp}{(2\pi)^3 2 \sqrt{k'^+ k''^+}} \psi''^* (k''^+,\bar{k}''_\perp) \, \psi'(k'^+,k'_\perp) \\ &\times S''_{h_1'',h_2}'(k''^+,k''_\perp) \, C_{h_1'',h_1'}(k''^+,k''_\perp,k'^+,k'_\perp) \, S'_{h_1',h_2}(k'^+,k'_\perp) \, , \end{split}$$

where $C_{h_1,h_2}\equiv \bar{v}_{h_2}\Gamma u_{h_1}$ and $C_{h_1^{\prime\prime},h_1^{\prime}}\equiv \bar{u}_{h_1^{\prime\prime}}\Gamma u_{h_1^{\prime}}$

2.2 The CLF QM

Manifestly covariant one-loop integrals:

$$\mathcal{A} = N_c \int \frac{d^4k}{(2\pi)^4} \frac{H_M}{N_1 N_2} S_{\mathcal{A}}, \qquad \mathcal{B} = N_c \int \frac{d^4k'}{(2\pi)^4} \frac{H_{M'} H_{M''}}{N'_1 N''_1 N_2} iS_{\mathcal{B}},$$

where, $S_{\mathcal{A}} = \text{Tr} \left[\Gamma \left(k_1 + m_1 \right) (i\Gamma_M) \left(- k_2 + m_2 \right) \right]$

ere, $S_{\mathcal{A}} = \operatorname{Tr} \left[\Gamma \left(k_{1} + m_{1} \right) (i\Gamma_{M}) \left(- k_{2} + m_{2} \right) \right]$ $S_{\mathcal{B}} = \operatorname{Tr} \left[\Gamma \left(k_{1}' + m_{1}' \right) (i\Gamma_{M}') \left(- k_{2} + m_{2} \right) (i\gamma^{0}\Gamma_{M}''^{\dagger}\gamma^{0}) (k_{1}'' + m_{1}'') \right]$ Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P,P \to V,V \to V}$ Brief review of theoretical framework

8

Manifestly covariant expression $\xrightarrow{\text{integrating out } k^-}$ LF expression

Assumption: $H_{M,M',M''}$ are analytic in the upper complex $k^ (k'^-)$ plane.

Consequently, q_2 is on mass-shell, and

$$\begin{split} &N_1 \to \hat{N}_1 \;, \qquad N_1^{\prime(\prime\prime)} \to \hat{N}_1^{\prime(\prime\prime)} \;, \qquad \mathcal{S} \to \hat{\mathcal{S}} \;, \\ &\chi_M = H_M/N_1 \to h_M/\hat{N}_1 \;, \qquad D_{M,\mathrm{con}} \to D_{M,\mathrm{LF}} \;. \end{split}$$

Then,

$$\hat{\mathcal{A}} = N_c \int \frac{\mathrm{d}k^+ \mathrm{d}^2 k_\perp}{2(2\pi)^3} \frac{-ih_M}{\bar{x}p^+ \hat{N}_1} \hat{S}_{\mathcal{A}}, \qquad \hat{\mathcal{B}} = N_c \int \frac{\mathrm{d}k'^+ \mathrm{d}^2 k'_\perp}{2(2\pi)^3} \frac{h_{M'} h_{M''}}{\bar{x}p'^+ \hat{N}_1' \hat{N}_1''} \hat{S}_{\mathcal{B}}.$$
 (1)

In order to restore the zero-mode contribution and eliminate ω dependence, we need the following decomposition and replacements

Jaus, Phys. Rev. D 60 (1999) 054026. Phys. Rev. D 69 (2004) 074025

$$\begin{split} \text{for } \hat{\mathcal{A}} &: \quad \hat{k}_{1}^{\mu} \to x p^{\mu} + \dots(\omega, C_{i}^{(j)}) \,, \\ & \hat{k}_{1}^{\mu} \hat{k}_{1}^{\nu} \to -g^{\mu\nu} \frac{k_{\perp}^{2}}{2} + p^{\mu} p^{\nu} x^{2} + \frac{p^{\mu} \omega^{\nu} + p^{\nu} \omega^{\mu}}{\omega \cdot p} B_{1}^{(2)} + \dots(\omega, C_{i}^{(j)}) \,, \\ & \hat{N}_{2} \to Z_{2} = \hat{N}_{1} + m_{1}^{2} - m_{2}^{2} + (\bar{x} - x) M^{2} \,, \end{split}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $\overline{F}_{P \to P, P \to V, V \to V, \dots, V}$

Brief review of theoretical framework

$$\begin{split} &\text{for } \hat{\mathcal{B}}: \quad \hat{k}_{1}^{\prime \mu} \to P^{\mu} A_{1}^{(1)} + q^{\mu} A_{2}^{(1)} + ...(\omega, \mathbf{C}_{\mathbf{i}}^{(\mathbf{j})}) \,, \\ & k_{1}^{\prime \mu} \hat{N}_{2} \to q^{\mu} \left[A_{2}^{(1)} Z_{2} + \frac{q \cdot P}{q^{2}} A_{1}^{(2)} \right] \,, \\ & \hat{k}_{1}^{\prime \mu} \hat{k}_{1}^{\prime \nu} \to g^{\mu \nu} A_{1}^{(2)} + P^{\mu} P^{\nu} A_{2}^{(2)} + (P^{\mu} q^{\nu} + q^{\mu} P^{\nu}) A_{3}^{(2)} + q^{\mu} q^{\nu} A_{4}^{(2)} \\ & \quad + \frac{P^{\mu} \omega^{\nu} + \omega^{\mu} P^{\nu}}{\omega \cdot P} B_{1}^{(2)} + ...(\omega, \mathbf{C}_{\mathbf{i}}^{(\mathbf{j})}) \,, \\ & \hat{k}_{1}^{\prime \mu} \hat{k}_{1}^{\prime \nu} \hat{N}_{2} \to g^{\mu \nu} A_{1}^{(2)} Z_{2} + q^{\mu} q^{\nu} \left(A_{4}^{(2)} Z_{2} + 2 \frac{q \cdot P}{q^{2}} A_{2}^{(1)} A_{1}^{(2)} \right) \\ & \quad + \frac{P^{\mu} \omega^{\nu} + \omega^{\mu} P^{\nu}}{\omega \cdot P} B_{3}^{(3)} + ...(\omega, \mathbf{C}_{\mathbf{i}}^{(\mathbf{j})}) \,, \end{split}$$

where $P = p^{\prime} + p^{\prime \prime}$, $q = p^{\prime} - p^{\prime \prime}$ and

$$\begin{split} A_1^{(1)} &= \frac{x}{2} \,, \qquad A_2^{(1)} = \frac{x}{2} - \frac{k'_{1\perp} \cdot q_{\perp}}{q^2} \,, \qquad A_1^{(2)} = -k'_{1\perp} - \frac{(k'_{1\perp} \cdot q_{\perp})^2}{q^2} \,, \\ B_1^{(2)} &= \frac{x}{2} Z_2 + \frac{k'_{\perp}}{2} \,, \qquad B_3^{(3)} = B_1^{(2)} Z_2 + (P^2 - \frac{(q \cdot P)^2}{q^2}) A_1^{(1)} A_1^{(2)} \,, \\ Z_2 &= \hat{N}_1' + m'_1^2 - m_2^2 + (\bar{x} - x) M'^2 + (q^2 + q \cdot P) \frac{k'_{1\perp} \cdot q_{\perp}}{q^2} \,, \end{split}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P, P \to V}$, $V \to V \dots$

Brief review of theoretical framework

For a given quantity, in order to clearly show the zero-mode effect, we have

 $\mathcal{Q}^{\text{full}} = \mathcal{Q}^{\text{val.}} + \mathcal{Q}^{\text{z.m.}}$

 Q^{val} : assuming $k_2^+ \neq 0$ and $k_1^+ \neq 0 \implies$ poles of N_2 and N_1 are safely located inside and outside, respectively, the contour of k^- (k'^-) integral; zero-mode contributions are absent.

decomposition and replacements $\longrightarrow k_2^2=m_2^2$ and four-momentum conservation at each vertex.

It is expected that $Q^{\text{full}}(Q^{\text{val.}}) = Q^{\text{SLF}}$ if we believe that zero-mode contribution has (not) been included in Q^{SLF} ,

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

Example 1: f_P and f_V

3. Example 1: f_P and f_V

 $\begin{array}{ll} \text{Definition:} & \langle 0|\bar{q}_2\gamma^{\mu}\gamma_5 q_1|P(p)\rangle = if_Pp^{\mu} \,, & \langle 0|\bar{q}_2\gamma^{\mu}q_1|V(p,\lambda)\rangle & = f_VM_V\epsilon^{\mu} \,. \\ \\ \textbf{3.1} \,\, f_P \end{array}$

$$\begin{split} [f_P]_{\rm SLF} &= \sqrt{N_c} \int \frac{\mathrm{d}x \, \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\psi_s(x,k_\perp)}{\sqrt{x\bar{x}}} \frac{2}{\sqrt{2} \hat{M}_0} (\bar{x}m_1 + xm_2) \\ [f_P]_{\rm full} &= [f_P]_{\rm val.} = N_c \int \frac{\mathrm{d}x \, \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_P}{\bar{x}} \, 2(\bar{x}m_1 + xm_2) \,, \end{split}$$

- **no residual** ω dependence
- $[f_P]_{\text{full}} = [f_P]_{\text{val}}$: f_P is free of the Z.M. contribution
- $[f_P]_{SLF} = [f_P]_{val.} = [f_P]_{full}$ within both type-I and -II schemes.

Fitting to the data of f_P

	$\beta_{q\bar{q}}$	$\beta_{sar{q}}$	$\beta_{s\bar{s}}$	$\beta_{car{q}}$	$\beta_{c\bar{s}}$
this work	$314.1_{-0.5}^{+0.5}$	$342.8^{+1.3}_{-1.4}$	$365.8^{+1.2}_{-1.8}$	$464.1^{+11.2}_{-10.8}$	$537.5^{+9.0}_{-8.7}$
PLB 460 (1999) 461	365.9	388.6	412.8	467.9	501.6
	$\beta_{c\bar{c}}$	$eta_{bar q}$	$\beta_{b\bar{s}}$	$\beta_{b\bar{c}}$	$\beta_{bar{b}}$
this work	$654.5^{+143.3}_{-132.4}$	$547.9^{+9.9}_{-10.2}$	$601.4^{+7.3}_{-7.3}$	$947.0^{+11.2}_{-10.9}$	$1391.2^{+51.6}_{-48.2}$
PLB 460 (1999) 461	650.9	526.6	571.2	936.9	1145.2

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}$, $P \rightarrow V$, $V \rightarrow V$

Example 1: f_P and f_V

3.2 f_V

Theoretical results:

$$\begin{split} & [f_V]_{\rm SLF}^{\lambda=0} = \sqrt{N_c} \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\psi_s(x,k_\perp)}{\sqrt{x\,\bar{x}}} \frac{2}{\sqrt{2}\hat{M}_0} \left(\bar{x}m_1 + xm_2 + \frac{2k_\perp^2}{D_{V,\rm LF}}\right), \\ & [f_V]_{\rm SLF}^{\lambda=\pm} = \sqrt{N_c} \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\psi_s(x,k_\perp)}{\sqrt{x\,\bar{x}}} \frac{2}{\sqrt{2}\hat{M}_0} \left(\frac{\hat{M}_0^2}{2M_V} - \frac{k_\perp^2}{D_{V,\rm LF}} \frac{M_0}{M_V}\right), \\ & [f_V]_{\rm full}^{\lambda=0} = N_c \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_V}{\bar{x}} \frac{2}{M_V} \left[xM_0^2 - m_1(m_1 - m_2) - \left(1 - \frac{m_1 + m_2}{D_{V,\rm con}}\right) (k_\perp^2 - 2B_1^{(2)}) \right], \\ & [f_V]_{\rm full}^{\lambda=\pm} = N_c \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_V}{\bar{x}} \frac{2}{M_V} \left[xM_0^2 - m_1(m_1 - m_2) - \left(1 - \frac{m_1 + m_2}{D_{V,\rm con}}\right) k_\perp^2 \right], \end{split}$$

 $[f_V]_{\rm SLF}^{\lambda=\pm}$ is usually ignored in previous works due to the traditional bias. In order to clearly show their self-consistence we define:

$$\Delta_{\text{full}}^{M}(x) \equiv \frac{\mathrm{d}[f_{M}]_{\text{full}}^{\lambda=0}}{\mathrm{d}x} - \frac{\mathrm{d}[f_{M}]_{\text{full}}^{\lambda=\pm}}{\mathrm{d}x}, \qquad \Delta_{\text{SLF}}^{M}(x) \equiv \frac{\mathrm{d}[f_{M}]_{\text{SLF}}^{\lambda=\pm}}{\mathrm{d}x} - \frac{\mathrm{d}[f_{M}]_{\text{SLF}}^{\lambda=\pm}}{\mathrm{d}x}$$

The valence contributions:

$$\begin{split} & [f_V]_{\rm val.}^{\lambda=0} = & N_c \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_V}{\bar{x}} \frac{2}{M_V} \left[k_\perp^2 + x\bar{x}M_V^2 + m_1m_2 + \frac{\bar{x}^2M_V^2 - m_2^2 - k_\perp^2}{\bar{x}D_{V,\rm con}} \left(\bar{x}m_1 - xm_2 \right) \right], \\ & [f_V]_{\rm val.}^{\lambda=\pm} = & N_c \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_V}{\bar{x}} \frac{2}{M_V} \left[\frac{\bar{x}M_V^2 + xM_0^2 - (m_1 - m_2)^2}{2} - \left(1 - \frac{m_1 + m_2}{D_{V,\rm con}} \right) k_\perp^2 \right]. \end{split}$$

We do not find any relation in type-I scheme except for $[f_V]_{full}^{\lambda=0} = [f_V]_{full}^{\lambda=\pm} + \dots B_1^{(2)}$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}$, $P \rightarrow V$, $V \rightarrow V$,

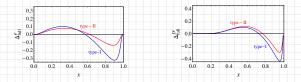
Example 1: f_P and f_V

Ν	lumerical	results:	taking	ρ and	D^*	as examples

	$[f_{\rho}]_{\rm SLF}^{\lambda=0}$	$[f_{\rho}]_{\rm SLF}^{\lambda=\pm}$	$[f_{\rho}]_{\mathrm{full}}^{\lambda=0}$	$[f_{\rho}]_{\mathrm{full}}^{\lambda=\pm}$	$[f_{\rho}]_{\mathrm{val.}}^{\lambda=0}$	$[f_{\rho}]_{\rm val.}^{\lambda=\pm}$
type-l	211.1	226.9	248.7	288.9	229.1	212.1
type-II	211.1	211.1	211.1	211.1	211.1	211.1
	$[f_{D^*}]_{\rm SLF}^{\lambda=0}$	$[f_{D^*}]_{\rm SLF}^{\lambda=\pm}$	$[f_{D^*}]^{\lambda=0}_{\rm full}$	$[f_{D^*}]_{\rm full}^{\lambda=\pm}$	$[f_{D^*}]_{\rm val.}^{\lambda=0}$	$[f_{D^*}]_{\text{val.}}^{\lambda=\pm}$
type-l	$[f_{D^*}]^{\lambda=0}_{\rm SLF}$ 252.6	$[f_{D^*}]_{\rm SLF}^{\lambda=\pm}$ 273.5	$[f_{D^*}]^{\lambda=0}_{\rm full}$ 275.3	$[f_{D*}]_{\rm full}^{\lambda=\pm}$ 305.6	$[f_{D^*}]^{\lambda=0}_{\rm val.}$ 244.6	$\frac{[f_{D^*}]_{\rm val.}^{\lambda=\pm}}{258.9}$

Findings:

Self-consistence of CLF QM: $\Delta_{\text{full}}^V(x) = N_c \int \frac{\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_V}{\bar{x}} \frac{2}{M_V} \frac{D_{V,\text{con}} - m_1 - m_2}{D_{V,\text{con}}} 2B_1^{(2)}$

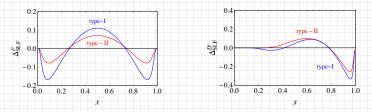


(i) [f_V]^{λ=0}_{full} ≠ [f_V]^{λ=±}_{full} (type-I) → self-consistency problem of the CLF QM
 (ii) Interestingly, we find: [f_V]^{λ=0}_{full} = [f_V]^{λ=±}_{full} (type-II) due to ∫ dxΔ^V_{full} = 0
 Type-II scheme provides a self-consistent correspondence between manifest covariant and LF approaches for f_V.

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

Example 1: f_P and f_V

Self-consistence of SLF QM: $\Delta_{SLF}^{M}(x)$



(i) $[f_V]_{SLF}^{\lambda=0} < [f_V]_{SLF}^{\lambda=\pm}$ (type-I) \longrightarrow self-consistency problem exists also in the traditional SLF QM

(ii) $[f_V]_{\rm SLF}^{\lambda=0} \doteq [f_V]_{\rm SLF}^{\lambda=\pm}$ (type-II) due to $\int dx \Delta_{\rm SLF}^V = 0$

Type-II scheme is also favored by the self-consistency of the SLF QM.

Relation between $[f_V]_{\text{SLF}}^{\lambda=0,\pm}$ and $[f_V]_{\text{val.}}^{\lambda=0,\pm}$:

(i) No relation can be found (traditional type-I scheme).

(ii) Taking type-II scheme and making some simplifications, we find surprisingly

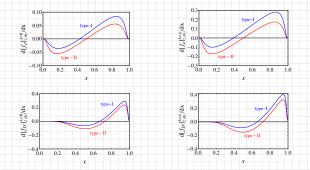
 $[f_V]_{\rm SLF}^{\lambda=0} = [f_V]_{\rm val.}^{\lambda=0}$ and $[f_V]_{\rm SLF}^{\lambda=\pm} = [f_V]_{\rm val.}^{\lambda=\pm}$ (type-II)

which are exactly ones expected.

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}$, $P \to V$, $V \to V$

Example 1: f_P and f_V

Zero-mode effects: $[f_V]_{z.m.}$



(i) $0 < [f_V]_{z.m.}^{\lambda=0} < [f_V]_{z.m.}^{\lambda=\pm}$ (type-I) $\longrightarrow [f_V]_{z.m.}$ are non-zero and dependent on λ . (ii) $[f_V]_{z.m.}^{\lambda=0,\pm} \doteq 0$ (type-II) $\longrightarrow [f_V]_{full}^{\lambda=0} \doteq [f_V]_{val.}^{\lambda=0}$ and $[f_V]_{full}^{\lambda=\pm} \doteq [f_V]_{val.}^{\lambda=\pm}$

Summarizing the findings above:

$$[f_V]_{\mathrm{SLF}}^{\lambda=0} = [f_V]_{\mathrm{val.}}^{\lambda=0} \doteq [f_V]_{\mathrm{full}}^{\lambda=0} \doteq [f_V]_{\mathrm{full}}^{\lambda=\pm} \doteq [f_V]_{\mathrm{val.}}^{\lambda=\pm} = [f_V]_{\mathrm{SLF}}^{\lambda=\pm} \quad (\mathsf{type-II})$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}, P \to V, V \to V \dots$

Example 1: f_P and f_V

Our Updated predictions for f_V (in unit of MeV):

	data	LQCD	QCD SR	this work
$f_{ ho}$	210 ± 4	199 ± 4	206 ± 7	211 ± 1
f_{K^*}	204 ± 7		222 ± 8	223 ± 1
f_{ϕ}	228.5 ± 3.6	238 ± 3	215 ± 5	236 ± 1
f_{D^*}		223.5 ± 8.4	250 ± 8	253 ± 7
$f_{D_s^*}$	301 ± 13	268.8 ± 6.6	290 ± 11	314 ± 6
$f_{J/\psi}$	411 ± 5	418 ± 9	401 ± 46	382 ± 96
f_{B^*}		185.9 ± 7.2	210 ± 6	205 ± 5
$f_{B_s^*}$		223.1 ± 5.4	221 ± 7	246 ± 4
$f_{B_c^*}$		422 ± 13	453 ± 20	465 ± 7
$f_{\Upsilon(1S)}$	708 ± 8			713 ± 34

LQCD: Nucl. Phys. B 883 (2014) 306; Phys. Rev. D 96 (2017) no. 7, 074502; JHEP 1704 (2017) 082; PoS LATTICE 2016 (2017) 291; Phys. Rev. D 91 (2015) no.11, 114509.

QCD SR: Nucl. Phys. B 883 (2014) 306; Phys. Rev. D 75 (2007) 054004; Part. Phys. Proc. 270-272 (2016) 143.

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P, P \rightarrow V, V \rightarrow V \dots \dots N}$

Example 2: f_A

4. Example 2: f_A

Definition:

$$\langle 0|\bar{q}_2\gamma^\mu\gamma_5 q_1|A(p,\lambda)\rangle = f_A M_A \epsilon^\mu_\lambda$$

 ${}^{3}A: {}^{2S+1}L_{J} = {}^{3}P_{1};$ ${}^{1}A: {}^{2S+1}L_{J} = {}^{1}P_{1}.$

Theoretical results for ${}^{1}A$:

$$\begin{split} & [f_{1_A}]_{\rm SLF}^{\lambda=0} = -\sqrt{N_c} \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\psi_p(x,k_\perp)}{\sqrt{x\,\bar{x}}} \frac{1}{\sqrt{2\dot{M}_0}} \frac{2}{M_0} \frac{(\bar{x}m_1 + xm_2)[(\bar{x} - x)k_\perp^2 + \bar{x}^2m_1^2 - x^2m_2^2]}{x\bar{x}D_{1_A,\rm LF}} \,, \\ & [f_{1_A}]_{\rm SLF}^{\lambda=\pm} = -\sqrt{N_c} \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\psi_p(x,k_\perp)}{\sqrt{x\,\bar{x}}} \frac{1}{\sqrt{2\dot{M}_0}} \frac{2}{M_{1_A}} \frac{m_1 - m_2}{D_{1_{A,\rm LF}}} k_\perp^2 \,; \\ & [f_{1_A}]_{\rm full}^{\lambda=0} = -N_c \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_{1_A}}{\bar{x}} \frac{2}{M_{1_A}} \frac{m_1 - m_2}{D_{1_{A,\rm con}}} \left(k_\perp^2 - 2B_1^{(2)}\right) \,, \\ & [f_{1_A}]_{\rm full}^{\lambda=\pm} = -N_c \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_{1_A}}{\bar{x}} \frac{2}{M_{1_A}} \frac{m_1 - m_2}{D_{1_{A,\rm con}}} k_\perp^2 \,; \\ & [f_{1_A}]_{\rm val.}^{\lambda=\pm} = -N_c \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_{1_A}}{\bar{x}} \frac{2}{M_{1_A}} \frac{M_{1_A}^2 \bar{x}^2 - m_2^2 - k_\perp^2}{D_{1_{A,\rm con}}} \left(\bar{x}m_1 + xm_2\right) \,, \\ & [f_{1_A}]_{\rm val.}^{\lambda=\pm} = -N_c \int \frac{\mathrm{d}x\mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_{1_A}}{\bar{x}} \frac{2}{M_{1_A}} \frac{m_1 - m_2}{D_{1_{A,\rm con}}} k_\perp^2 \,. \end{split}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P,P \to V,V \to V}$

Example 2: f_A

Theoretical results for ${}^{3}\!A$:

$$\begin{split} & \left[f_{3_A}\right]_{\rm SLF}^{\lambda=0} = \sqrt{N_c} \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{\psi_p(x,k_{\perp})}{\sqrt{x\,\bar{x}}} \frac{1}{\sqrt{2\dot{M}_0}} \frac{\dot{M}_0^2}{2\sqrt{2M_0}} \frac{2}{M_0} \left\{2k_{\perp}^2 + (m_1 - m_2)(\bar{x}m_1 - xm_2) - \frac{(\bar{x}m_1 + xm_2)[(\bar{x} - x)k_{\perp}^2 + \bar{x}^2m_1^2 - x^2m_2^2]}{x\bar{x}}\right\}, \\ & \left[f_{3_A}\right]_{\rm SLF}^{\lambda=\pm} = \sqrt{N_c} \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{\psi_p(x,k_{\perp})}{\sqrt{x\,\bar{x}}} \frac{1}{\sqrt{2\dot{M}_0}} \frac{\dot{M}_0^2}{2\sqrt{2M_0}} \frac{2}{M_{3_A}} \left[\frac{k_{\perp}^2 - 2\bar{x}xk_{\perp}^2 + (\bar{x}m_1 - xm_2)^2}{2\bar{x}x} - \frac{k_{\perp}^2(m_1 - m_2)}{D_{3_A,\rm LF}}\right]; \\ & \left[f_{3_A}\right]_{\rm full}^{\lambda=0} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left\{xM_0^2 - m_1(m_1 + m_2) - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)(k_{\perp}^2 - 2B_1^{(2)})\right\}, \\ & \left[f_{3_A}\right]_{\rm full}^{\lambda=\pm} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[xM_0^2 - m_1(m_1 + m_2) - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)(k_{\perp}^2 - 2B_1^{(2)})\right], \\ & \left[f_{3_A}\right]_{\rm val.}^{\lambda=0} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[xM_0^2 - m_1(m_1 + m_2) - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)k_{\perp}^2\right]; \\ & \left[f_{3_A}\right]_{\rm val.}^{\lambda=0} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[k_{\perp}^2 + x\bar{x}M_{3_A}^2 - m_1m_2 - \frac{M_{3_A}^2\bar{x}^2 - m_2^2 - k_{\perp}^2}{\bar{x}D_{3_A,\rm con}}\right]k_{\perp}^2\right], \\ & \left[f_{3_A}\right]_{\rm val.}^{\lambda=\pm} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[k_{\perp}^2 + x\bar{x}M_{3_A}^2 - (m_1 + m_2) - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)k_{\perp}^2\right] \right], \\ & \left[f_{3_A}\right]_{\rm val.}^{\lambda=\pm} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[k_{\perp}^2 + x\bar{x}M_{3_A}^2 - (m_1 + m_2) - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)k_{\perp}^2\right] \right], \\ & \left[f_{3_A}\right]_{\rm val.}^{\lambda=\pm} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[\frac{\bar{x}M_{3_A}^2 - (m_1 + m_2)^2}{2} - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)k_{\perp}^2\right] \right]. \\ & \left[f_{3_A}\right]_{\rm val.}^{\lambda=\pm} = N_c \int \frac{dxd^2k_{\perp}}{(2\pi)^3} \frac{X_{3_A}}{\bar{x}} \frac{2}{M_{3_A}} \left[\frac{\bar{x}M_{3_A}^2 - (m_1 + m_2)^2}{2} - \left(1 + \frac{m_1 - m_2}{D_{3_A,\rm con}}\right)k_{\perp}^2\right] \right].$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}, P \to V, V \to V$

-Example 2: f_A

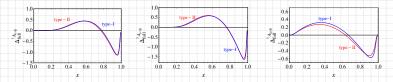
Numerical results: taking ${}^{1}A_{(q\bar{q})}$, ${}^{3}A_{(q\bar{q})}$, ${}^{1}A_{(c\bar{q})}$ and ${}^{3}A_{(c\bar{q})}$ ($b_1(1235)$, $a_1(1260)$, $D_1(2420)$ and $D_1(2430)$) as examples

	$[{f_{1_{A}}}_{(q\bar{q})}]^{\lambda=0}_{\rm SLF}$	$[{f_{1A}}_{(q\bar{q})}]^{\lambda=\pm}_{\rm SLF}$	$[{f_1}_{A_{(q\bar{q})}}]^{\lambda=0}_{\rm full}$	$[{f_{1A}}_{(q\bar{q})}]^{\lambda=\pm}_{\rm full}$	$[f_{1A_{(q\bar{q})}}]^{\lambda=0}_{\mathrm{val.}}$	$[f_{1_{A_{(q\bar{q})}}}]_{\mathrm{val.}}^{\lambda=\pm}$
type-l	0	0	0	0	-47.4	0
type-II	0	0	0	0	0	0
	$[{f_1}_{A_{(c\bar{q})}}]^{\lambda=0}_{\rm SLF}$	$[f_{1_{A_{(c\bar{q})}}}]_{\rm SLF}^{\lambda=\pm}$	$[{f_1}_{A_{(c\bar{q})}}]^{\lambda=0}_{\rm full}$	$[{f_1}_{A_{(c\bar{q})}}]^{\lambda=\pm}_{\rm full}$	$[{f_1}_{A_{(c\bar{q})}}]^{\lambda=0}_{\mathrm{val.}}$	$[f_{1_{A_{(c\bar{q})}}}]_{\mathrm{val.}}^{\lambda=\pm}$
type-l	-78.5	-84.6	-78.4	-84.6	-65.2	-84.6
type-II	-78.5	-78.5	-78.5	-78.5	-78.5	-78.5
	[£]λ=0	[<i>t</i> _]λ=±	[<i>ε</i> _]λ=0	$1\lambda = \pm$	[<i>t</i> _]λ=0	$\lambda = \pm$
	$[f_{3A_{\left(q\bar{q}\right)}}]^{\lambda=0}_{\rm SLF}$	$[f_{3A_{(q\bar{q})}}]^{\lambda=\pm}_{\rm SLF}$	$[f_{3A_{(q\bar{q})}}]^{\lambda=0}_{\rm full}$	$[f_{3A_{(q\bar{q})}}]^{\lambda=\pm}_{\rm full}$	$[f_{3A_{(q\bar{q})}}]^{\lambda=0}_{\rm val.}$	$[f_{3A_{(q\bar{q})}}]^{\lambda=\pm}_{\rm val.}$
type-l	218.7	223.6	260.6	223.6	263.1	263.1
type-II	218.7	218.7	218.7	218.7	218.7	218.7
	$[f_{3A_{(c\bar{q})}}]^{\lambda=0}_{\rm SLF}$	$[f_{3A_{(c\bar{q})}}]^{\lambda=\pm}_{\rm SLF}$	$[f_{3A_{(c\bar{q})}}]^{\lambda=0}_{\rm full}$	$[f_{3_{A_{(c\bar{q})}}}]^{\lambda=\pm}_{\mathrm{full}}$	$[f_{3A_{(c\bar{q})}}]^{\lambda=0}_{\mathrm{val.}}$	$[f_{3A_{(c\bar{q})}}]_{\mathrm{val.}}^{\lambda=\pm}$
type-l	231.7	256.7	244.7	256.7	228.5	228.5

(i). Self-consistency problem also exists in ¹A and ³A systems (ii). ¹A_(q\bar{q}) meson is not ideal for testing the self-consistency due to $m_1 = m_2$. $[f_{1_A(q\bar{q})}]_{val.,SLF,full}^{\lambda=\pm}, [f_{1_A(q\bar{q})}]_{full}^{\lambda=0} :\propto m_1 - m_2$ $[f_{1_A(q\bar{q})}]_{SLF}^{\lambda=0}$: anti-symmetry under $x \leftrightarrow \bar{x}$. Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P, P \rightarrow V}$, $V \rightarrow V \dots$

-Example 2: f_A

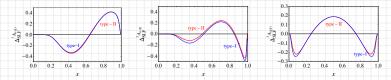
Self-consistence of CLF QM:



(i) The violation of self-consistence is very small but non-zero in traditional type-I scheme.

(ii) $[f_A]_{\text{full}}^{\lambda=0} \doteq [f_A]_{\text{full}}^{\lambda=\pm}$ (type-II) due to $\int dx \Delta_{\text{full}}^{1(3)A} = 0$

Self-consistence of SLF QM:



Self-consistency holds only in type-II scheme: $[f_A]_{SLF}^{\lambda=0} \doteq [f_A]_{SLF}^{\lambda=\pm}$ (type-II)

Above findings are similar to the case of V meson.

20

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}$, $P \rightarrow V$, $V \rightarrow V$

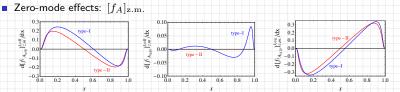
Example 2: f_A

Relation between $[f_A]_{SLF}^{\lambda=0,\pm}$ and $[f_A]_{val.}^{\lambda=0,\pm}$:

Taking type-II scheme and making some simplifications, we find that:

 $[f_{1(3)_A}]_{\rm SLF}^{\lambda=0} = [f_{1(3)_A}]_{\rm val.}^{\lambda=0}, \quad [f_{1(3)_A}]_{\rm SLF}^{\lambda=\pm} = [f_{1(3)_A}]_{\rm val.}^{\lambda=\pm}, \quad ({\rm type-II})$

in which, only $[f_{1A}]_{SLF}^{\lambda=\pm} = [f_{1A}]_{val.}^{\lambda=\pm}$ holds in the type-I scheme.



(i) [f_{1A}]^{λ=±}_{z.m.} = 0 (type-I and -II) , [f_{1A}]^{λ=0}_{z.m.} ≠ 0 (type-I) → The existence or absence of [f_{1A}]_{z.m.} depends on the choice of λ in type-I scheme.
(ii) [f_{3A}]^{λ=0,±}_{z.m.} ≠ 0 (type-I) → Its contribution depends on the choice of λ .
(iii) [f_A]^{λ=0,±}_{z.m.} = 0 (type-II) → [f_A]^{λ=0}_{tull} = [f_A]^{λ=0}_{val.} and [f_A]^{λ=±}_{tull} = [f_A]^{λ=±}_{val.}

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P, P \to V, V \to V}$

Example 2: f_A

Combining the findings for the V and A mesons,

 $[\mathcal{Q}]_{\rm SLF}^{\lambda=0} = [\mathcal{Q}]_{\rm val.}^{\lambda=0} \doteq [\mathcal{Q}]_{\rm full}^{\lambda=0} \doteq [\mathcal{Q}]_{\rm full}^{\lambda=\pm} \doteq [\mathcal{Q}]_{\rm val.}^{\lambda=\pm} = [\mathcal{Q}]_{\rm SLF}^{\lambda=\pm} , \qquad ({\sf type-II})$

22

where $\mathcal{Q} = f_V$, $f_{^1A}$ and $f_{^3A}$, and the first and the last " \doteq " should be replaced by "=" for the ${}^{^3}\!A_{(q\bar{q})}$ and ${}^{^1}\!A$ mesons, respectively.

Updated predictions for f_{1_A} and f_{3_A} (in unit of MeV)

	$f_{q\bar{q}}$	$f_{s\bar{q}}$	$f_{s\bar{s}}$	$f_{c\bar{q}}$	$f_{c\bar{s}}$
$^{1}\!A$	0	-27 ± 1	0	-78 ± 2	-62 ± 2
$^{3}\!A$	220 ± 1	219 ± 2	203 ± 2	231 ± 8	257 ± 8
	$f_{car{c}}$	$f_{bar{q}}$	$f_{b\bar{s}}$	$f_{bar{c}}$	$f_{b\bar{b}}$
$^{1}\!A$	0	-95 ± 3	-88 ± 2	-86 ± 3	0
$^{3}\!A$	250 ± 90	176 ± 6	180 ± 5	281 ± 7	353 ± 25

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P,P \to V,V \to V,\dots,V}$

Covariance of CLF QM: $f_{V,A}$

5. Covariance of CLF QM: $f_{V,A}$

Taking $\mathcal{A}_V \equiv \langle 0 | \bar{q}_2 \gamma^{\mu} q_1 | V(p) \rangle$ as an example,

$$\hat{\mathcal{A}}^{\mu}_{V} = M_{V}(\epsilon^{\mu}f_{V} + \omega^{\mu}g_{V})$$
 .

Note: covariance holds only when $g_V = 0$.

Origin of violation:

After integrating out the k^- component and taking into account the zero-mode contributions (most of ω dependences are eliminated), we can decompose $\hat{S}_{\mathcal{A}}$ (integrand) as

$$\hat{S}_V^{\mu} = 4 \left\{ 2 \left(1 - \frac{m_1 + m_2}{D_{V,\text{con}}} \right) \frac{\omega \cdot \epsilon}{\omega \cdot p} p^{\mu} B_1^{(2)} + \epsilon^{\mu} \left[\cdots \right] \right\} \,,$$

- Second term: the physical contribution to f_V
 First term: the ω-dependent part
- **Case of** $\lambda = \pm$: the ω dependence vanishes due to $\omega \cdot \epsilon_{\pm} = 0 \longrightarrow$ Covariant

Note that: $\lambda = \pm$ is not alway a "good choice" to avoid the covariance problem

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P, P \to V, V \to V \dots \dots V}$

Covariance of CLF QM: $f_{V,A}$

Case of λ = 0:

In order to separate the physical and unphysical contributions, we have to use the identity

$$p^{\mu}\frac{\epsilon\cdot\omega}{\omega\cdot p} = \epsilon^{\mu} - \frac{\omega^{\mu}}{\omega\cdot p}\left(\epsilon\cdot p - \epsilon\cdot\omega\frac{p^{2}}{\omega\cdot p}\right) - \frac{i\lambda}{\omega\cdot p}\varepsilon^{\mu\nu\alpha\beta}\omega_{\nu}\epsilon_{\alpha}p_{\beta}.$$

The third term: = 0

The first term: gives an additional contribution to f_V that results in the self-consistency problem;

The second term: the residual ω -dependent part that contributes to g_V and may violate the Lorentz covariance.

The problems of self-consistency and covariance of the CLF quark model within the type-I scheme have the same origin!

Theoretical results

$$\begin{split} [g_V]^{\lambda=0} &= \frac{N_c}{2} \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_V(x,k_\perp^2)}{\bar{x}} 4 \left(1 - \frac{m_1 + m_2}{D_{V,\mathrm{con}}}\right) \frac{2}{\omega \cdot p} B_1^{(2)} \,, \\ [g_{3A}]^{\lambda=0} &= \frac{N_c}{2} \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_{3A}(x,k_\perp^2)}{\bar{x}} 4 \left(1 + \frac{m_1 - m_2}{D_{3A,\mathrm{con}}}\right) \frac{2}{\omega \cdot p} B_1^{(2)} \,, \\ [g_{1A}]^{\lambda=0} &= \frac{N_c}{2} \int \frac{\mathrm{d}x \mathrm{d}^2 k_\perp}{(2\pi)^3} \frac{\chi_{1A}(x,k_\perp^2)}{\bar{x}} 4 \frac{m_1 - m_2}{D_{1A,\mathrm{con}}} \frac{2}{\omega \cdot p} B_1^{(2)} \,, \end{split}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

Covariance of CLF QM: $f_{V,A}$

• Conditions for the covariance: $[g_V] = [g_A] = 0 \Longrightarrow$

$$\int \mathrm{d}x \mathrm{d}^2 k_{\perp} \frac{\chi_M(x,k_{\perp}^2)}{\bar{x}} B_1^{(2)} = 0, \qquad \int \mathrm{d}x \mathrm{d}^2 k_{\perp} \frac{\chi_M(x,k_{\perp}^2)}{\bar{x}} \frac{B_1^{(2)}}{D_{M\,\mathrm{con}}} = 0.$$

which is much stricter than the one given by Jaus.

- $[g_{V,A}] \propto 1/p^+$: the size of covariance violation within the type-I scheme is in fact out of control because p^+ is reference-frame dependent.
- Covariance is violated in the type-I scheme but can be recovered in the type-II scheme.

In the rest frame $(p^+ = M)$,

$$[g_{V,A}]^{\lambda=0} = [f_{V,A}]_{\text{full}}^{\lambda=0} - [f_{V,A}]_{\text{full}}^{\lambda=\pm} = \int \mathrm{d}x \,\Delta_{\text{full}}^{V,A}(x) \,.$$

So,

$$\begin{split} & [g_{\rho,\,D^*,\,{}^{1}\!A_(cq),\,{}^{3}\!A_(qq),\,{}^{3}\!A_{(cq)}]}^{\lambda=0} = (-40.2,\,-30.3,\,6.2,\,37.0,\,-12.0)\,\mathrm{MeV} \neq 0\,, \quad \text{(type-l)} \\ & [g_{\rho,\,D^*,\,{}^{1}\!A_{(cq)},\,{}^{3}\!A_{(qq)},\,{}^{3}\!A_{(cq)}]}^{\lambda=0} = 0\,, \quad \text{(type-l)} \end{split}$$

The problems of self-consistency and covariance of the CLF quark model can be "resolved" simultaneously within the type-II scheme.

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}, P \rightarrow V, V \rightarrow V \dots$

Covariance of CLF QM: $f_{V,A}$

■ The type-I and -II schemes are consistent with each other in the heavy quark limit. $M \sim m_Q \gg m_{\bar{q}}$ $x \sim m_Q/M$ and $\bar{x} \sim m_q/M$ $\implies M_0 \rightarrow M$ $f(g)_{V,A}$ are dominated by $|k_{\perp}| \lesssim 1 \text{ GeV}$

Brief summary:

- In the traditional SLF and CLF QMs (type-I scheme), f_V, 1_A, 3_A suffer from the self-consistency and covariance problems.
- In the CLF QMs, the self-consistency and covariance problems can be resolved simultaneously by taking type-II correspondence.
- The zero-mode contributions exist only formally but vanish numerically (type-II).
- For the decay constants of spin-1 systems,

$$[\mathcal{Q}]_{\rm SLF}^{\lambda=0} = [\mathcal{Q}]_{\rm val.}^{\lambda=0} \doteq [\mathcal{Q}]_{\rm full}^{\lambda=0} \doteq [\mathcal{Q}]_{\rm full}^{\lambda=\pm} \doteq [\mathcal{Q}]_{\rm val.}^{\lambda=\pm} = [\mathcal{Q}]_{\rm SLF}^{\lambda=\pm}; \qquad (\text{type-II})$$

The two schemes are consistent with each other in the heavy-quark limit.

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}$, $P \rightarrow V$, $V \rightarrow V$

 $\sqsubseteq \mathsf{Example 3:} \ \mathcal{F}^{P \to V}$

6. Example 3: $\mathcal{F}^{P \rightarrow V}$

Definition:

$$\langle V(p^{\prime\prime},\lambda)|\bar{q}_{1}^{\prime\prime}\gamma_{\mu}q_{1}^{\prime}|P(p^{\prime})\rangle = i\varepsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}P^{\alpha}q^{\beta}g(q^{2}),$$

$$\langle V(p^{\prime\prime},\lambda)|\bar{q}_{1}^{\prime\prime}\gamma_{\mu}\gamma^{5}q_{1}^{\prime}|P(p^{\prime})\rangle = -f(q^{2})\epsilon_{\mu}^{*} - \epsilon^{*}\cdot P\left[a_{+}(q^{2})P_{\mu} + a_{-}(q^{2})q_{\mu}\right].$$

27

Bauer-Stech-Wirbel (BSW) form factors:

$$\begin{split} V(q^2) &= -(M' + M'')g(q^2) \,, \quad A_1(q^2) = -\frac{f(q^2)}{M' + M''} \,, \quad A_2(q^2) = (M' + M'')a_+(q^2) \,, \\ A_0(q^2) &= -\frac{1}{2M''} \left[q^2 a_-(q^2) + f(q^2) + (M'^2 - M''^2)a_+(q^2) \right] \end{split}$$

Theoretical results: $g(q^2)$ and $a_+(q^2)$

$$\begin{split} [g(q^2)]_{\rm SLF} &= -\int \frac{\mathrm{dx}\,\mathrm{d}^2\mathbf{k}_{\perp}'}{(2\pi)^3\,2x} \frac{\psi^{\prime\prime\ast}(x,\mathbf{k}_{\perp}'')\psi^\prime(x,\mathbf{k}_{\perp}')}{2\hat{M}_0'\hat{M}_0''} \\ & 2\left\{\bar{x}m_1' + xm_2 + (m_1' - m_1'')\frac{\mathbf{k}_{\perp}'\cdot\mathbf{q}_{\perp}}{q^2} + \frac{2}{D_{\rm V,LF}'}\left[\mathbf{k}_{\perp}'^2 + \frac{(\mathbf{k}_{\perp}'\cdot\mathbf{q}_{\perp})^2}{q^2}\right]\right\}, \\ [g(q^2)]_{\rm full} &= [g(q^2)]_{\rm val.} = -N_c \int \frac{\mathrm{dx}\,\mathrm{d}^2\mathbf{k}_{\perp}'}{2(2\pi)^3}\frac{\chi_P'\chi_V''}{\bar{x}} \\ & 2\left\{\bar{x}m_1' + xm_2 + (m_1' - m_1'')\frac{\mathbf{k}_{\perp}'\cdot\mathbf{q}_{\perp}}{q^2} + \frac{2}{D_{\rm V,con}''}\left[\mathbf{k}_{\perp}'^2 + \frac{(\mathbf{k}_{\perp}'\cdot\mathbf{q}_{\perp})^2}{q^2}\right]\right\}, \end{split}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

28

 \vdash Example 3: $\mathcal{F}^{P \to V}$

$$\begin{split} [a_{+}(q^{2})]_{\rm SLF} &= \int \frac{\mathrm{d}x\,\mathrm{d}^{2}\mathbf{k}'_{\perp}}{(2\pi)^{3}\,2x} \frac{\psi''^{*}(x,\mathbf{k}'_{\perp})\psi'(x,\mathbf{k}'_{\perp})}{2\hat{M}'_{0}\hat{M}''_{0}} \\ &\qquad 2\Big\{(m''_{1}-2xm'_{1}+m'_{1}+2xm_{2})\frac{\mathbf{k}'_{\perp}\cdot\mathbf{q}_{\perp}}{\mathbf{q}_{\perp}^{2}}+(x-\bar{x})(\bar{x}m'_{1}+xm_{2}) \\ &\qquad +\frac{2}{D''_{\mathrm{V,LF}}}\frac{\mathbf{k}''_{\perp}\cdot\mathbf{q}_{\perp}}{\bar{x}\mathbf{q}_{\perp}^{2}}\left[\mathbf{k}'_{\perp}\cdot\mathbf{k}''_{\perp}+(xm_{2}-\bar{x}m''_{1})(xm_{2}+\bar{x}m'_{1})\right]\Big\}, \\ [a_{+}(q^{2})]_{\rm full} = [a_{+}(q^{2})]_{\rm val.} = N_{c}\int \frac{\mathrm{d}x\,\mathrm{d}^{2}\mathbf{k}'_{\perp}}{2(2\pi)^{3}}\frac{\chi'_{P}\chi''_{V}}{\bar{x}} \\ &\qquad 2\Big\{(m''_{1}-2xm'_{1}+m'_{1}+2xm_{2})\frac{\mathbf{k}'_{\perp}\cdot\mathbf{q}_{\perp}}{\mathbf{q}_{\perp}^{2}}+(x-\bar{x})(\bar{x}m'_{1}+xm_{2}) \\ &\qquad +\frac{2}{D''_{\mathrm{V,con}}}\frac{\mathbf{k}''_{\perp}\cdot\mathbf{q}_{\perp}}{\bar{x}\mathbf{q}_{\perp}^{2}}\left[\mathbf{k}'_{\perp}\cdot\mathbf{k}''_{\perp}+(xm_{2}-\bar{x}m''_{1})(xm_{2}+\bar{x}m'_{1})\right]\Big\}, \end{split}$$

For $\mathcal{F} = g(q^2)$ and $a_+(q^2)$:

- $[\mathcal{F}]_{\text{full}}^{\lambda=0} = [\mathcal{F}]_{\text{full}}^{\lambda=\pm}$: no self-consistency problem.
- $[\mathcal{F}]_{z.m.} = 0$: no z.m. contribution.

$$[\mathcal{F}]_{\mathrm{SLF}} = [\mathcal{F}]_{\mathrm{full}} = [\mathcal{F}]_{\mathrm{val.}}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

 $\sqsubseteq \mathsf{Example 3:} \ \mathcal{F}^{P \to V}$

Theoretical results: $f(q^2)$ and $a_-(q^2)$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P, P \to V, V \to V}$

$$\begin{split} \left. f(q^2) \right]_{\text{full}}^{\lambda=0} &= -N_c \int \frac{\mathrm{d}x \, \mathrm{d}^2 \mathbf{k}_{\perp}'}{2(2\pi)^3} \frac{\chi_P' \chi_V''}{\bar{x}} \\ &\quad 2 \bigg\{ - (m_1' + m_1'')^2 (m_1' - m_2) + (xm_2 - \bar{x}m_1')M'^2 + (xm_2 + \bar{x}m_1')M''^2 \\ &\quad - x(m_2 - m_1')(M_0'^2 + M_0''^2) + 2xm_1''M_0'^2 - 4 \left(m_1' - m_2\right) \left(\mathbf{k}_{\perp}'^2 + \frac{(\mathbf{k}_{\perp}' \cdot \mathbf{q}_{\perp})^2}{q^2}\right) \\ &\quad - m_2 q^2 - (m_1' + m_1'')(q^2 + q \cdot P) \frac{\mathbf{k}_{\perp}' \cdot \mathbf{q}_{\perp}}{q^2} + 4(m_1' - m_2)B_1^{(2)} \\ &\quad + \frac{2}{D_{\text{V,con}}'} \Big[\left(\mathbf{k}_{\perp}'^2 + \frac{(\mathbf{k}_{\perp}' \cdot \mathbf{q}_{\perp})^2}{q^2}\right) \Big((x - \bar{x})M'^2 + M''^2 - 2(m_1' - m_1'')(m_1' - m_2) \\ &\quad + 2xM_0'^2 - q^2 - 2(q^2 + q \cdot P) \frac{\mathbf{k}_{\perp}' \cdot \mathbf{q}_{\perp}}{q^2} \Big) \\ &\quad - \left(M'^2 + M''^2 - q^2 + 2(m_1' - m_2)(m_1'' + m_2)\right) B_1^{(2)} + 2B_3^{(3)} \Big] \bigg\}, \end{split}$$

30

$$[f(q^2)]_{\text{full}}^{\lambda=\pm} = [f(q^2)]_{\text{full}}^{\lambda=0} \Big|_{B_1^{(2)}=B_3^{(3)}=0}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P,P \rightarrow V,V \rightarrow V \dots \dots N}$

 $\sqsubseteq \mathsf{Example 3: } \mathcal{F}^{P \to V}$

$$\begin{split} [a_{-}(q^{2})]_{\rm SLF} &= \int \frac{\mathrm{d}x \, \mathrm{d}^{2} \mathbf{k}'_{\perp}}{(2\pi)^{3} \, 2x} \frac{\psi''^{*}(x, \mathbf{k}'_{\perp})\psi'(x, \mathbf{k}'_{\perp})}{2\dot{M}'_{0}\dot{M}'_{0}} \\ &= \frac{4}{\mathbf{q}_{\perp}^{2}} \left\{ m_{1}'' M_{0}^{\prime 2} + m_{1}' M_{0}^{\prime \prime 2} - (m_{1}' + m_{1}'')(m_{1}' - m_{2})(m_{1}'' - m_{2}) \\ &- \bar{x}(m_{1}' - m_{2})\mathbf{q}_{\perp}^{2} + [m_{1}' - m_{1}'' + 2\bar{x}(m_{1}' - m_{2})]\mathbf{k}'_{\perp} \cdot \mathbf{q}_{\perp} - 2(m_{1}' - m_{2})\mathbf{k}'_{\perp}^{2} \\ &+ \frac{1}{D_{V,\rm LF}'} \left\{ -\mathbf{k}''_{\perp} \cdot \mathbf{q}_{\perp} \left[M_{0}^{\prime \prime 2} - (m_{1}' - m_{2})^{2} \right] \\ &+ \mathbf{k}'_{\perp} \cdot \mathbf{k}''_{\perp} \left[M_{0}^{\prime \prime \prime 2} + d_{0}^{\prime \prime 2} + 2(m_{1}'' + m_{2})(m_{1}' - m_{2}) + \mathbf{q}_{\perp}^{2} \right] \right\} \right\} - \frac{2}{q^{2}} f(q^{2}) + a_{+}(q^{2}) \\ [a_{-}(q^{2})]_{\rm val.} = N_{c} \int \frac{\mathrm{d}x \, \mathrm{d}^{2} \mathbf{k}'_{\perp}}{2(2\pi)^{3}} \frac{\chi'_{P} \chi''_{V}}{\bar{x}} \\ &= \frac{4}{\mathbf{q}_{\perp}^{2}} \left\{ x(m_{1}'' - m_{2})M_{0}^{\prime 2} + x(m_{1}' - m_{2})M_{0}^{\prime \prime 2} + (\bar{x}m_{1}'' + xm_{2})M^{\prime \prime 2} \\ &+ (\bar{x}m_{1}' + xm_{2})M^{\prime \prime 2} - (m_{1}' + m_{1}'')(m_{1}' - m_{2})(m_{1}'' - m_{2}) - \bar{x}(m_{1}' - m_{2})\mathbf{q}_{\perp}^{2} \\ &+ [m_{1}' - m_{1}'' + 2\bar{x}(m_{1}' - m_{2})]\mathbf{k}'_{\perp} \cdot \mathbf{q}_{\perp} - 2(m_{1}' - m_{2})\mathbf{k}'_{\perp} \\ &+ \frac{1}{D_{V,\rm con}'} \left[-\mathbf{k}''_{\perp} \cdot \mathbf{q}_{\perp} \left(xM_{0}^{\prime 2} + \bar{x}M^{\prime 2} - (m_{1}' - m_{2})^{2} \right) \\ &+ \mathbf{k}'_{\perp} \cdot \mathbf{k}''_{\perp} \left(M^{\prime \prime 2} + M^{\prime 2} + 2(m_{1}'' + m_{2})(m_{1}' - m_{2}) + \mathbf{q}_{\perp}^{2} \right) \right] \right\} \\ &- \frac{2}{q^{2}} f(q^{2}) + a_{+}(q^{2}). \end{split}$$

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}$, $P \rightarrow V$, $V \rightarrow V$

 \vdash Example 3: $\mathcal{F}^{P \to V}$

$$\begin{split} [a_{-}(q^{2})]_{\rm full}^{\lambda=0} &= -N_{c} \int \frac{\mathrm{d}x \, \mathrm{d}^{2} \mathbf{k}'_{\perp}}{2(2\pi)^{3}} \frac{\chi'_{P} \chi''_{V}}{\bar{x}} \\ & 2 \bigg\{ (3-2x)(\bar{x}m'_{1}+xm_{2}) - \left[(6x-7)m'_{1} + (4-6x)m_{2} + m''_{1} \right] \frac{\mathbf{k}'_{\perp} \cdot \mathbf{q}_{\perp}}{q^{2}} \\ & + 4(m'_{1}-m_{2}) \left[2 \left(\frac{\mathbf{k}'_{\perp} \cdot \mathbf{q}_{\perp}}{q^{2}} \right)^{2} + \frac{\mathbf{k}'^{2}_{\perp}}{q^{2}} \right] - 4 \frac{(m'_{1}-m_{2})}{q^{2}} B_{1}^{(2)} \\ & + \frac{1}{D'_{\rm V,con}} \bigg[-2 \left(M'^{2} + M''^{2} - q^{2} + 2(m'_{1}-m_{2})(m''_{1}+m_{2}) \right) (A_{3}^{(2)} + A_{4}^{(2)} - A_{2}^{(1)} \\ & + \left(2M'^{2} - q^{2} - \hat{N}'_{1} + \hat{N}''_{1} - 2(m'_{1}-m_{2})^{2} + (m'_{1}+m''_{1})^{2} \right) \left(A_{1}^{(1)} + A_{2}^{(1)} - 1 \right) \\ & + 2Z_{2} \left(2A_{4}^{(2)} - 3A_{2}^{(1)} + 1 \right) + 2 \frac{q \cdot P}{q^{2}} \left(4A_{2}^{(1)}A_{1}^{(2)} - 3A_{1}^{(2)} \right) \\ & & + \frac{2}{q^{2}} \left(\left(M'^{2} + M''^{2} - q^{2} + 2(m'_{1}-m_{2})(m''_{1}+m_{2}) \right) B_{1}^{(2)} - 2B_{3}^{(3)} \right) \bigg] \bigg\}, \\ [a_{-}(q^{2})]_{\rm full}^{\lambda=\pm} = [a_{-}(q^{2})]_{\rm full}^{\lambda=0} \bigg|_{B_{1}^{(2)} = B_{3}^{(3)} = 0} \end{split}$$

32

For $\mathcal{F} = f(q^2)$ and $a_-(q^2)$:

- $[\mathcal{F}]_{\text{full}}^{\lambda=0} \neq [\mathcal{F}]_{\text{full}}^{\lambda=\pm}$: self-consistency problem.
- $[\mathcal{F}]_{SLF} \neq [\mathcal{F}]_{full} \neq [\mathcal{F}]_{val.}$ within traditional type-I scheme

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}$, $P \rightarrow V$, $V \rightarrow V$

 \vdash Example 3: $\mathcal{F}^{P \to V}$

Taking $D \to K^*$ as example. "—": divergent at $q^2 = 0$.

$D \to K^*$		$[f(\mathbf{q}_{\perp}^2)]_{SLF}$	$[f(\mathbf{q}_{\perp}^2)]_{full}^{\lambda=0}$	$[f(\mathbf{q}_{\perp}^2)]_{full}^{\lambda=\pm 1}$	$[f(\mathbf{q}_{\perp}^2)]_{val.}$
$q_{\perp}^2 = 0$	type-l	-1.93	-1.76	-2.17	-2.19
$\mathbf{q}_{\perp}^{z} = 0$	type-II	-2.66	-2.66	-2.66	-2.66
$q_{\perp}^2 = 1$	type-l	-1.75	-1.59	-1.89	-1.97
$\mathbf{q}_{\perp} = 1$	type-II	-2.37	-2.37	-2.37	-2.37
$q_{\perp}^2 = 2$	type-l	-1.61	-1.50	-1.69	-1.79
$\mathbf{q}_{\perp} = 2$	type-II	-2.14	-2.14	-2.14	-2.14
$D \to K^*$		$[a(\mathbf{q}_\perp^2)]_{\rm SLF}$	$[a(\mathbf{q}_\perp^2)]_{full}^{\lambda=0}$	$[a_{-}(\mathbf{q}_{\perp}^{2})]_{full}^{\lambda=\pm 1}$	$[a(\mathbf{q}_\perp^2)]_{val.}$
$q^2_{\perp} = 0$	type-l			-0.34	
$\mathbf{q}_{\perp} = 0$	type-II	-0.35	-0.35	-0.35	-0.35
$q^2_{\perp} = 1$	type-l	0.97	-0.94	-0.27	-0.49
$\mathbf{q}_{\perp} = 1$	type-II	-0.27	-0.27	-0.27	-0.27
$q_{\perp}^2 = 2$	type-l	0.32	-0.62	-0.22	-0.30
					-0.21

 $a_{-}(q^2)$, are in fact calculable in the SLF QM after taking $M \rightarrow M_0$

PHYSICAL REVIEW D, VOLUME 60, 054026

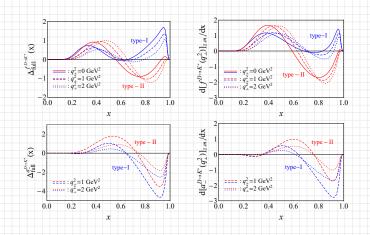
Covariant analysis of the light-front quark model

the standard approach are reproduced, except for those that de covariant approach permits also the calculation of the scalar ^{huttar for Theoretiche Physik de Universitä Zirick, Winerharmanne 190, CH-8057 Zirick, Switzerland (Reserved 2) Treinitä Zirick (Minerharmanne 1999)}

mesons, and the form factor $a_{-}(q^2)$ for transitions between pseudoscalar and vector mesons, which is not possible in the standard light-front formalism. The practical application of the covariant extension of the

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}, P \rightarrow V, V \rightarrow V \dots$

 $\sqsubseteq \mathsf{Example 3: } \mathcal{F}^{P \to V}$



- $[\mathcal{F}]_{\text{full}}^{\lambda=0} \doteq [\mathcal{F}]_{\text{full}}^{\lambda=\pm}$ (type-II): self-consistency problem is "resolved".
- $[\mathcal{F}]_{\mathrm{full}} \doteq [\mathcal{F}]_{\mathrm{val.}}$ (type-II): Z.M contribution vanishes numerically
- $= [\mathcal{F}]_{SLF} = [\mathcal{F}]_{val.} \text{ (type-II)}$

 $[\mathcal{Q}]_{\mathrm{SLF}} = [\mathcal{Q}]_{\mathrm{val.}} \doteq [\mathcal{Q}]_{\mathrm{full}}, \qquad (\mathsf{type-II})$

34

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}$, $P \to V$, $V \to V$

 \vdash Example 3: $\mathcal{F}^{P \to V}$

Covariance:

$$\begin{split} \hat{S}^{\mu}_{P \to V} = & 4 \frac{P^{\mu} \epsilon^* \cdot \omega + \omega^{\mu} \epsilon^* \cdot P}{\omega \cdot P} \left\{ 2(m'_1 - m_2) B_1^{(2)} \\ & - \frac{1}{D_{V,\text{con}}^{\prime\prime}} \left[(M^{\prime 2} + M^{\prime\prime 2} - q^2 + 2(m'_1 - m_2)(m_1^{\prime\prime} + m_2)) B_1^{(2)} - 2B_3^{(3)} \right] \right\} + \dots, \end{split}$$

35

"...": physical contribution to $f(q^2)$ and $a_{\pm}(q^2)$.

For the first term, we shall use the identity

$$\begin{split} P^{\mu} \frac{\epsilon \cdot \omega}{\omega \cdot P} = & \epsilon^{\mu} - \frac{q^{\mu}}{q^{2}} \left(\epsilon \cdot q - q \cdot P \frac{\omega \cdot \epsilon}{\omega \cdot P} \right) - \frac{\omega^{\mu}}{\omega \cdot P} \left[\epsilon \cdot P - \epsilon \cdot q \frac{q \cdot P}{q^{2}} - \epsilon \cdot \omega \frac{P^{2}}{\omega \cdot P} + \epsilon \cdot \omega \frac{(q \cdot P)^{2}}{q^{2}\omega \cdot P} \right] \\ & - \frac{i\lambda}{\omega \cdot P} \frac{\epsilon \cdot q}{q^{2}} \epsilon^{\mu \alpha \beta \nu} \omega_{\alpha} q_{\beta} P_{\nu} \,. \end{split}$$

For $\lambda = 0$

 $\begin{array}{l} \epsilon^{\mu} \mbox{ term: additional contribution to } f(q^2); \\ q^{\mu} \epsilon \cdot q \mbox{ term: additional contribution to } a_{-}(q^2) \\ \omega^{\mu} \mbox{ term: contribution to unphysical } \mathcal{F}, \mbox{ which violates covariance.} \qquad \lambda \mbox{ term: =0} \end{array}$

$$\frac{P^{\mu}\epsilon^*\cdot\omega+\omega^{\mu}\epsilon^*\cdot P}{\omega\cdot P}\Big|_{\lambda=0} = \epsilon^{*\mu} - \frac{q^{\mu}}{q^2}\epsilon^*\cdot q + q^{\mu}\frac{q\cdot P}{q^2M''} + \omega^{\mu}\frac{2M''}{\omega\cdot P}.$$

The self-consistency and the covariance problems have the same origin!

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P}$, $P \to V$, $V \to V$

 $\sqsubseteq \mathsf{Example 3: } \mathcal{F}^{P \to V}$

For $\lambda = \pm$

Instead of using such identity, we can directly write the pre-factor as, due to $\epsilon^*_{\lambda=\pm}\cdot\omega=0,$

$$\frac{P^{\mu}\epsilon^{*}\cdot\omega+\omega^{\mu}\epsilon^{*}\cdot P}{\omega\cdot P}\Big|_{\lambda=\pm}=\omega^{\mu}\frac{\epsilon^{*}\cdot P}{\omega\cdot P}$$

"no" addition contribution to $f(q^2)$ and $a_-(q^2)$. Unphysical \mathcal{F} :

$$\begin{split} & [h(q^2)]^{\lambda=0} = N_c \int \frac{\mathrm{d}x \, \mathrm{d}^2 k'_{\perp}}{2(2\pi)^3} \frac{\chi'_P \, \chi''_V}{\bar{x}} \, 4 \left[2(m'_1 - m_2)B_1^{(2)} - \frac{1}{D_{\mathrm{V,con}}^{\prime\prime}} \left([\hat{A}']B_1^{(2)} - 2B_3^{(3)} \right) \right] \frac{2M^{\prime\prime}}{\omega \cdot P} \\ & [h(q^2)]^{\lambda=\pm} = N_c \int \frac{\mathrm{d}x \, \mathrm{d}^2 k'_{\perp}}{2(2\pi)^3} \frac{\chi'_P \, \chi''_V}{\bar{x}} \, 4 \left[2(m'_1 - m_2)B_1^{(2)} - \frac{1}{D_{\mathrm{V,con}}^{\prime\prime}} \left([\hat{A}']B_1^{(2)} - 2B_3^{(3)} \right) \right] \frac{\epsilon^* \cdot P}{\sqrt{2\omega \cdot P}} \end{split}$$

36

• The decomposition for the case of $\lambda = \pm$ is in fact ambiguous.

One can also decompose $\frac{P^{\mu}\epsilon^* \cdot \omega + \omega^{\mu}\epsilon^* \cdot P}{\omega \cdot P}\Big|_{\lambda=\pm}$ in the same way of $\frac{P^{\mu}\epsilon^* \cdot \omega + \omega^{\mu}\epsilon^* \cdot P}{\omega \cdot P}\Big|_{\lambda=0}$. At this moment, the self-consistency problem vanishes, which however is at the expense of introducing more unphysical form factors $(\varepsilon^{\mu\alpha\beta\nu}\omega_{\alpha}q_{\beta}P_{\nu})$. The self-consistency problem is not real, it is dependent on the way of decomposition. Such ambiguous decomposition is trivial only when the *B* function contributions

are zero.

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P}, P \rightarrow V, V \rightarrow V \dots$

 \vdash Example 3: $\mathcal{F}^{P \to V}$

Covariance:

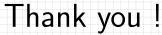
$$h(q^2) \propto \int \mathrm{d}x \,\Delta_{\mathrm{full}}^{f,a_-}(x)$$

type-I: $h(q^2) \neq 0$, covariance is violated; type-II: $h(q^2) \doteq 0$, covariance is recovered.

- $h(q^2) \propto 1/P^+$: the violation of covariance is out of control (traditional type-I scheme).
- $\lambda = \pm$ is not alway a good choice to avoid the covariance problem

Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \rightarrow P, P \rightarrow V, V \rightarrow V \dots M}$

 $\sqsubseteq \mathsf{Example 3:} \ \mathcal{F}^{P \to V}$



Self-consistency and covariance of light-front quark models: testing via $f_{P,V,A}$ and $F_{P \to P, P \to V}$, $V \to V \dots$

 \vdash Example 3: $\mathcal{F}^{P \to V}$

Why $M \rightarrow M_0$?

Manifest covariant formalismLF vertex functionLF vertex operator ($\hat{\epsilon}$)problem is possibly caused by the SLF QMSpin WF"zero-binding-energy" limit with dressed $\hat{\epsilon}$ v.s. ϵ (M v.s. M_0)conservation of momentumv.s. all are on mass-shell

momentum conservation $ightarrow p^2 = (k_1 + k_2)^2 = M_0^2$, meson mass is understood as

$$M^{2} = \int \frac{\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}^{2}}{2(2\pi)^{3}} M_{0}^{2} |\psi(x, \mathbf{k}_{\perp})|^{2}$$

when a hadron mass appeared in a integral for a physical quantity expressed in terms of WF, M_0 should be used.

CLF QM is treated as a covariant expression for the SLF QM + z.m.