Charm Baryon Decays with SU(3)_F symmetry

利用SU(3)F對稱性研究粲重子衰變

Chao-Qiang Geng 耿朝强

清華大學(台灣新竹)

NETS

2018年粲强子物理研讨会 武汉, 湖北 Nov. 9-11, 2018

Outline

- Introduction
- Effective Hamiltonians for weak decays of charmed baryons with SU(3)_F flavor symmetry
- Semileptonic decays of charmed baryons
- Two-body nonleptonic decays of charmed baryons
- Three-body nonleptonic decays of charmed baryons
- Summary

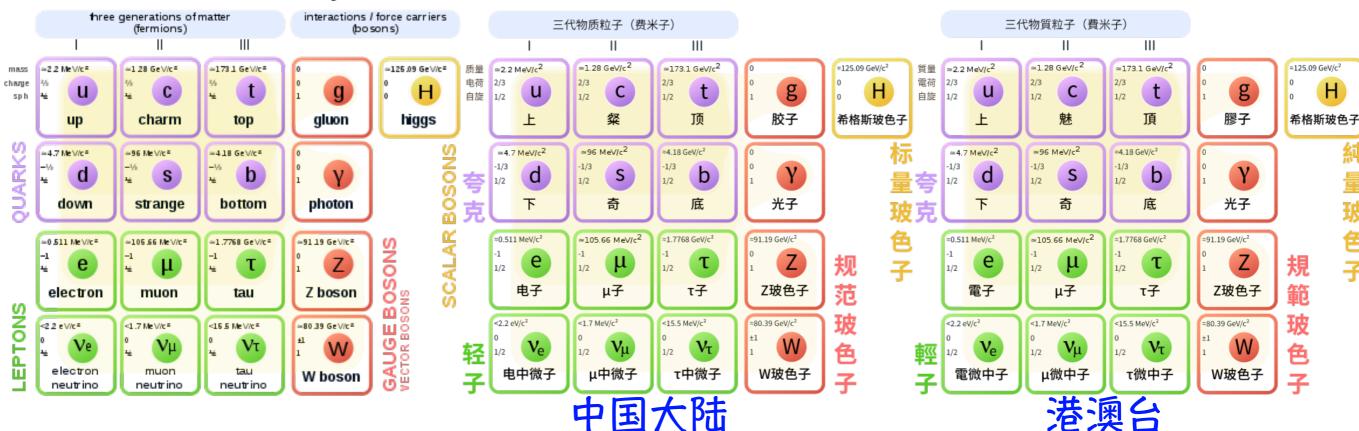
China element

中国元素

Standard Model of Elementary Particles

粒子物理标准模型

粒子物理標準模型



China element

中国元素

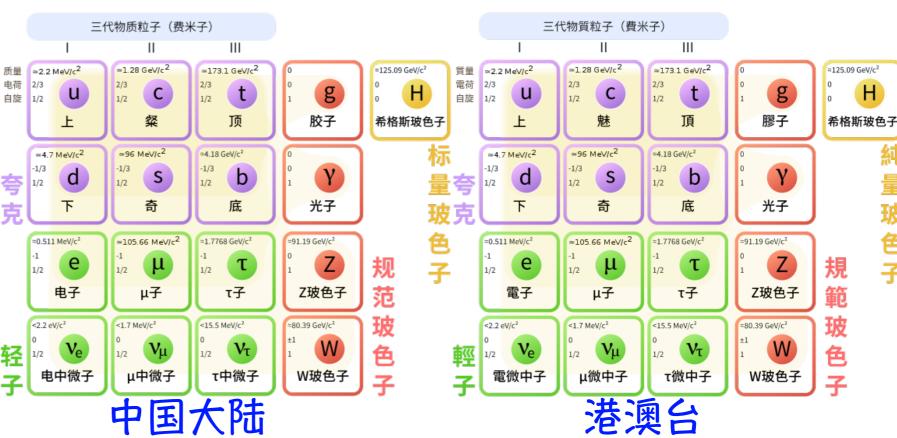
粒子物理标准模型



charm

KK[t∫arm] DJ[t∫a:m] 美式 幻》

n. 魅力[C][U];嫵媚[P]



Charm

China element

中国元素

粒子物理標準模型

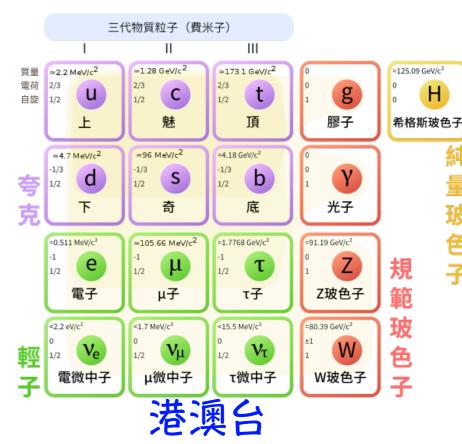


charm

KK[t∫arm] DJ[t∫a:m] 美式 幻》

n. 魅力[C][U];嫵媚[P]

中国大陆



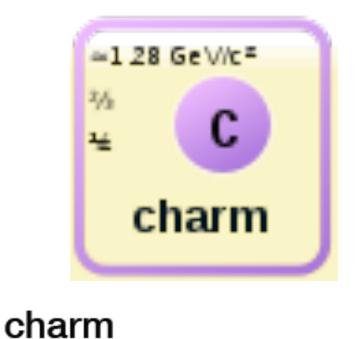
鮮明華美的樣子。詩經·唐風·葛生:「角枕粲兮,錦 衾爛兮。」文選·曹植·贈徐幹詩:「圓景光未滿,眾 星粲以繁。」 明白、清楚。漢書·卷八·宣帝紀:「骨肉之親粲而不

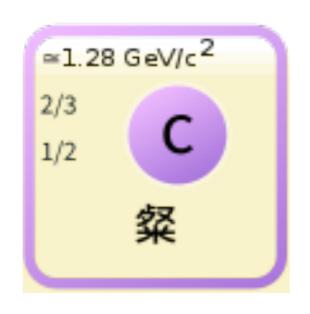
殊。」顏師古·注:「粲,明也。殊,絕也。

Charm

China element

中国元素





中国大陆

港澳台

KK[t∫arm] DJ[t∫a:m] 美式 🖒)

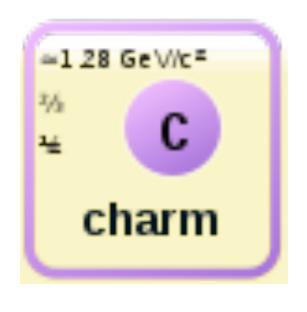
n. 魅力[C][U];嫵媚[P]

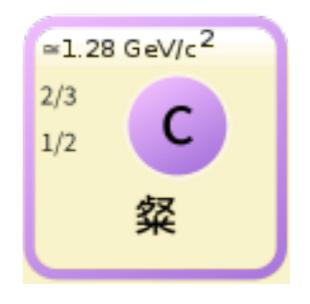
迷惑。說郛·卷六十·玄中記:「能知千里外事,善蠱魅,使人迷惑。」

Charm

China element

中国元素





charm

KK[t∫arm] DJ[t∫a:m] 美式 幻》

魅力[C][U]; 嫵媚[P]

港澳台 中国大陆

媚」嬌豔、美好、可愛。如:「嬌媚」、「嫵媚」、「風光明媚」。文選・陸機・文賦:「石韞玉而山輝,水懷珠而川

粒子物理标准模型

魅力[C][U]; 嫵媚[P]

KK[t∫arm] DJ[t∫a:m] 美式 幻》

charm

嬌豔、美好、可愛。如:「嬌媚」、「嫵媚」、「風光明媚」。文選・陸機・文賦:「石韞玉而山輝,水懷珠而川媚。」

Charm Quark 媚夸克

History for Charm in Theory

In 1956, Sakata model: $\binom{p}{n} \binom{p}{\Lambda} \binom{p}{e} \binom{p}{\mu}$ S. Sakata, Prog. Theor. Phys. 16 (1956), 686.

In 1959 and 1962, Marshak:

Kiev symmetry Lepton-Baryon symmetry

- R. Marshak, rapporteur talk at 9th International Conference on High Energy Physics, Kiev, Ukraine, 1959.
- R. Marshak, rapporteur talk at 11th International Conference on High Energy Physics, CERN, July 1962.

In 1962, Sakata et al (Nagoya); Katayama et al (Tokyo): $\binom{p}{n}$ $\binom{\nu_1}{e}$ $\binom{\nu_1}{e}$

- Z. Maki, M. Nakagava and S. Sakata, Prog. Theor. Phys. 28 (1962), 870.
- Y. Katayama, K. Matumoto, S. Tanaka and E. Yamada, Prog. Theor. Phys. 28 (1962),675.

In 1964, Bjorken & Glashow: Proposed a 4th quark and invented the name "Charm"

B.J. Bjorken and S. Glashow, Phys. Lett. 11 (1964) 255.

In 1970, Glashow, Iliopoulos and Maiani (GIM):

S. Glashow, Iliopoulos and Maiani, Phys. Rev. D2 (1970) 1285.

$$K^0 \rightarrow \mu^+ + \mu^-$$

 $\mathcal{K}^0 o \mu^+ + \mu^ \mathcal{M}_1 \propto \sin\theta_c \cos\theta_c$, $\mathcal{M}_2 \propto -\sin\theta_c \cos\theta_c$

GIM mechanism

$$S \xrightarrow{\sin\theta_{C}} W \xrightarrow{\nu_{\mu}} \mu$$

$$K^{0} \overline{d} \xrightarrow{\cos\theta_{C}} W \xrightarrow{\nu_{\mu}} \mu$$

$$K^{0} \overline{d} \xrightarrow{-\sin\theta_{C}} W \xrightarrow{\nu_{\mu}} \mu$$

The 1974 November Revolution of HEP:

Discovery of a new QUARK — Charm (c)

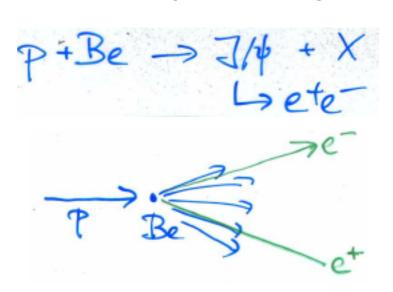
 $J/\psi = c\overline{c}$

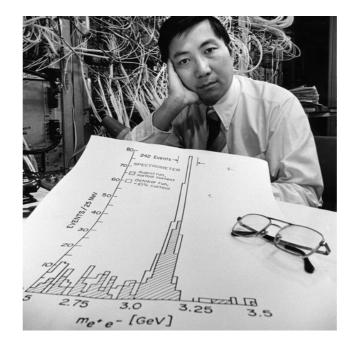
44年前(1974) 11月10,11日

苏联十月革命 (November 1917)

At the East coast of US: Received by PRL on Nov. 12, 1974

Brookhaven (Proton Synchrotron)



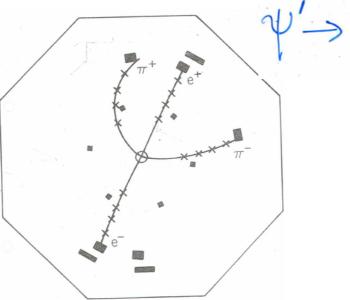


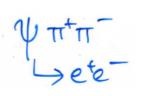
At the West coast of US: Received by PRL on Nov. 13, 1974

SLAC (e⁺e⁻ collider)

Nov. 10, 1974

Nov. 11, 1974 Ting and Richter met at



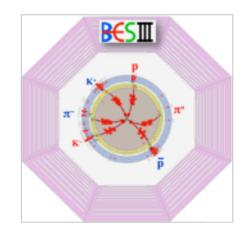


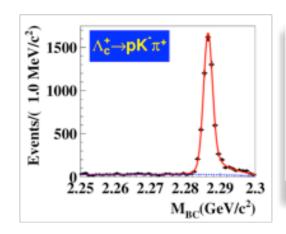
B. Richter

Nobel Physics Prize 1976

Recent experimental developments in charmed baryons:

BESIII at the Beijing Electron Positron Collider (BEPCII)



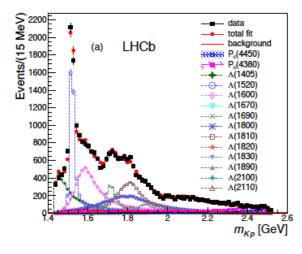


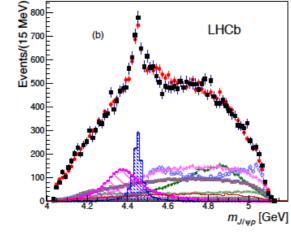
A uniquely clean background to study Charm Baryons

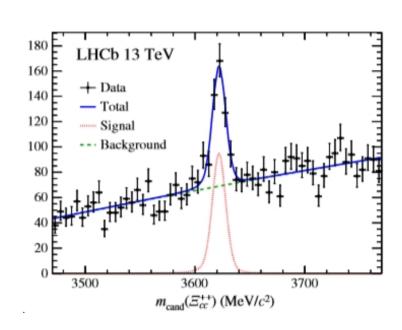
$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)_{\text{BESIII}} = (5.84 \pm 0.27 \pm 0.23)\%$$

Many newly measured charmed baryon decays.

LHCb discoveries pentaquark-like charm baryons P_c (uudc \overline{c}) and the doubly-charmed baryon \mathcal{E}_{cc}^{++} by the Chinese group (Φ 📵 🗷 🎮)







Extensive recent theoretical studies on weak decays of charmed baryons (cross-strait 海峽雨岸):

H.Y. Cheng et al in 1990s and recently:

H.Y. Cheng, X.W. Kang and F.R. Xu, ``Singly Cabibbo-suppressed hadronic decays of Λ_c^+ ," Phys. Rev. D97, 074028 (2018)

See Talk by F.R. Xu

C.D. Lü, W. Wang, F.S. Yu:

C.D. Lü, W. Wang and F.S. Yu, ``Test flavor SU(3) symmetry in exclusive Λ_c decays," Phys. Rev. D93, 056008 (2016)

See Talk by F.S.Yu

F.S. Yu, H.Y. Jiang, R.H. Li, C.D. Lü, W. Wang, Z.T. Zhou, ``Discovery Potentials of Doubly Charmed Baryons," Chin. Phys. C42, 051001 (2018)

W. Wang, Z.P. Xing and J. Xu, "Weak Decays of Doubly Heavy Baryons: SU(3) Analysis," Eur. Phys. J. C77, 800 (2017)

D. Wang, P.F. Guo, W.H. Long and F.S. Yu, ``K_S⁰–K_L⁰ asymmetries and CP violation in charmed baryon decays into neutral kaons," JHEP 1803, 066 (2018)

Z.X. Zhao, "Weak decays of heavy baryons in the light-front approach," Chin. Phys. C42, 093101 (2018)

Studies of charmed baryons with SU(3)_F flavor symmetry

- C.Q. Geng, Y.K. Hsiao, Y.H. Lin and L.L. Liu "Non-leptonic two-body weak decays of $\Lambda_c(2286)$," Phys. Lett. B776, 265 (2017).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "Charmed Baryon Weak Decays with SU(3) Flavor Symmetry," JHEP 1711, 147 (2017).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "Anti-triplet charmed baryon decays with SU(3) Flavor Symmetry," Phys. Rev. D97, 073006 (2018).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "SU(3) symmetry breaking in charmed baryon decays," Eur. Phys. J. C78, 593 (2018).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "Three-body charmed baryon Decays with SU(3) flavor symmetry," arXiv:1810.01079 [hep-ph].

QCD	Q
------------	---

$$SU(3)_{\mathbb{C}} \times SU(n)_{\mathbb{L}} \times SU(n)_{\mathbb{R}} \times U(1)_{\mathbb{B}} \longrightarrow$$

n	1	1/3
1	_	1 /2

$$SU(3)_{\mathbb{C}} \times SU(n)_{\mathbb{F}=L+\mathbb{R}} \times U(1)_{\mathbb{B}}$$

3	n	1/3
3	$\frac{-}{n}$	-1/3

Three light quarks: q=u,d,s

q

$$SU(3)_C: 3\otimes 3\otimes 3=10_S\oplus 8_{Ms}\oplus 8_{Ma}\oplus 1_A$$

$$SU(3)_F$$
: $3 \otimes 3 \otimes 3 = 10_S \oplus 8_{Ms} \oplus 8_{Ma} \oplus 1_A$

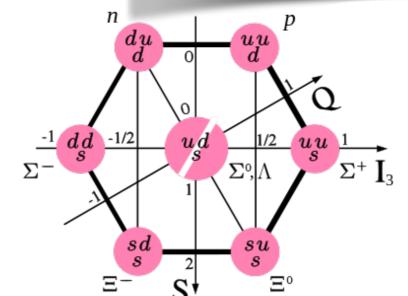
$$SU(2)_{spin}: 2 \otimes 2 \otimes 2 = 4_S \oplus 2_{Ms} \oplus 2_{MA}$$

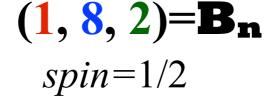
Light physical allowed states (q=u,d,s)

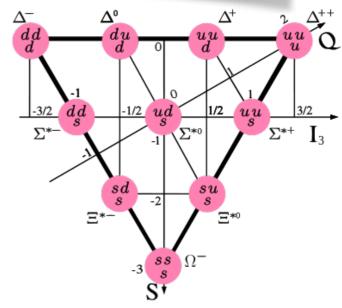
Pauli Exclusion Principle

Totally antisymmetric states

Space: L=0 **Symmetric**







$$(1, 10, 4)$$
 $spin=3/2$

Four quarks: q=u,d,s,c

 $SU(4)_F: 4 \otimes 4 \otimes 4 = 20_S \oplus 20_{Ms} \oplus 20_{Ma} \oplus \overline{4}_A$

 $SU(3)_C: 3\otimes 3\otimes 3=10_S\oplus 8_{Ms}\oplus 8_{MA}\oplus 1_A$

Space: L=0 **Symmetric**

 $SU(2)_{spin}: 2 \otimes 2 \otimes 2 = 4_S \oplus 2_{Ms} \oplus 2_{MA}$

 $(SU(3)_C, SU(4)_F, SU(2)_{spin})$

Antisymmetric

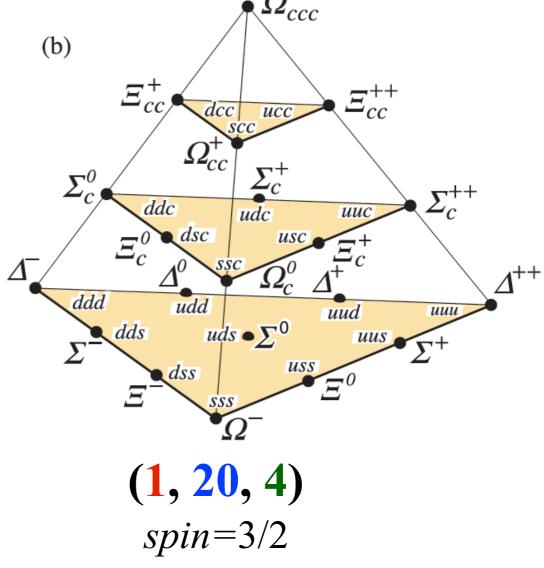
Symmetric

SU(4) multiplets of baryons made of u, d, s, and c quarks.

(a) The 20-plet with an SU(3) octet.

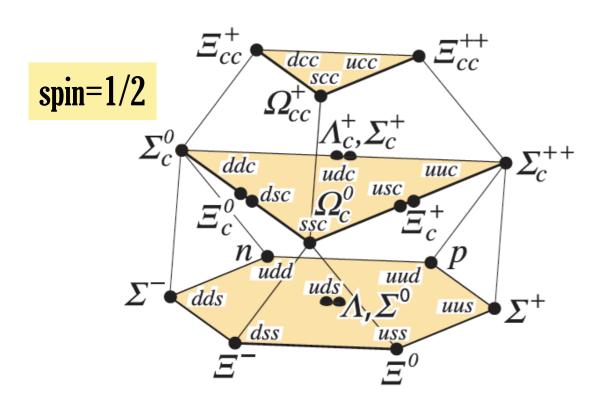
(a) Σ_c^+ Σ_c^+

(b) The 20-plet with an SU(3) decuplet. Ω_{ccc}^{++}



(1, 20, 2) spin=1/2

20-plet of SU(4)_F with $8\oplus 3\oplus 6\oplus 3$ of SU(3)_F

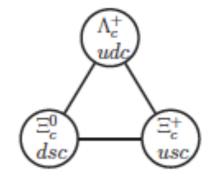


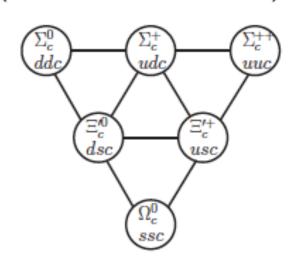
$$\mathbf{SU(3)_F:8} \qquad \mathbf{B}_n = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p \\ \Sigma^- & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix}$$

Charmed Baryons ($J^P=1/2^+$) with $SU(3)_F$

anti-triplet (3)

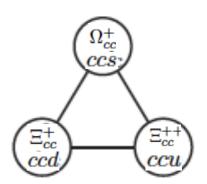
$$\mathbf{B}_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}) \ \mathbf{B}_{c}' = \begin{pmatrix} \Sigma_{c}^{++} & \frac{1}{\sqrt{2}} \Sigma_{c}^{+} & \frac{1}{\sqrt{2}} \Xi_{c}'^{+} \\ \frac{1}{\sqrt{2}} \Sigma_{c}^{+} & \Sigma_{c}^{0} & \frac{1}{\sqrt{2}} \Xi_{c}'^{0} \\ \frac{1}{\sqrt{2}} \Xi_{c}'^{+} & \frac{1}{\sqrt{2}} \Xi_{c}'^{0} & \Omega_{c}^{0} \end{pmatrix}$$





 $SU(3)_F:3$

$$\mathbf{B}_{cc} = (\Xi_{cc}^{++}, \Xi_{cc}^{+}, \Omega_{cc}^{+})$$



Effective Hamiltonians for weak decays of charmed baryons with SU(3) flavor symmetry

The effective Hamiltonian for the semileptonic $c \rightarrow q + v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq}(\bar{q}c)_{V-A} (\bar{u}_{\nu}v_{\ell})_{V-A}$$

$$(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_{\mu} (1 - \gamma_5) q_2$$

$$(\bar{u}_{\nu}v_{\ell})_{V-A} = \bar{u}_{\nu} \gamma^{\mu} (1 - \gamma_5) v_{\ell}$$

For the non-leptonic $c \to s$ u \overline{d} , $c \to u$ q \overline{q} and $c \to u$ d \overline{s} transitions,

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ V_{cs} V_{ud} (c_+ O_+ + c_- O_-) + V_{cd} V_{ud} (c_+ \hat{O}_+ + c_- \hat{O}_-) + V_{cd} V_{us} (c_+ O'_+ + c_- O'_-) \right\}$$

Cabibbo-allowed

Cabibbo-suppressed

doubly Cabibbo-suppressed

$$(V_{cs}V_{ud}, V_{cd}V_{ud}, V_{cd}V_{us}) \simeq (1, -s_c, -s_c^2)$$

$$s_c \equiv \sin \theta_c = 0.2248$$

$$O_{\pm} = \frac{1}{2} [(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A}]$$

$$O_{\pm}^{q} = \frac{1}{2} [(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A}]$$

$$O_{\pm}' = \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}]$$

$$\hat{O}_{\pm} \equiv O_{\pm}^d - O_{\pm}^s$$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3}) (\bar{u}_{\nu} v_{\ell})_{V-A}$$

 $(\bar{q}_i q^k)(\bar{q}_j c)$ with $\bar{q}_i q^k \bar{q}_j$ being decomposed as $\bar{3} \times 3 \times \bar{3} = \bar{3} + \bar{3}' + 6 + \bar{15}$

$$\mathcal{O}_{6} = \frac{1}{2}(\bar{u}d\bar{s} - \bar{s}d\bar{u})c, \quad \hat{\mathcal{O}}_{6} = \frac{1}{2}(\bar{u}d\bar{d} - \bar{d}d\bar{u} + \bar{s}s\bar{u} - \bar{u}s\bar{s})c, \quad \mathcal{O}'_{6} = \frac{1}{2}(\bar{u}s\bar{d} - \bar{d}s\bar{u})c, \\
\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c, \quad \hat{\mathcal{O}}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{d} + \bar{d}d\bar{u} - \bar{s}s\bar{u} - \bar{u}s\bar{s})c, \quad \mathcal{O}'_{\overline{15}} = \frac{1}{2}(\bar{u}s\bar{d} + \bar{d}s\bar{u})c,$$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$H_{22}(6) = 2, H_{23}(6) = H_{32}(6) = -2s_c, H_{33}(6) = 2s_c^2$$

$$H_2^{13}(\overline{15}) = H_2^{31}(\overline{15}) = 1,$$

$$H_2^{12}(\overline{15}) = H_2^{21}(\overline{15}) = -H_3^{13}(\overline{15}) = -H_3^{31}(\overline{15}) = s_c,$$

$$H_3^{12}(\overline{15}) = H_3^{21}(\overline{15}) = -s_c^2,$$

The Hamiltonian without QCD corrections: $c_{-}^{0}=c_{+}^{0}=1$

$$\alpha_s(\mu^2) = \frac{4\pi}{\left(\frac{33-2N_F}{3}\right) \ln \frac{\mu^2}{\Lambda_{QCD}^2}}$$

The first order QCD corrections:

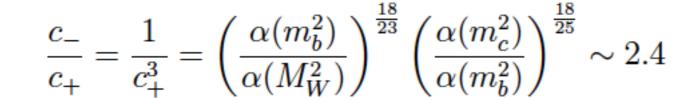
$$c_{-}^{1} = 1 + \frac{\alpha_s}{2\pi} \ln \frac{M_W^2}{\mu^2}$$

$$c_{+}^{1} = 1 - \frac{\alpha_s}{2\pi} \ln \frac{M_W^2}{\mu^2}$$

Summing up all orders:

$$c_{-} = \left(\frac{\alpha(M_W^2)}{\alpha(\mu^2)}\right)^{\frac{-12}{33-2N_f}}$$

$$c_{+} = \left(\frac{\alpha(M_W^2)}{\alpha(\mu^2)}\right)^{\frac{6}{33-2N_f}}$$



Semileptonic decays of charmed baryons

$$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$$

Under SU(3)_F flavor symmetry:
$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)_j^i H^j(\bar{3})(\mathbf{B}_c)_i$$

		-
$\mathbf{B}_c o \mathbf{B}_n$	T-amp	
$\Xi_c^0 \to \Xi^-$	α_1	
$\Xi_c^+ \to \Xi^0$	α_1	
$\Lambda_c^+ \to \Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$	$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-1}$
$\Xi_c^0 \to \Sigma^-$	$-\alpha_1 s_c$	
$\Xi_c^+ \to \Sigma^0$		
$\Xi_c^+ \to \Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$	
$\Lambda_c^+ \to n$		$\mathcal{B}(\Lambda_c^+ \to ne^+\nu_e) = (3.76 \pm 0.42) \times 10^{-3}$

Experimental Data

C.D. Lü, W. Wang and F.S. Yu, "Test flavor SU(3) symmetry in exclusive Λ_c decays," Phys. Rev. D93, 056008 (2016)

Semileptonic decays of charmed baryons

$$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$$

Under SU(3)_F flavor symmetry:
$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)_j^i H^j(\bar{3})(\mathbf{B}_c)_i$$

$\mathbf{B}_c o \mathbf{B}_n$	T-amp	
$\Xi_c^0 \to \Xi^-$	α_1	$\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.54 \pm 0.28) \times 10^{-2}$
$\Xi_c^+ \to \Xi^0$	α_1	$\mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = (10.1 \pm 1.1) \times 10^{-2}$
$\Lambda_c^+ \to \Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$	$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$
$\Xi_c^0 \to \Sigma^-$	$-\alpha_1 s_c$	$\mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e) = (1.63 \pm 0.18) \times 10^{-3}$
$\Xi_c^+ \to \Sigma^0$	$\sqrt{\frac{1}{2}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e) = (3.23 \pm 0.36) \times 10^{-3}$
$\Xi_c^+ \to \Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e) = (1.25 \pm 0.14) \times 10^{-3}$
$\Lambda_c^+ \to n$	$-\alpha_1 s_c$	$\mathcal{B}(\Lambda_c^+ \to ne^+\nu_e) = (3.76 \pm 0.42) \times 10^{-3}$

Experimental Data

Two-body nonleptonic decays of charmed baryons

$$\mathbf{B}_c o \mathbf{B}_n M$$
 $\mathbf{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+)$

$$\mathbf{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+)$$

$$\mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix} \qquad M = \begin{pmatrix} \frac{1}{\sqrt{6}}\eta + \frac{1}{\sqrt{2}}\pi^{0} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{6}}\eta - \frac{1}{\sqrt{2}}\pi^{0} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$$

$$M = \begin{pmatrix} \frac{1}{\sqrt{6}}\eta + \frac{1}{\sqrt{2}}\pi^0 & \pi^+ & K^+ \\ \pi^- & \frac{1}{\sqrt{6}}\eta - \frac{1}{\sqrt{2}}\pi^0 & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n M) = \langle \mathbf{B}_n M | \mathcal{H}_{eff} | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} T(\mathbf{B}_c \to \mathbf{B}_n M)$$

Under SU(3)_F flavor symmetry:
$$T(\mathbf{B}_c \to \mathbf{B}_n M) = T(\mathcal{O}_6) + T(\mathcal{O}_{\overline{15}})$$

$$T(\mathcal{O}_6) = a_1 H_{ij}(6) T^{ik}(\mathbf{B}_n)_k^l(M)_l^j + a_2 H_{ij}(6) T^{ik}(M)_k^l(\mathbf{B}_n)_l^j + a_3 H_{ij}(6) (\mathbf{B}_n)_k^i(M)_l^j T^{kl}$$

$$T(\mathcal{O}_{\overline{15}}) = a_4 H_{li}^k (\overline{15}) (\mathbf{B}_c)^j (M)_j^i (\mathbf{B}_n)_k^l + a_5 (\mathbf{B}_n)_j^i (M)_i^l H (\overline{15})_l^{jk} (\mathbf{B}_c)_k$$
$$+ a_6 (\mathbf{B}_n)_l^k (M)_j^i H (\overline{15})_i^{jl} (\mathbf{B}_c)_k + a_7 (\mathbf{B}_n)_i^l (M)_j^i H (\overline{15})_l^{jk} (\mathbf{B}_c)_k$$

$$T_{ij} \equiv (\mathbf{B}_c)_k \epsilon^{ijk}$$

Two reasons:

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

Assumption

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) \right\}$$

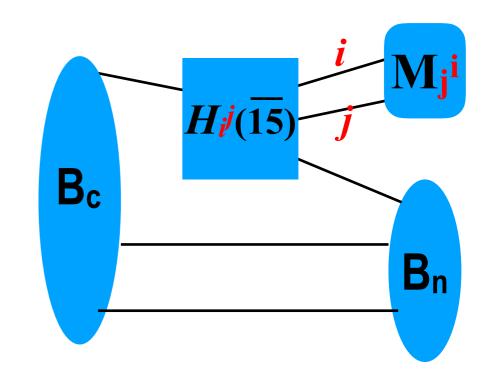
- 1. $(c_{-}/c_{+})^{2} \sim 5.5$;
- 2. $\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c$ is symmetric, whereas the baryon wave function is totally antisymmetric in color indices. Vanishing nonfactorizable contributions

What is about the factorizable parts of $H(\overline{15})$?

$$T(\mathcal{O}_{\overline{15}}) = a_4 H_{li}^k(\overline{15})(\mathbf{B}_c)^j (M)_j^i (\mathbf{B}_n)_k^l + a_5 (\mathbf{B}_n)_j^i (M)_i^l H(\overline{15})_l^{jk} (\mathbf{B}_c)_k$$
$$+ a_6 (\mathbf{B}_n)_l^k (M)_j^i H(\overline{15})_i^{jl} (\mathbf{B}_c)_k + a_7 (\mathbf{B}_n)_i^l (M)_j^i H(\overline{15})_l^{jk} (\mathbf{B}_c)_k$$

$$a_6(\mathbf{B}_n)_l^k(M)_j^i H(\overline{15})_i^{jl}(\mathbf{B}_c)_k$$

the only term which leads to factorizable contributions to $\mathbf{B}_c \to \mathbf{B_n} \mathbf{M}$



Cabibbo-allowed

channel	amplitude
$\Xi_c^0 \to \Sigma^+ K^-$	$2a_2$
$\Xi_c^0 o \Sigma^0 ar K^0$	$\sqrt{2}(-a_2 - a_3 + \frac{a_6}{2})$
$\Xi_c^0\to\Xi^0\pi^0$	$\sqrt{2}(-a_1+a_3)$
$\Xi_c^0 o \Xi^0 \eta$	$\frac{\sqrt{6}}{3}(a_1-2a_2-a_3)$
$\Xi_c^0\to\Xi^-\pi^+$	$2a_1+a_6$
$\Xi_c^0 o \Lambda^0 ar K^0$	$\frac{\sqrt{6}}{3}(-2a_1+a_2+a_3+\frac{a_6}{2})$
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	$2a_3 - a_6$
$\Xi_c^+ o \Xi^0 \pi^+$	$-2a_{3}-a_{6}$
$\Lambda_c^+ \to \Sigma^+ \pi^0$	$\sqrt{2}(a_1-a_2-a_3)$
$\Lambda_c^+ o \Sigma^+ \eta$	$\frac{\sqrt{6}}{3}(-a_1-a_2+a_3)$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$\sqrt{2}(-a_1+a_2+a_3)$
$\Lambda_c^+ \to \Xi^0 K^+$	$-2a_2$
$\Lambda_c^+ o p \bar K^0$	$-2a_1+a_6$
$\Lambda_c^+ \to \Lambda^0 \pi^+$	$\frac{\sqrt{6}}{3}(-a_1-a_2-a_3-a_6)$

Cabibbo-suppressed

1 1	124 1
channel	amplitude
$\Xi_c^0 o \Sigma^+\pi^-$	$2a_2$
$\Xi_c^0 \to \Sigma^0 \pi^0$	$a_1+a_2-rac{a_6}{2}$
$\Xi_c^0 o \Sigma^0 \eta$	$\frac{\sqrt{3}}{3}(-a_1-a_2-2a_3+\frac{3}{2}a_6)$
$\Xi_c^0 o \Sigma^- \pi^+$	$2a_1+a_6$
$\Xi_c^0 o \Xi^0 K^0$	$-2a_1 + 2a_2 + 2a_3$
$\Xi_c^0 o \Xi^- K^+$	$-2a_1-a_6$
$\Xi_c^0 o pK^-$	$-2a_2$
$\Xi_c^0 o n ar K^0$	$2a_1 - 2a_2 - 2a_3$
$\Xi_c^0 o \Lambda^0 \pi^0$	$\frac{1}{\sqrt{3}}(-a_1-a_2+2a_3-\frac{a_6}{2})$
$\Xi_c^0 o \Lambda^0 \eta$	$-a_1 - a_2 + \frac{a_6}{2}$
$\Xi_c^+ \to \Sigma^+ \pi^0$	$\sqrt{2}(-a_1+a_2+\frac{a_6}{2})$
$\Xi_c^+ o \Sigma^+ \eta$	$\frac{\sqrt{6}}{3}(a_1/3 + a_2 + 2a_3 - \frac{3}{2}a_6)$
$\Xi_c^+ \to \Sigma^0 \pi^+$	$\sqrt{2}(a_1 - a_2 + \frac{a_6}{2})$
$\Xi_c^+ \to \Xi^0 K^+$	$2a_2 + 2a_3 + a_6$
$\Xi_c^+ o par K^0$	$2a_1-2a_3$
$\Xi_c^+ o \Lambda^0 \pi^+$	$\frac{\sqrt{6}}{3}(a_1+a_2-2a_3-\frac{a_6}{2})$
$\Lambda_c^+ \to \Sigma^+ K^0$	$2a_1 - 2a_3$
$\Lambda_c^+ \to \Sigma^0 K^+$	$\sqrt{2}(a_1-a_3)$
$\Lambda_c^+ \to p \pi^0$	$\sqrt{2}(a_2 + a_3 - \frac{a_6}{2})$
$\Lambda_c^+ o p\eta$	$\frac{\sqrt{6}}{3}(-2a_1+a_2-a_3+\frac{3}{2}a_6)$
$\Lambda_c^+ o n\pi^+$	$2a_2 + 2a_3 + a_6$
$\Lambda_c^+ \to \Lambda^0 K^+$	$\frac{\sqrt{6}}{3}(a_1 - 2a_2 + a_3 + a_6)$

doubly Cabibbo-suppressed

channel	amplitude
$\Xi_c^0 \to \Sigma^0 K^0$	$\sqrt{2}(a_1-\frac{a_6}{2})$
$\Xi_c^0 \to \Sigma^- K^+$	$-2a_1-a_6$
$\Xi_c^0 o p\pi^-$	$-2a_2$
$\Xi_c^0 \to n \pi^0$	$\sqrt{2}a_2$
$\Xi_c^0 o n\eta$	$\frac{\sqrt{6}}{3}(2a_1-a_2-2a_3)$
$\Xi_c^0 \to \Lambda^0 K^0$	$\frac{\sqrt{6}}{3}(-a_1+2a_2+2a_3-\frac{a_6}{2})$
$\Xi_c^+ \to \Sigma^+ K^0$	$-2a_1 + a_6$
$\Xi_c^+ \to \Sigma^0 K^+$	$\sqrt{2}(-a_1 - \frac{a_6}{2})$
$\Xi_c^+ o p \pi^0$	$-\sqrt{2}a_2$
$\Xi_c^+ \to p \eta$	$\frac{\sqrt{6}}{3}(2a_1-a_2-2a_3)$
$\Xi_c^+ \to n\pi^+$	$-2a_2$
$\Xi_c^+ \to \Lambda^0 K^+$	$\frac{\sqrt{6}}{3}(-a_1+2a_2+2a_3+\frac{a_6}{2})$
$\Lambda_c^+ o p K^0$	$2a_3 - a_6$
$\Lambda_c^+ \to nK^+$	$-2a_{3}-a_{6}$

TABLE 2. The data of the $\mathbf{B}_c \to \mathbf{B}_n M$ decays.

Branching ratios	Data [4, 7]	Branching ratios	Data [4, 7]
$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0)$	3.16 ± 0.16	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.70 ± 0.23
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	1.30 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda K^+)$	6.1 ± 1.2
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.24 ± 0.10	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	5.2 ± 0.8
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.29 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta)$	12.4 ± 3.0
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.50 ± 0.12	$\mathcal{R} = rac{\mathcal{B}(\Xi_c^0 o \Lambda ar{K}^0)}{\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)}$	0.420 ± 0.056

 $10^4 B(\Lambda_c^+ \to p\pi^0) = 0.80 \pm 1.36$

11 data points above to fit with 7 real parameters:

$$a_1, a_2 e^{i\delta_{a_2}}, a_3 e^{i\delta_{a_3}}, a_6 e^{i\delta_{a_6}}$$

The minimum
$$\chi^2$$
 fit: $\chi^2 = \sum_i \left(\frac{\mathcal{B}_{th}^i - \mathcal{B}_{ex}^i}{\sigma_{ex}^i}\right)^2 + \sum_i \left(\frac{\mathcal{R}_{th}^j - \mathcal{R}_{ex}^j}{\sigma_{ex}^j}\right)^2$

$$(a_1, a_2, a_3, a_6) = (0.271 \pm 0.006, 0.126 \pm 0.010, 0.051 \pm 0.012, 0.055 \pm 0.030) \ GeV^3$$

 $(\delta_{a_2}, \delta_{a_3}, \delta_{a_6}) = (82 \pm 6, -20 \pm 24, 40 \pm 36)^{\circ}$

$$\chi^2/d.o.f = 1.8/4 \simeq 0.5$$

BRs of Cabibbo-allowed decays

channel	$10^3 \mathrm{BR}_{th}$	$10^3 \mathrm{BR}_{EX}$
$\Xi_c^0 o \Sigma^+ K^-$	3.7 ± 0.6	-
$\Xi_c^0 o \Sigma^0 ar K^0$	1.0 ± 0.6	-
$\Xi_c^0\to\Xi^0\pi^0$	6.1 ± 1.1	-
$\Xi_c^0 o \Xi^0 \eta$	3.1 ± 0.6	-
$\Xi_c^0\to\Xi^-\pi^+$	20.3 ± 0.9	-
$\Xi_c^0 o \Lambda^0 ar K^0$	9.3 ± 0.9	-
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	2.1 ± 1.5	-
$\Xi_c^+ \to \Xi^0 \pi^+$	4.2 ± 1.9	
$\Lambda_c^+ \to \Sigma^+ \pi^0$	12.6 ± 2.1	12.4 ± 1.0
$\Lambda_c^+ \to \Sigma^+ \eta$	5.4 ± 1.0	7.0 ± 2.3
$\Lambda_c^+ \to \Sigma^0 \pi^+$	12.6 ± 2.1	12.9 ± 0.7
$\Lambda_c^+ \to \Xi^0 K^+$	5.9 ± 1.0	5.9 ± 1.0
$\Lambda_c^+ \to p \bar{K}^0$	31.3 ± 1.6	31.6 ± 1.6
$\Lambda_c^+ \to \Lambda^0 \pi^+$	13.1 ± 1.6	13.0 ± 0.7

BRs of Cabibbo-suppressed decays

	_	
channel	$10^4 \mathrm{BR}_{th}$	$10^4 \mathrm{BR}_{EX}$
$\Xi_c^0 o \Sigma^+\pi^-$	2.2 ± 0.4	-
$\Xi_c^0 \to \Sigma^0 \pi^0$	2.8 ± 0.3	-
$\Xi_c^0 o \Sigma^0 \eta$	1.0 ± 0.2	-
$\Xi_c^0 \to \Sigma^- \pi^+$	11.7 ± 0.5	-
$\Xi_c^0 o \Xi^0 K^0$	6.2 ± 1.0	-
$\Xi_c^0 \to \Xi^- K^+$	9.8 ± 0.4	-
$\Xi_c^0 o pK^-$	2.3 ± 0.4	-
$\Xi_c^0 o n ar K^0$	7.8 ± 1.3	-
$\Xi_c^0 o \Lambda^0 \pi^0$	1.0 ± 0.3	-
$\Xi_c^0 o \Lambda^0 \eta$	2.7 ± 0.3	-
$\Xi_c^+ \to \Sigma^+ \pi^0$	20.3 ± 2.0	-
$\Xi_c^+ \to \Sigma^+ \eta$	8.2 ± 1.9	-
$\Xi_c^+ \to \Sigma^0 \pi^+$	23.5 ± 2.3	-
$\Xi_c^+ \to \Xi^0 K^+$	9.8 ± 3.3	-
$\Xi_c^+ o par K^0$	29.2 ± 5.2	-
$\Xi_c^+ \to \Lambda^0 \pi^+$	5.1 ± 2.1	-
$\Lambda_c^+ \to \Sigma^+ K^0$	11.4 ± 2.0	-
$\Lambda_c^+ \to \Sigma^0 K^+$	5.7 ± 1.0	5.2 ± 0.8
$\Lambda_c^+ \to p \pi^0$	1.3 ± 0.7	0.8 ± 1.3
$\Lambda_c^+ o p\eta$	13.0 ± 1.0	12.4 ± 3.0
$\Lambda_c^+ \to n\pi^+$	6.1 ± 2.0	-
$\Lambda_c^+ \to \Lambda^0 K^+$	6.4 ± 0.9	6.1 ± 1.2

Remarks on $\Lambda_c \! \to p \pi^0$

	$10^4 \mathrm{BR}_{th}$	$10^4 \mathrm{BR}_{EX}$	$10^4 \mathrm{BR}_{th}$
channel	Our results	Data	PoCA
$\Lambda_c^+ \to \Sigma^+ K^0$	11.4 ± 2.0	_	14.4
$\Lambda_c^+ o \Sigma^0 K^+$	5.7 ± 1.0	5.2 ± 0.8	7.18
$\Lambda_c^+ \to p \pi^0$	1.3 ± 0.7	$0.8 \pm 1.3 (< 2.7)$	0.75
$\Lambda_c^+ o p\eta$	13.0 ± 1.0	12.4 ± 3.0	12.8
$\Lambda_c^+ \to n\pi^+$	6.1 ± 2.0	-	2.66
$\Lambda_c^+ \to \Lambda^0 K^+$	6.4 ± 0.9	6.1 ± 1.2	10.6

Our result of Br($\Lambda_{c}^{+} \rightarrow p\pi^{0}$)=(1.3±0.7)×10⁻⁴ is consistent with the data of <2.7×10⁻⁴ as well as that of 0.75×10⁻⁴ by PoCA.

H.Y. Cheng, X.W. Kang and F.R. Xu, "Singly Cabibbo-suppressed hadronic decays of Λ_c^+ ," Phys. Rev. D97, 074028 (2018)

See Talk by F.R. Xu

BRs of DCS decays

channel	$10^5 \mathrm{BR}_{th}$
$\Xi_c^0 \to \Sigma^0 K^0$	2.1 ± 0.1
$\Xi_c^0 \to \Sigma^- K^+$	5.8 ± 0.3
$\Xi_c^0 o p\pi^-$	1.3 ± 0.2
$\Xi_c^0 o n\pi^0$	0.7 ± 0.1
$\Xi_c^0 o n\eta$	2.5 ± 0.4
$\Xi_c^0 \to \Lambda^0 K^0$	0.7 ± 0.3
$\Xi_c^+ \to \Sigma^+ K^0$	16.8 ± 0.9
$\Xi_c^+ o \Sigma^0 K^+$	11.4 ± 0.5
$\Xi_c^+ o p \pi^0$	2.6 ± 0.4
$\Xi_c^+ o p\eta$	9.7 ± 1.6
$\Xi_c^+ \to n \pi^+$	5.1 ± 0.9
$\Xi_c^+ \to \Lambda^0 K^+$	3.0 ± 1.1
$\Lambda_c^+ o p K^0$	0.3 ± 0.2
$\Lambda_c^+ \to n K^+$	0.6 ± 0.3

Three-body nonleptonic decays of charmed baryons

$$\mathbf{B}_c \to \mathbf{B}_n M M'$$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n M M') \equiv (G_F/\sqrt{2})T(\mathbf{B}_c \to \mathbf{B}_n M M')$$

Under SU(3)_F flavor symmetry:

$$T^{ij} = (\mathbf{B_c})_a \epsilon^{aij}$$

$$T(\mathbf{B}_{c} \to \mathbf{B}_{n}MM) = a_{1}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{l}^{m}(M')_{m}^{l}H(6)_{jk}T^{ij} + a_{2}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{j}^{m}(M')_{m}^{l}H(6)_{kl}T^{ij}$$

$$+ a_{3}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{k}^{m}(M')_{m}^{l}H(6)_{jl}T^{ij} + a_{4}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{j}^{l}(M')_{k}^{m}H(6)_{lm}T^{ij}$$

$$+ a_{5}(\bar{\mathbf{B}}_{n})_{k}^{l}(M)_{j}^{m}(M')_{m}^{k}H(6)_{il}T^{ij} + a_{6}(\bar{\mathbf{B}}_{n})_{k}^{l}(M)_{j}^{m}(M')_{l}^{k}H(6)_{im}T^{ij}$$

Assumptions:

- 1. Consider only the S-wave (L=0) contributions from MM' in the amplitudes.
- 2. Neglect the effects from H(15).
- 3. Take the data with only the non-resonant parts.

T-amplitudes of $\Lambda_c^+ \to \mathbf{B_n} M M'$

CF mode	T-amp	CS mode	$\mathrm{T\text{-}amp}/t_c$	DCS mode	T -amp $/t_c^2$
$\Sigma^+\pi^0\pi^0$	$4a_1 + 2a_2 + 2a_3 + 2a_4 - 2a_5$	$\Sigma^+\pi^0K^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + 2\sqrt{2}a_4$	$\Sigma^+ K^0 K^0$	$4a_4$
$\Sigma^{+}\pi^{+}\pi^{-}$	$4a_1 + 2a_2 + 2a_3 - 2a_5 - 2a_6$	$\Sigma^{+}\pi^{-}K^{+}$	$-2a_2 - 2a_3 + 2a_6$	$\Sigma^0 K^0 K^+$	$2\sqrt{2}a_4$
$\Sigma^+ K^0 \bar{K}^0$	$4a_1 + 2a_2 + 2a_3$	$\Sigma^+ K^0 \eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$	$\Sigma^-K^+K^+$	$-4a_4$
$\Sigma^+ K^+ K^-$	$4a_1-2a_5$	$\Sigma^0\pi^+K^0$	$-\sqrt{2}a_2 - \sqrt{2}a_3 - 2\sqrt{2}a_4$	$p\pi^0K^0$	$-\sqrt{2}a_2$
$\Sigma^+ \eta^0 \eta^0$	$4a_1 + \frac{2a_2}{3} + \frac{2a_3}{3} + \frac{2a_4}{3} - \frac{2a_5}{3}$	$\Sigma^0 K^+ \eta^0$	$\frac{\sqrt{3}a_2}{3} + \frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3}$	$p\pi^-K^+$	$2a_2$
$\Sigma^0\pi^0\pi^+$	$-2a_4 - 2a_6$	$\Sigma^-\pi^+K^+$	$4a_4 + 2a_6$	$pK^0\eta^0$	$-\frac{\sqrt{6}a_2}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Sigma^0 K^+ ar K^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5$	$p\pi^0\pi^0$	$-4a_1 - 2a_2 + 2a_5$	$n\pi^0K^+$	$-\sqrt{2}a_2$
$\Sigma^-\pi^+\pi^+$	$-4a_4 - 4a_6$	$p\pi^0\eta^0$	$\frac{2\sqrt{3}a_2}{3} - \frac{2\sqrt{3}a_4}{3} + \frac{2\sqrt{3}a_5}{3}$	$n\pi^+K^0$	$-2a_2$
$\Xi^0\pi^0K^+$	$-\sqrt{2}a_5$	$p\pi^+\pi^-$	$-4a_1 - 2a_2 + 2a_5$	$nK^+\eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{2\sqrt{6}a_4}{3}$
$\Xi^0\pi^+K^0$	$-2a_5-2a_6$	pK^+K^-	$-4a_1 - 2a_3 + 2a_5 + 2a_6$		
$\Xi^-\pi^+K^+$	$-2a_{6}$	$p\eta^0\eta^0$	$-4a_1 - \frac{2a_2}{3} - \frac{8a_3}{3} + \frac{4a_4}{3} + \frac{2a_5}{3}$		
$p\pi^0ar{K}^0$	$-\sqrt{2}a_3-\sqrt{2}a_4$	$n\pi^+\eta^0$	$\frac{2\sqrt{6}a_2}{3} - \frac{2\sqrt{6}a_4}{3} + \frac{2\sqrt{6}a_5}{3}$		
$p\pi^+K^-$	$2a_3 - 2a_6$	$nK^+\bar{K}^0$	$2a_2 + 2a_4 + 2a_5 + 2a_6$		
$par{K}^0\eta^0$	$-\frac{\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_4}{3}$	$\Lambda^0\pi^0K^+$	$\frac{\sqrt{3}a_2}{3} - \frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_5}{3}$		
$n\pi^+\bar{K}^0$	$-2a_4 - 2a_6$	$\Lambda^0\pi^+K^0$	$\frac{\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_5}{3}$		
$\Lambda^0\pi^+\eta^0$	$-\frac{2a_2}{3} + \frac{2a_3}{3} - \frac{2a_5}{3} - 2a_6$	$\Lambda^0 K^+ \eta^0$	$-\frac{a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3} + 2a_6$		
$\Lambda^0 K^+ \bar K^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} - \frac{\sqrt{6}a_5}{3}$				

T-amplitudes of $\Xi_c^+ \to \mathbf{B_n} M M'$

CF mode	T-amp	CS mode	T -amp/ t_c	DCS mode	T -amp $/t_c^2$
$\Sigma^+\pi^0ar{K}^0$	$-\sqrt{2}a_2 - \sqrt{2}a_4$	$\Sigma^+\pi^0\pi^0$	$-4a_1 - 2a_3 + 2a_5$	$\Sigma^+\pi^0K^0$	$-\sqrt{2}a_3$
$\Sigma^+\pi^+K^-$	$2a_2$	$\Sigma^+\pi^0\eta^0$	$\frac{2\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3} + \frac{2\sqrt{3}a_5}{3}$	$\Sigma^{+}\pi^{-}K^{+}$	$2a_3 - 2a_6$
$\Sigma^+ ar K^0 \eta^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_4}{3}$	$\Sigma^{+}\pi^{+}\pi^{-}$	$-4a_1 - 2a_3 + 2a_5 + 2a_6$	$\Sigma^+ K^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Sigma^0\pi^+\bar{K}^0$	$\sqrt{2}a_4$	$\Sigma^+K^+K^-$	$-4a_1 - 2a_2 + 2a_5$	$\Sigma^0\pi^0K^+$	$a_3 - 2a_6$
$\Xi^0\pi^0\pi^+$	$\sqrt{2}a_4$	$\Sigma^+ \eta^0 \eta^0$	$-4a_1 - \frac{8a_2}{3} - \frac{2a_3}{3} + \frac{4a_4}{3} + \frac{2a_5}{3}$	$\Sigma^0\pi^+K^0$	$\sqrt{2}a_3$
$\Xi^0\pi^+\eta^0$	$-\frac{2\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_4}{3}$	$\Sigma^0\pi^0\pi^+$	$2a_6$	$\Sigma^0 K^+ \eta^0$	$-\frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3}$
$\Xi^0 K^+ \bar{K}^0$	$-2a_{2}$	$\Sigma^0\pi^+\eta^0$	$-\frac{2\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3} - \frac{2\sqrt{3}a_5}{3}$	$\Sigma^-\pi^+K^+$	$-2a_{6}$
$\Xi^-\pi^+\pi^+$	$-4a_{4}$	$\Sigma^0 K^+ \bar{K}^0$	$-\sqrt{2}a_3 - \sqrt{2}a_4 - \sqrt{2}a_5$	$\Xi^0 K^0 K^+$	$-2a_4 - 2a_6$
$par{K}^0ar{K}^0$	$4a_4$	$\Sigma^-\pi^+\pi^+$	$4a_6$	$\Xi^-K^+K^+$	$-4a_4 - 4a_6$
$\Lambda^0\pi^+ar{K}^0$	$\sqrt{6}a_4$	$\Xi^0\pi^0K^+$	$\sqrt{2}a_2 - \sqrt{2}a_4 + \sqrt{2}a_5$	$p\pi^0\pi^0$	$4a_1 - 2a_5$
		$\Xi^0\pi^+K^0$	$2a_2 + 2a_4 + 2a_5 + 2a_6$	$p\pi^0\eta^0$	$-\frac{2\sqrt{3}a_{5}}{3}$
		$\Xi^0K^+\eta^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_4}{3} - \frac{\sqrt{6}a_5}{3}$	$p\pi^+\pi^-$	$4a_1 - 2a_5$
		$\Xi^-\pi^+K^+$	$4a_4 + 2a_6$	$pK^0ar{K}^0$	$4a_1 + 2a_2 + 2a_3$
		$p\pi^0ar{K}^0$	$\sqrt{2}a_2 + \sqrt{2}a_3$	pK^+K^-	$4a_1 + 2a_2 + 2a_3 - 2a_5 - 2a_6$
		$p\pi^+K^-$	$-2a_2 - 2a_3 + 2a_6$	$p\eta^0\eta^0$	$4a_1 + \frac{8a_2}{3} + \frac{8a_3}{3} + \frac{8a_4}{3} - \frac{2a_5}{3}$
		$par{K}^0\eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{4\sqrt{6}a_4}{3}$	$n\pi^+\eta^0$	$-\frac{2\sqrt{6}a_{5}}{3}$
		$n\pi^+\bar{K}^0$	$2a_6$	$nK^+\bar{K}^0$	$-2a_5-2a_6$
		$\Lambda^0\pi^+\eta^0$	$-2a_{2} - 2a_{3} + 2a_{6}$ $\frac{\sqrt{6}a_{2}}{3} + \frac{\sqrt{6}a_{3}}{3} + \frac{4\sqrt{6}a_{4}}{3}$ $2a_{6}$ $-\frac{4a_{2}}{3} - \frac{2a_{3}}{3} + 2a_{4} + \frac{2a_{5}}{3} + 2a_{6}$ $-\frac{2\sqrt{6}a_{2}}{3} - \frac{\sqrt{6}a_{3}}{3} - \sqrt{6}a_{4} + \frac{\sqrt{6}a_{5}}{3}$	$\Lambda^0\pi^0K^+$	$\frac{2\sqrt{3}a_2}{3} + \frac{\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_5}{3}$
		$\Lambda^0 K^+ \bar{K}^0$	$-\frac{2\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_3}{3} - \sqrt{6}a_4 + \frac{\sqrt{6}a_5}{3}$	$\Lambda^0\pi^+K^0$	$\frac{2\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{2\sqrt{6}a_5}{3}$

T-amplitudes of $\Xi_c^0 \to {\bf B_n} M M'$

CF mode	T-amp	CS mode	T -amp/ t_c	DCS mode	T -amp $/t_c^2$
$\Sigma^+\pi^0K^-$	$\sqrt{2}a_5$	$\Sigma^+\pi^0\pi^-$	$-\sqrt{2}a_6$	$\Sigma^+\pi^-K^0$	-2a6
$\Sigma^+\pi^-ar{K}^0$	$2a_5 + 2a_6$	$\Sigma^{+}\pi^{-}\eta^{0}$	$\frac{2\sqrt{6}a_{5}}{3} + \sqrt{6}a_{6}$	$\Sigma^0\pi^0K^0$	$a_3 - 2a_6$
$\Sigma^+K^-\eta^0$	$-\frac{\sqrt{6}a_5}{3}$	$\Sigma^+ K^0 K^-$	$2a_5$	$\Sigma^0\pi^-K^+$	$-\sqrt{2}a_3$
$\Sigma^0\pi^0ar{K}^0$	$a_2 + a_4 + a_5 + 2a_6$	$\Sigma^0\pi^0\pi^0$	$2\sqrt{2}a_1 + \sqrt{2}a_3 - \sqrt{2}a_5 - 2\sqrt{2}a_6$	$\Sigma^0 K^0 \eta^0$	$\frac{\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3}$
$\Sigma^0\pi^+K^-$	$-\sqrt{2}a_2 - \sqrt{2}a_5$	$\Sigma^0\pi^0\eta^0$	$-\frac{\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_4}{3} + \frac{\sqrt{6}a_5}{3} + \sqrt{6}a_6$	$\Sigma^-\pi^0K^+$	$\sqrt{2}a_3$
$\Sigma^0 \bar{K}^0 \eta^0$	$\frac{\sqrt{3}a_2}{3} - \frac{\sqrt{3}a_4}{3} + \frac{\sqrt{3}a_5}{3}$	$\Sigma^0\pi^+\pi^-$	$2\sqrt{2}a_1 + \sqrt{2}a_3 - \sqrt{2}a_5$	$\Sigma^-\pi^+K^0$	$2a_3 - 2a_6$
$\Sigma^-\pi^+\bar K^0$	$2a_4 + 2a_6$	$\Sigma^0 K^0 \bar K^0$	$\sqrt{2}(2a_1 + a_2 + a_3 + a_4 - a_5)$	$\Sigma^-K^+\eta^0$	$-\frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Xi^0\pi^0\eta^0$	$\frac{2\sqrt{3}a_2}{3} + \frac{2\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3}$	$\Sigma^0 K^+ K^-$	$2\sqrt{2}a_1 + \sqrt{2}a_2$	$\Xi^0 K^0 K^0$	$-4a_4 - 4a_6$
$\Xi^0\pi^+\pi^-$	$-4a_1 - 2a_2 - 2a_3$	$\Sigma^0 \eta^0 \eta^0$	$\sqrt{2}(2a_1 + \frac{4a_2}{3} + \frac{a_3}{3} - \frac{2a_4}{3} - \frac{a_5}{3})$	$\Xi^-K^0K^+$	$-2a_4 - 2a_6$
$\Xi^0 K^0 \bar{K}^0$	$-2(2a_1+a_2+a_3)$	$\Sigma^-\pi^0\pi^+$	$-\sqrt{2}a_6$	$p\pi^-\eta^0$	$-\frac{2\sqrt{6}a_{5}}{3}$
	$-a_5-a_6)$	$\Sigma^-\pi^+\eta^0$	$-\frac{2\sqrt{6}a_3}{3} + \frac{2\sqrt{6}a_4}{3} + \sqrt{6}a_6$	pK^0K^-	$-2a_5 - 2a_6$
$\Xi^0K^+K^-$	$-4a_1 + 2a_5$	$\Sigma^- K^+ K^0$	$-2a_3 - 2a_4$	$n\pi^{0}\pi^{0}$	$4a_1 - 2a_5$
$\Xi^0\eta^0\eta^0$	$-2(2a_1 + \frac{a_2}{3} + \frac{a_3}{3})$	$\Xi^0\pi^-K^+$	$2a_2 + 2a_3 + 2a_5$	$n\pi^0\eta^0$	$\frac{2\sqrt{3}a_5}{3}$
	$+\frac{a_4}{3} - \frac{4a_5}{3}$	$\Xi^0 K^0 \eta^0$	$\sqrt{6}\left(-\frac{a_2}{3} - \frac{a_3}{3} + \frac{2a_4}{3} - \frac{a_5}{3} + a_6\right)$	$n\pi^{+}\pi^{-}$	$4a_1 - 2a_5$
$\Xi^-\pi^0\pi^+$	$\sqrt{2}a_4$	$\Xi^-\pi^0K^+$	$\sqrt{2}a_3 - \sqrt{2}a_4 - \sqrt{2}a_6$	$nK^0\bar{K}^0$	$2(2a_1 + a_2 + a_3)$
$\Xi^-\pi^+\eta^0$	$-\frac{2\sqrt{6}a_3}{3} - \frac{\sqrt{6}a_4}{3}$	$\Xi^-\pi^+K^0$	$2a_3 + 2a_4$		$-a_5-a_6)$
$\Xi^-K^+\bar{K}^0$	$-2a_3 + 2a_6$	$p\pi^0K^-$	$-\sqrt{2}a_5 - \sqrt{2}a_6$	nK^+K^-	$4a_1 + 2a_2 + 2a_3$
$pK^-\bar{K}^0$	$2a_{6}$	$p\pi^-\bar{K}^0$	$-2a_{5}$	$n\eta^0\eta^0$	$4a_1 + \frac{8a_2}{3} + \frac{8a_3}{3}$
$n\bar{K}^0\bar{K}^0$	$4a_4 + 4a_6$	$pK^-\eta^0$	$\frac{\sqrt{6}a_{5}}{3} + \sqrt{6}a_{6}$		$+\frac{8a_4}{3}-\frac{2a_5}{3}$
	$-\sqrt{3}(\frac{a_2}{3} + \frac{2a_3}{3} + a_4 + \frac{a_5}{3})$	1	$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5 - \sqrt{2}a_6$	$\Lambda^0\pi^0K^0$	$-\sqrt{3}(\frac{2a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3})$
$\Lambda^0\pi^+K^-$	$\frac{\sqrt{6}a_2}{3} + \frac{2\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_5}{3}$	$n\pi^+K^-$	$-2a_2-2a_3-2a_5$	$\Lambda^0\pi^-K^+$	$\sqrt{6}(\frac{2a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3})$
		$n\bar{K}^0\eta^0$	$\sqrt{6}(\frac{a_2}{3} + \frac{a_3}{3} + \frac{4a_4}{3} + \frac{a_5}{3} + a_6)$		
		1	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_5}{3})$		
		$\Lambda^0\pi^0\eta^0$	$\sqrt{2}(\frac{2a_2}{3} + \frac{a_3}{3} - a_4 - \frac{a_5}{3} - a_6)$		
		$\Lambda^0\pi^+\pi^-$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_5}{3})$		
		$\Lambda^0 K^0 \bar{K}^0$	$\sqrt{6}(-2a_1-a_2-a_3-a_4+a_5)$		
		$\Lambda^0 K^+ K^-$	$\sqrt{6}(-2a_1 - \frac{a_2}{3} - \frac{2a_3}{3} + \frac{2a_5}{3})$		
		$\Lambda^0\eta^0\eta^0$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - a_3 + \frac{2a_4}{3})$		
			+a5 + 2a6)		

The data of $\mathcal{B}(\Lambda_c^+ \to \mathbf{B_n} MM)$

	data	our results		data	our results
$10^2 \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$	3.4 ± 0.4	3.3 ± 1.0	$10^3 \mathcal{B}(\Lambda_c^+ \to \Xi^- K^+ \pi^+)$	6.2 ± 0.6	6.3 ± 0.6
$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0 \eta)$	1.6 ± 0.4	0.9 ± 0.1	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	6.1 ± 3.1	7.2 ± 2.0
$10^3 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+ \bar{K}^0)$	5.6 ± 1.1	5.7 ± 1.1	$10^3 \mathcal{B}(\Lambda_c^+ \to p \pi^- \pi^+)$	4.2 ± 0.4	4.7 ± 1.6
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+ \eta)$	2.2 ± 0.5	2.1 ± 0.9	$10^4 \mathcal{B}(\Lambda_c^+ \to pK^-K^+)$	5.2 ± 1.2	5.1 ± 2.1
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-)$	4.4 ± 0.3	4.4 ± 3.5	$10^4 \mathcal{B}(\Lambda_c^+ o pK^+\pi^-)$	1.0 ± 0.1	1.0 ± 0.1
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+)$	1.9 ± 0.2	1.9 ± 1.3			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0)$	2.2 ± 0.8	1.0 ± 0.8			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0 \pi^0)$	1.3 ± 0.1	1.3 ± 1.3			
$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^+ \pi^-)$	2.1 ± 0.6	3.0 ± 0.4			

14 data points above to fit with 11 real parameters:

$$a_1, a_2e^{i\delta_{a_2}}, a_3e^{i\delta_{a_3}}, a_4e^{i\delta_{a_4}}, a_5e^{i\delta_{a_5}}, a_6e^{i\delta_{a_6}}$$

$$(a_1, a_2, a_3, a_4, a_5, a_6) = (9.1 \pm 0.6, 4.6 \pm 0.2, 8.2 \pm 0.3, 2.9 \pm 0.4, 15.4 \pm 1.4, 4.2 \pm 0.2) \,\mathrm{GeV^2}$$
$$(\delta_{a_2}, \delta_{a_3}, \delta_{a_4}, \delta_{a_5}, \delta_{a_6}) = (164 \pm 5, 135 \pm 5, -30 \pm 13, 24 \pm 3, 120 \pm 10)^{\circ}$$

$$\chi^2/d.o.f = 8.4/3 = 2.8$$

BRs of $\Lambda_c \rightarrow \mathbf{B_n} M_1 M_2$

CF mode	our result	CS mode	our result	DCS mode	our result
$10^2\mathcal{B}_{\Sigma^+\pi^0\eta^0}$	3.5 ± 0.8	$10^4 \mathcal{B}_{\Sigma^+\pi^0 K^0}$	8.6 ± 2.6	$10^6 \mathcal{B}_{\Sigma^+ K^0 K^0}$	2.0 ± 0.5
$10^3 \mathcal{B}_{\Sigma^+ K^0 \bar{K}^0}$	5.2 ± 1.2	$10^5 \mathcal{B}_{\Sigma^+ K^0 \eta^0}$	3.5 ± 0.4	$10^6 \mathcal{B}_{\Sigma^0 K^0 K^+}$	2.0 ± 0.6
$10^3 \mathcal{B}_{\Sigma^+ K^+ K^-}$	3.0 ± 0.7	$10^3 \mathcal{B}_{\Sigma^0 \pi^0 K^+}$	1.2 ± 0.3	$10^6 \mathcal{B}_{\Sigma^- K^+ K^+}$	2.0 ± 0.5
$10^7 \mathcal{B}_{\Sigma^+ \eta^0 \eta^0}$	2.8 ± 0.6	$10^4 \mathcal{B}_{\Sigma^0 \pi^+ K^0}$	8.3 ± 2.5	$10^5 \mathcal{B}_{p\pi^0 K^0}$	5.0 ± 0.5
$10^2 \mathcal{B}_{\Sigma^0 \pi^+ \eta^0}$	3.4 ± 0.8	$10^5 \mathcal{B}_{\Sigma^0 K^+ \eta^0}$	1.8 ± 0.2	$10^5\mathcal{B}_{n\pi^0K^+}$	5.0 ± 0.5
$10^2 \mathcal{B}_{\Sigma^0 K^+ \bar{K}^0}$	0.5 ± 0.1	$10^4 \mathcal{B}_{\Sigma^-\pi^+K^+}$	3.3 ± 2.3	$10^4 \mathcal{B}_{n\pi^+K^0}$	1.0 ± 0.1
$10^2 \mathcal{B}_{\Xi^0 \pi^0 K^+}$	4.5 ± 0.8	$10^3 \mathcal{B}_{p\pi^0\pi^0}$	2.4 ± 0.8		
$10^2 \mathcal{B}_{\Xi^0 \pi^+ K^0}$	8.7 ± 1.7	$10^3 \mathcal{B}_{p\pi^0\eta^0}$	3.7 ± 0.9		
$10^2 \mathcal{B}_{p\pi^0 ar{K}^0}$	2.8 ± 0.6	$10^3 \mathcal{B}_{pk^0ar{K}^0}$	4.3 ± 1.0		
$10^2 \mathcal{B}_{n\pi^+\bar{K}^0}$	0.9 ± 0.8	$10^4 \mathcal{B}_{p\eta^0\eta^0}$	4.7 ± 1.0		
		$10^3 \mathcal{B}_{n\pi^+\eta^0}$	7.3 ± 1.8		
		$10^3 \mathcal{B}_{nK^+\bar{K}^0}$	5.9 ± 1.3		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^0 K^+}$	4.5 ± 0.8		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^+ K^0}$	8.8 ± 1.5		
		$10^4 \mathcal{B}_{\Lambda^0 K^+ \eta^0}$	1.9 ± 0.6		

BRs of $\Xi_c^+ \to \mathbf{B_n} M_1 M_2$

CF mode	our result	CS mode	our result	DCS mode	our result
$10^3 \mathcal{B}_{\Sigma^+\pi^0 \bar{K}^0}$	5.4 ± 4.0	$10^3 \mathcal{B}_{\Sigma^+\pi^0\eta^0}$	9.6 ± 1.8	$10^4 \mathcal{B}_{\Sigma^+\pi^0 K^0}$	2.6 ± 0.2
$10^2 \mathcal{B}_{\Sigma^+\pi^+K^-}$	6.1 ± 0.6	$10^3 \mathcal{B}_{\Sigma^+\pi^+\pi^-}$	5.1 ± 2.0	$10^4 \mathcal{B}_{\Sigma^+\pi^-K^+}$	1.4 ± 0.3
$10^3 \mathcal{B}_{\Sigma^+ \bar{K}^0 \eta^0}$	4.6 ± 0.6	$10^3 \mathcal{B}_{\Sigma^+ K^0 \bar{K}^0}$	5.4 ± 1.3	$10^6 \mathcal{B}_{\Sigma^+ K^0 \eta^0}$	2.0 ± 1.4
$10^2\mathcal{B}_{\Sigma^0\pi^+\bar{K}^0}$	1.2 ± 0.3	$10^3 \mathcal{B}_{\Sigma^+ K^+ K^-}$	1.0 ± 0.4	$10^6 \mathcal{B}_{\Sigma^0 \pi^0 K^+}$	7.6 ± 5.9
$10^2\mathcal{B}_{\Xi^0\pi^0\pi^+}$	1.9 ± 0.5	$10^4 \mathcal{B}_{\Sigma^+ \eta^0 \eta^0}$	1.8 ± 1.0	$10^4 \mathcal{B}_{\Sigma^0 \pi^+ K^0}$	2.5 ± 0.2
$10^2\mathcal{B}_{\Xi^0\pi^+\eta^0}$	1.0 ± 0.2	$10^3\mathcal{B}_{\Sigma^0\pi^0\pi^+}$	5.6 ± 0.5	$10^6 \mathcal{B}_{\Sigma^0 K^+ \eta^0}$	1.0 ± 0.7
$10^3\mathcal{B}_{\Xi^0K^+\bar{K}^0}$	4.9 ± 0.5	$10^3 \mathcal{B}_{\Sigma^0 \pi^+ \eta^0}$	9.4 ± 1.8	$10^4 \mathcal{B}_{\Sigma^-\pi^+K^+}$	1.3 ± 0.1
$10^2 \mathcal{B}_{p\bar{K}^0\bar{K}^0}$	4.3 ± 1.2	$10^3 \mathcal{B}_{\Sigma^0 K^+ \bar{K}^0}$	4.4 ± 0.9	$10^6 \mathcal{B}_{\Xi^0 K^0 K^+}$	3.0 ± 1.9
$10^2 \mathcal{B}_{\Lambda^0 \pi^+ \bar{K}^0}$	4.6 ± 1.2	$10^2 \mathcal{B}_{\Sigma^-\pi^+\pi^+}$	1.1 ± 0.1	$10^6\mathcal{B}_{\Xi^-K^+K^+}$	5.7 ± 3.2
		$10^3 \mathcal{B}_{\Xi^0 \pi^0 K^+}$	6.4 ± 1.6	$10^4 \mathcal{B}_{p\pi^0\pi^0}$	7.2 ± 1.8
		$10^2\mathcal{B}_{\Xi^0\pi^+K^0}$	1.9 ± 0.4	$10^3\mathcal{B}_{p\pi^0\eta^0}$	1.1 ± 0.2
		$10^4 \mathcal{B}_{\Xi^0 K^+ \eta^0}$	1.3 ± 0.3	$10^3 \mathcal{B}_{p\pi^+\pi^-}$	1.4 ± 0.4
		$10^4 \mathcal{B}_{\Xi^-\pi^+K^+}$	8.3 ± 5.3	$10^4 \mathcal{B}_{pK^0ar{K}^0}$	7.7 ± 1.7
		$10^2\mathcal{B}_{p\pi^0\bar{K}^0}$	2.4 ± 0.2	$10^4 \mathcal{B}_{pK^+K^-}$	1.6 ± 1.2
		$10^2 \mathcal{B}_{p\pi^+K^-}$	2.4 ± 0.3	$10^5 \mathcal{B}_{p\eta^0\eta^0}$	9.3 ± 4.5
		$10^3 \mathcal{B}_{n\pi^+ \bar{K}^0}$	5.5 ± 0.5	$10^3 \mathcal{B}_{n\pi^+\eta^0}$	2.1 ± 0.4
		$10^2 \mathcal{B}_{\Lambda^0 \pi^+ \eta^0}$	1.7 ± 0.3	$10^3 \mathcal{B}_{nK^+\bar{K}^0}$	1.6 ± 0.3
		$10^3 \mathcal{B}_{\Lambda^0 K^+ K^0}$	4.7 ± 1.0	$10^4 \mathcal{B}_{\Lambda^0 \pi^0 K^+}$	5.0 ± 1.0
				$10^4 \mathcal{B}_{\Lambda^0 \pi^+ K^0}$	9.7 ± 2.0
				$10^5 \mathcal{B}_{\Lambda^0 K^+ \eta^0}$	9.0 ± 2.2

BRs of $\Xi_c^0 \to \mathbf{B_n} M_1 M_2$

CF mode	our result	CS mode	our result	DCS mode	our result
$10^2 \mathcal{B}_{\Sigma^+\pi^0 K^-}$	8.8 ± 1.5	$10^4 \mathcal{B}_{\Sigma^+\pi^0\pi^-}$	7.2 ± 0.7	$10^5 \mathcal{B}_{\Sigma^+\pi^-K^0}$	3.4 ± 0.3
$10^1 \mathcal{B}_{\Sigma^+\pi^-\bar{K}^0}$	1.8 ± 0.3	$10^3 \mathcal{B}_{\Sigma^+\pi^-\eta^0}$	5.7 ± 0.9	$10^5 \mathcal{B}_{\Sigma^0\pi^-K^+}$	6.5 ± 0.5
$10^3 \mathcal{B}_{\Sigma^+ K^- \eta^0}$	5.2 ± 0.9	$10^3 \mathcal{B}_{\Sigma^+ K^0 K^-}$	2.4 ± 0.4	$10^7 \mathcal{B}_{\Sigma^0 K^0 \eta^0}$	2.6 ± 1.7
$10^2 \mathcal{B}_{\Sigma^0\pi^0\bar{K}^0}$	4.4 ± 1.1	$10^3 \mathcal{B}_{\Sigma^0\pi^0\pi^0}$	1.3 ± 0.3	$10^5 \mathcal{B}_{\Sigma^-\pi^0 K^+}$	6.4 ± 0.5
$10^2\mathcal{B}_{\Sigma^0\pi^+K^-}$	5.4 ± 1.2	$10^3 \mathcal{B}_{\Sigma^0 \pi^0 \eta^0}$	1.9 ± 0.4	$10^5 \mathcal{B}_{\Sigma^-\pi^+K^0}$	3.4 ± 0.7
$10^3 \mathcal{B}_{\Sigma^0 \bar{K}^0 \eta^0}$	1.4 ± 0.3	$10^4 \mathcal{B}_{\Sigma^0 K^+ K^-}$	9.7 ± 1.7	$10^7 \mathcal{B}_{\Sigma^- K^+ \eta^0}$	5.1 ± 3.4
$10^2 \mathcal{B}_{\underline{\Sigma}^0\pi^0\pi^0}$	8.1 ± 1.9	$10^5 \mathcal{B}_{\Sigma^0 \eta^0 \eta^0}$	2.3 ± 1.2	$10^6\mathcal{B}_{\Xi^0K^0K^0}$	1.5 ± 1.1
$10^2 \mathcal{B}_{\Xi^0 \pi^0 \eta^0}$	1.2 ± 0.2	$10^4 \mathcal{B}_{\Sigma^-\pi^0\pi^+}$	7.1 ± 0.6	$10^7\mathcal{B}_{\Xi^-K^0K^+}$	7.1 ± 6.7
$10^1\mathcal{B}_{\Xi^0\pi^+\pi^-}$	1.3 ± 0.3	$10^4 \mathcal{B}_{\Sigma^-\pi^+\eta^0}$	6.3 ± 2.0	$10^4 \mathcal{B}_{p\pi^-\eta^0}$	5.4 ± 0.9
$10^3 \mathcal{B}_{\Xi^0 K^+ K^-}$	3.6 ± 0.9	$10^4 \mathcal{B}_{\Sigma^- K^+ K^0}$	2.9 ± 0.6	$10^4 B_{pK^0K^-}$	4.2 ± 0.7
$10^4 \mathcal{B}_{\Xi^0 \eta^0 \eta^0}$	2.2 ± 0.9	$10^3 \mathcal{B}_{\Xi^0\pi^0 K^0}$	3.0 ± 0.7	$10^4 \mathcal{B}_{n\pi^0\pi^0}$	1.8 ± 0.5
$10^3 \mathcal{B}_{\Xi^-\pi^0\pi^+}$	4.6 ± 1.2	$10^3\mathcal{B}_{\Xi^0\pi^-K^+}$	4.8 ± 0.9	$10^4 \mathcal{B}_{n\pi^0\eta^0}$	2.7 ± 0.5
$10^2 \mathcal{B}_{\Xi^-\pi^+\eta^0}$	1.1 ± 0.1	$10^4\mathcal{B}_{\Xi^-\pi^0K^+}$	6.2 ± 1.3	$10^4 \mathcal{B}_{n\pi^+\pi^-}$	3.6 ± 0.9
$10^2 \mathcal{B}_{pK-\bar{K}^0}$	1.2 ± 0.1	$10^4\mathcal{B}_{\Xi^-\pi^+K^0}$	7.2 ± 1.5	$10^5 \mathcal{B}_{nK^0\bar{K}^0}$	3.9 ± 2.9
$10^3 \mathcal{B}_{n\bar{K}^0\bar{K}^0}$	6.4 ± 6.3	$10^3 \mathcal{B}_{p\pi^0 K^-}$	9.5 ± 1.6	$10^4 \mathcal{B}_{nK^+K^-}$	2.0 ± 0.5
$10^2 \mathcal{B}_{\Lambda^0 \pi^0 \bar{K}^0}$	2.0 ± 0.6	$10^2 \mathcal{B}_{p\pi^-\bar{K}^0}$	1.9 ± 0.3	$10^5 \mathcal{B}_{n\eta^0\eta^0}$	2.4 ± 1.2
$10^2 \mathcal{B}_{\Lambda^0\pi^+K^-}$	5.9 ± 0.8	$10^{3}B_{pK}^{-}\eta^{0}$	1.8 ± 0.3	$10^4 \mathcal{B}_{\Lambda^0\pi^0 K^0}$	1.3 ± 0.3
		$10^3 \mathcal{B}_{n\pi^0 \bar{K}^0}$	5.2 ± 1.3	$10^4 \mathcal{B}_{\Lambda^0\pi^-K^+}$	2.5 ± 0.5
		$10^2 \mathcal{B}_{n\pi^+K^-}$	1.5 ± 0.3	$10^5 \mathcal{B}_{\Lambda^0 K^0 \eta^0}$	2.3 ± 0.6
		$10^3 B_{n\bar{K}^0\eta^0}$	1.9 ± 0.6		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^0 \pi^0}$	5.3 ± 1.5		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^0 \eta^0}$	2.2 ± 0.4		
		$10^2 \mathcal{B}_{\Lambda^0\pi^+\pi^-}$	1.1 ± 0.3		
		$10^4 \mathcal{B}_{\Lambda^0 K^+ K^-}$	3.0 ± 2.5		
		$10^4 \mathcal{B}_{\Lambda^0 \eta^0 \eta^0}$	2.4 ± 1.4		

Summary

- We have studied the weak decays of charmed baryons $\mathbf{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+)$ based on SU(3)_F flavor symmetry.
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of $\mathbf{B_c}$, such as $\mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$
- For the two-body decays of $\mathbf{B}_c \to \mathbf{B}_n \mathbf{M}$, we have obtained a good fit for the 7 parameters without $H(\overline{15})$. By including the factorizable contributions from $H(\overline{15})$, we have found that $\text{Br}(\Lambda_c^+ \to \mathbf{p}\pi^0) = (1.3 \pm 0.7) \times 10^{-4}$, which agrees with the current experimental upper limit of 2.7×10^{-4} .
- By considering only the S-wave contributions from M_1M_2 and neglecting $H(\overline{15})$ as well as the nonresonant data points, we have systematically predicted the three-body decays of $\mathbf{B_c} \to \mathbf{B_m} \mathbf{M_1} \mathbf{M_2}$ for the first time.
- **♦** Rich physics for Charmed Baryons at BESIII, LHCb, BELLEII

More theoretical and experimental studies are needed.

