

Recent Results and Prospect of Charm Physics @ LHCb

Liang Sun (for the LHCb collaboration) Wuhan University

> 2018/11/11, Wuhan 2018年 BESIII 粲强子物理研讨会

Outline

- Highlights of recent LHCb results:
 - CPV in two-body D decays
 - CPV in multi-body charm decays
 - Rare charm decays
 - Branching fractions

For a complete paper list on charm, see LHCb link

- Ongoing LHCb work on charm
- Prospects

LHCb experiment

3

1900

 $K^{-}\pi^{+}$ mass $[MeV/c^{2}]$

1850

LHCb experiment

Also large samples of charm baryon decays

- ~7M Λ_c^+ → pK-π+ decays / fb-1 directly from the trigger

4

LHCb data-taking

Run I: 1.0 fb⁻¹ @ 7 TeV (2011) + 2.0 fb⁻¹ @ 8 TeV (2012)
Run II: 0.3 fb⁻¹ (2015) + 1.7 fb-1 (2016) + 1.7 fb⁻¹ (2017)

+ 2.2 fb⁻¹ (2018) @ 13 TeV

CP Violation in Charm

- Only way to probe CP violation in up-type quark
- Complementary to K and B mesons with observed CPV
- Difficult to calculate SM predictions, but small (~10-3) CP asymmetry is expected → hints of NP if higher values are observed
- CPV in charm sector yet to be found

Unitarity triangle for charm $V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$ $\sim \lambda \qquad \sim \lambda \qquad \sim \lambda^5$ $\lambda = \sin(\theta_c) \sim 0.23$

Expected CPV very small in charm

- Effectively 2-generation system
- 3rd generation and CPV enter through loops

Mixing and CPV in $D^0 - \overline{D}^0$

• Charm mixing: a well-established fact:

- Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
- Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- CP violation contributions:
 - In decays: amplitudes for a process and its conjugate differ Direct *CP* violation $\begin{vmatrix} \overline{A_f} \\ \overline{A_f} \end{vmatrix}^{=2} \approx 1 \pm A_d \implies a_{CP}^{dir} \approx -\frac{1}{2}A_d$ - In mixing: rates of $D^0 \to \overline{D}^0$ and $\overline{D}^0 \to D^0$ differ

Indirect *CP*
violation
$$\left|\frac{q}{p}\right|^{\pm 2} \approx 1 \pm A_m \Rightarrow a_{CP}^{ind} = -\frac{A_m}{2}y\cos\phi + x\sin\phi \qquad \phi: \text{ weak phase,} A_m: CPV \text{ from mixing}$$

- In interference between mixing and decay diagrams

Search for CPV: measuring A_{Γ}

• Measure of indirect CPV in D⁰ SCS decays to CP eigenstates:

$$A_{\mathsf{CP}}(t) = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)} \approx A_{\mathsf{CP}}^{\mathsf{dir}} - A_{\mathsf{\Gamma}}\left(\frac{t}{\tau}\right), \qquad f = K^+ K^-, \ \pi^+ \pi^-$$
$$A_{\mathsf{\Gamma}} = \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi + \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right] \approx y \left(\left| \frac{q}{p} \right| - 1 \right) - x\phi$$
with $\phi = \arg \left(-\frac{q}{p} \frac{\bar{A}_f}{A_f} \right)$

• If $A_{\Gamma} \neq 0 \rightarrow \text{ indirect CPV}$

[PRL 118 (2017) 261803]

Search for CPV: measuring y_{CP}

$$y_{\mathsf{CP}} = \frac{\hat{\Gamma}(D^0 \to h^+ h^-) + \hat{\Gamma}(\bar{D}^0 \to h^+ h^-)}{2\Gamma} - 1 \qquad \qquad f = K^+ K^-, \ \pi^+ \pi^- \quad \text{(CP-even)}$$
$$= \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin \phi \right] \approx y + y \left[\frac{1}{2} \left(\left| \frac{q}{p} \right| - 1 \right)^2 - \frac{\phi^2}{2} \right] - x \phi \left(\left| \frac{q}{p} \right| - 1 \right)^2 \right]$$

- y_{CP} is equal to y in the limit of no CPV (|q/p| = 1 and $\phi = 0$)
- Differences are:
 - Linear in mixing parameters
 - Quadratic in ϕ , lq/pl-1
- Current precision not as competitive as $A_{\mbox{\tiny \Gamma}}$ for CPV searches
- It is a measurement of y independent of $R(t) = Br(D^0 \rightarrow K^+\pi^-)/Br(D^0 \rightarrow K^-\pi^+)$
- At LHCb: measurement performed with Run 1 data (3 fb⁻¹) tagged with $\overline{B} \rightarrow D^{0}\mu X$

5% of y or less

• Extract y_{CP} from the time-dependent ratio between h+h- and K- π + yields

y_{CP} result

- Compatible and with similar precision of world average (0.835 \pm 0.155)%
- Compatible with $y = (0.67^{+0.06}_{-0.13})\%$ within 1σ

[HFAG CHARM18]

[PRD 97, 031101 (2018)]

 \square

mix

DCS

Search for CPV: the $D^0 \to K^+\pi^-$ case

- Mixing parameters measured separately for D⁰ and D
 ⁰ decays
- Any different oscillation pattern between D^o and D
 ^o decays indicates CPV

[PRD 97, 031101 (2018)]

Mixing & CPV results in $D^0 \to K^+\pi^-$

No evidence for CPV

• If no CPV is assumed:

$$\begin{aligned} x^{\prime 2} &= (0.039 \pm 0.023 \pm 0.014) \cdot 10^{-3} \\ y' &= (5.28 \pm 0.45 \pm 0.27) \cdot 10^{-3} \end{aligned}$$

 Twice as precise as previous superseded LHCb measurement [PRL 111 (2013) 251801]

[arXiv:1806.01642]

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ decay

- Penguin annihilation diagrams contribute to $D^{\scriptscriptstyle 0} \to K_{s}{}^{\scriptscriptstyle 0}K_{s}{}^{\scriptscriptstyle 0}$
 - Hint of NP if significant time-integrated A_{CP} found
- LHCb dataset: 2.0/fb, 2015-2016
- Reconstruct $D^{*_{+}} \rightarrow D^{_{0}}\pi_{s^{+}}$, with $\pi_{s^{+}}$ to tag $D^{_{0}}$ flavor
- Raw asymmetry:

 $\boldsymbol{A}_{\mathrm{raw}}(\boldsymbol{K}^{0}_{\mathrm{s}}\boldsymbol{K}^{0}_{\mathrm{s}}) = \boldsymbol{A}_{C\!P}(\boldsymbol{K}^{0}_{\mathrm{s}}\boldsymbol{K}^{0}_{\mathrm{s}}) + \boldsymbol{A}_{P}(\boldsymbol{D}^{*+}) + \boldsymbol{A}_{\mathrm{tag}}(\boldsymbol{\pi}^{+})$

 Control channel D⁰ → K⁺K⁻ to remove production & tagging asymmetries:

$$\Delta A_{CP} = A_{raw}(K_s^0 K_s^0) - A_{raw}(K^+ K^-)$$
$$= A_{CP}(K_s^0 K_s^0) - A_{CP}(K^+ K^-)$$

 $A_{CP}(K^+K^-) = (0.04 \pm 0.12 \pm 0.10)\%$ measured by LHCb PLB 767 (2017) 177

[arXiv:1806.01642]

Result of $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$

- $A_{CP} = (4.2 \pm 3.4 \pm 1.0)\%$
- Compatible with Run 1 result: $A_{CP} = (-2.9 \pm 5.2 \pm 2.2)\%$
- Average : $A_{CP} = (2.0 \pm 2.9 \pm 1.0)\%$
- \rightarrow Catching up with the Belle result [PRL 119 (2017) 171801]

[JHEP 10 (2015) 055]

[JHEP 03 (2018) 182]

ΔA_{CP} in $\Lambda_c^+ \rightarrow ph^+h^-$ decays

- LHCb dataset: 3.0 fb⁻¹, Run 1
- Production mode: $\Lambda_b^{\ 0} \rightarrow \Lambda_c^{\ +}\mu^{-}X$
- Raw asymmetry

$$\begin{split} \textbf{\textit{A}}_{\rm raw}(\textbf{\textit{f}}) &= \textbf{\textit{A}}_{C\!P}(\textbf{\textit{f}}) + \textbf{\textit{A}}_{P}(\Lambda_{b}^{0}) + \textbf{\textit{A}}_{\rm tag}(\mu) + \textbf{\textit{A}}_{D}(\textbf{\textit{f}}) \\ & \text{where } \textbf{\textit{f}} = \textbf{\textit{p}}\textbf{\textit{K}}^{+}\textbf{\textit{K}}^{-}, \, \textbf{\textit{p}}\pi^{+}\pi^{-} \end{split}$$

 Removing experimental asymmetries by taking the difference between the two final states

$$\begin{split} \Delta A_{\rm CP}^{\rm wgt} &\equiv A_{\rm raw}(\Lambda_c^+ \to pK^-K^+) - A_{\rm raw}^{\rm wgt}(\Lambda_c^+ \to p\pi^-\pi^+) \\ &\approx A_{\rm CP}(\Lambda_c^+ \to pK^-K^+) - A_{\rm CP}^{\rm wgt}(\Lambda_c^+ \to p\pi^-\pi^+) \end{split}$$

Assuming same kinematics for the two final states

[JHEP 03 (2018) 182]

Results

$$\Delta A_{C\!P}^{
m wgt} = (3.0 \pm 9.1 \pm 6.1) \times 10^{-3}$$

- First measurement of CPV parameters in 3-body Λ_c^+ decays
- No CPV observed

[JHEP 03 (2018) 182]

 $\Delta A_{CP}(\Lambda_{C}^{+} \rightarrow ph^{+}h^{-})$ result $\Lambda_c^+ \rightarrow \rho K^- K^+$ Yields $\Lambda_c^+ \rightarrow p \pi^- \pi^+$

 $N_{
m sig} = 25190 \pm 200$

$$\Delta A_{CP}^{\text{wgt}} = (3.0 \pm 9.1 \pm 6.1) \times 10^{-3}$$

- First measurement of CPV parameters in 3-body Λ_c^+ decays
- No CPV observed

Overview of charm rare decays

$D^{0} \rightarrow \mu^{+}e^{-}$ $D^{0} \rightarrow pe^{-}$ $D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$		Flav Net	vor <mark>C</mark> l utral <mark>C</mark>	nangi Currei	ng ¹ nts	$D^+_{(s)} \rightarrow D^+_{(s)} \rightarrow D^0 \rightarrow K^- \pi D^0 \rightarrow K$	π ⁺ l ⁺ l ⁻ K ⁺ l ⁺ l ⁻ ⁺ l ⁺ l ⁻ ^{*0} l ⁺ l ⁻ Ve	ctor I	$D^{0} \rightarrow \pi$ $D^{0} \rightarrow \mu$ $D^{0} \rightarrow H$ $D^{0} \rightarrow \phi$ Mesor		→॥) •॥) j (→ ^{॥)} i ninan	$D^{0} \rightarrow H$ $D^{0} \rightarrow (\phi, \rho, a)$ $D_{s}^{+} \rightarrow \pi^{+} \phi (\rightarrow a)$ ACE	ς**0γ >) γ , II)
LFV, LNV,	BNV			FC	NC				VMD	1	Radia	ative	
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4	
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$			D^0 -	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \rightarrow \pi^{2}$ $D^{0} \rightarrow \rho$ $D^{0} \rightarrow K^{4}$ $D^{0} \rightarrow \phi$	⁻ π ⁺ l ⁺ l ⁻ l ⁺ l ⁻ K ⁻ l ⁺ l ⁻ l ⁺ l ⁻	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$\frac{K^{+}\pi^{-}V(-)}{K^{*0}}V(-)$	→ II) D II) D D	$p^+ \to \pi^+ \phi$ $p^0 \to K^- \pi$ $p^0 \to K^{*0}$	$b(\rightarrow ll)$ $\tau^+ V(\rightarrow ll)$ $V(\rightarrow ll)$	

[PRD 66 (2002) 014009]

- Short-distance FCNC contributions to $c \rightarrow u$ processes are tiny < 10-9
 - Only possible at the loop level
 - More suppressed than B decays due to GIM mechanism
 - Up-type quark FCNCs complementary to those in B and K sectors
- Branching fractions of D $\rightarrow X\ell^+\ell^-$ are dominated by resonant long-distance VMD contributions

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays

SD contributions, good for NP probes

LD contributions, hard to predict theoretically

- Short-distance FCNC contributions to $c \rightarrow u$ processes are tiny < 10⁻⁹
 - Only possible at the loop level
 - More suppressed than B decays due to GIM mechanism
 - Up-type quark FCNCs complementary to those in B and K sectors
- Branching fractions of D \rightarrow Xℓ+ℓ- are dominated by resonant long-distance VMD contributions

LHCb 2012 2 fb⁻¹

Asymmetries in $D^0 \rightarrow K^+K^-(\pi^+\pi^-)\mu^+\mu^-$

• Recent LHCb results[PRL 119 (2017) 191805]:

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (96.4 \pm 4.8(stat) \pm 5.1(sys) \pm 9.7(\mathcal{B}_{norm})) \cdot 10^{-8}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (15.4 \pm 2.7(stat) \pm 0.9(sys) \pm 1.6(\mathcal{B}_{norm})) \cdot 10^{-8}$

- Rarest charm decays observed so far
- Angular and CP asymmetries in SM are expected to be negligibly small

$$A_{FB} = \frac{\Gamma\left(\cos\theta_{\mu} > 0\right) - \Gamma\left(\cos\theta_{\mu} < 0\right)}{\Gamma\left(\cos\theta_{\mu} > 0\right) + \Gamma\left(\cos\theta_{\mu} < 0\right)}$$

 $A_{2\phi} = \frac{\Gamma\left(\sin 2\phi > 0\right) - \Gamma\left(\sin 2\phi < 0\right)}{\Gamma\left(\sin 2\phi > 0\right) + \Gamma\left(\sin 2\phi < 0\right)}$

CP asymmetry

Forward backward asymmetry

Triple product asymmetry

- LHCb dataset: 5/fb, 2011-2016
- Reconstruct $D^{*+} \rightarrow D^0 \pi_{s^+}$, with π_{s^+} to tag D^0 flavor

[PRL 121 (2018) 091801]

Results of asymmetries

Results integrated across $m(\mu^+\mu^-)$

$$\begin{split} A_{FB} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) &= \left(3.3 \pm 3.7 \pm 0.6 \right) \% \\ A_{2\phi} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) &= \left(-0.6 \pm 3.7 \pm 0.6 \right) \% \\ A_{CP} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) &= \left(4.9 \pm 3.8 \pm 0.7 \right) \% \end{split}$$

41

$$A_{FB} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (0 \pm 11 \pm 2) \%$$

$$A_{2\phi} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (9 \pm 11 \pm 1) \%$$

$$A_{CP} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (0 \pm 11 \pm 2) \%$$

[PRL 121 (2018) 091801]

Results of asymmetries

	Signal asymmetries					
$m(\mu^+\mu^-)$						
$[MeV/c^2]$	A _{FB} [%]	$A_{2\phi}$ [%]	A _{CP} [%]			
		$D^0 o \pi^+\pi^-\mu^+\mu^-$				
<525	$2\pm20\pm2$	$-28\pm20\pm2$	$17\pm 20\pm 2$			
525-565		•••	••••			
565-780	$8.1\pm7.1\pm0.7$	$7.4\pm7.1\pm0.7$	$-12.9 \pm 7.1 \pm 0.7$			
780-950	$7 \pm 10 \pm 1$	$-14 \pm 10 \pm 1$	$17\pm10\pm1$			
950-1020	$3.1\pm6.5\pm0.6$	$1.2\pm6.4\pm0.5$	$7.5 \pm 6.5 \pm 0.7$			
1020-1100	$0.9 \pm 5.6 \pm 0.7$	$1.4\pm5.5\pm0.6$	$9.9 \pm 5.5 \pm 0.7$			
>1100		•••				
Full range	$3.3\pm3.7\pm0.6$	$-0.6\pm3.7\pm0.6$	$4.9\pm3.8\pm0.7$			
		$D^0 ightarrow K^+ K^- \mu^+ \mu^-$				
<525	$13 \pm 26 \pm 4$	$9 \pm 26 \pm 3$	$-33 \pm 26 \pm 4$			
525-565		•••	••••			
> 565	$1 \pm 12 \pm 1$	$22\pm12\pm1$	$13\pm12\pm1$			
Full range	$0\pm11\pm2$	$9\pm11\pm1$	$0\pm 11\pm 2$			

Results integrated across $m(\mu^+\mu^-)$

$$\begin{split} A_{FB} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) &= \left(3.3 \pm 3.7 \pm 0.6 \right) \% \\ A_{2\phi} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) &= \left(-0.6 \pm 3.7 \pm 0.6 \right) \% \\ A_{CP} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) &= \left(4.9 \pm 3.8 \pm 0.7 \right) \% \end{split}$$

$$\begin{split} A_{FB} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) &= (0 \pm 11 \pm 2) \,\% \\ A_{2\phi} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) &= (9 \pm 11 \pm 1) \,\% \\ A_{CP} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) &= (0 \pm 11 \pm 2) \,\% \end{split}$$

- All measured asymmetries are compatible with zero
- No observed dependency on dimuon mass

[PRD 97 (2018) 091101(R)]

Search for $\Lambda_c^+ \rightarrow p\mu^+\mu^-$

- LHCb dataset: 3/fb Run1 data using $\Lambda_c^+ \rightarrow p\phi(\rightarrow \mu^+\mu^-)$ as reference mode
- Upper limit on non-resonant component:

 $B(\Lambda_c^+ \rightarrow p\mu^+\mu^-) < 9.6 \times 10^{-8} \text{ at } 95\% \text{ CL}$

10³x better than BaBar for the integrated $m(\mu^+\mu^-)$ [PRD 84 (2011) 072006]

• First observation of $\Lambda_{c^+} \rightarrow p\omega(\rightarrow \mu^+\mu^-)$:

 $B(\Lambda_{c^{+}} \rightarrow p\omega) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \times 10^{-4}$

Uncertainties are: statistical, systematic and due to the BF of the normalization mode.

[arXiv:1810.03138]

Branching fractions of $D_{(s)}^{+} \rightarrow hhh$

[arXiv:1810.03138]

Branching fractions of $D_{(s)}^{+} \rightarrow hhh$

[arXiv:1810.03138]

Branching fractions of $D_{(s)}^{+} \rightarrow hhh$

World's best measurements in all cases

Ratio	PDG 2018	This analysis	Improvement
$\frac{\mathscr{B}\left(D^+ \to K^- K^+ K^+\right)}{\mathscr{B}\left(D^+ \to K^- \pi^+ \pi^+\right)}$	$(9.5 \pm 2.2) \times 10^{-4}$	$(6.541 \pm 0.025 \pm 0.042) \times 10^{-4}$	45
$\frac{\mathscr{B}\left(D^+ \to \pi^- \pi^+ K^+\right)}{\mathscr{B}\left(D^+ \to K^- \pi^+ \pi^+\right)}$	$(5.77 \pm 0.22) \times 10^{-3}$	$(5.231 \pm 0.009 \pm 0.023) \times 10^{-3}$	9
$\frac{\mathscr{B}\left(D_{s}^{+} \to \pi^{-}K^{+}K^{+}\right)}{\mathscr{B}\left(D_{s}^{+} \to K^{-}K^{+}\pi^{+}\right)}$	$(2.33 \pm 0.23) \times 10^{-3}$	$(2.372 \pm 0.024 \pm 0.025) \times 10^{-3}$	6.5
$\frac{\mathscr{B}\left(D^+ \to K^- K^+ \pi^+\right)}{\mathscr{B}\left(D^+ \to K^- \pi^+ \pi^+\right)}$	$(10.59 \pm 0.18)\%$	$(10.282 \pm 0.002 \pm 0.068)\%$	2.5

Branching fractions of $D_{(s)}^{+} \rightarrow hhh$

• Combining with PDG2018 for the denominator:

 $\mathscr{B}(D^+ \to K^- K^+ K^+) = (5.87 \pm 0.02 \pm 0.04 \pm 0.18) \times 10^{-5}$

 $\mathscr{B}(D^+ \to \pi^- \pi^+ K^+) = (4.70 \pm 0.01 \pm 0.02 \pm 0.15) \times 10^{-4}$

 $\mathscr{B}\left(D_{s}^{+} \to \pi^{-}K^{+}K^{+}\right) = (1.293 \pm 0.013 \pm 0.014 \pm 0.040) \times 10^{-4}$

 $\mathscr{B}\left(D^+ \to K^- K^+ \pi^+\right) = \left(9.233 \pm 0.002 \pm 0.061 \pm 0.288\right) \times 10^{-3}$

CPV in D_(s) decays involving K_s^{0} @ LHCb

• CPV in charmed meson CF decays to Ks is theoretically suggested to be attributed to three parts:

$$A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\text{dir}}(t) + A_{CP}^{\text{int}}(t)\right] / D(t)$$

The current precision of $O(10^{-3})$ has been pushed that interference part is not negligible, as suggested by Yu et al. [PRL, 119 (2017) 181802]

- The CP asymmetry difference ΔA^{K+,π+}_{CP} between A^{D+→π+Ks}_{CP} and A^{D⁺→K+Ks}_{CP} provide a mode-independent way to measure the interference part
 a more realistic way to test the better-controlled SM prediction
 NP can enhance the asymmetry
- LHCb will have a precision of sub-level of permillage
 search for the CP asymmetry difference at the level of 10⁻³.

Semileptonic D decays @ LHCb

- Reconstruction of missing neutrino momentum in a hadron machine is hard, but not possible
 - For example, LHCb measurement of $|V_{ub}|$ from $\Lambda_b \rightarrow p\mu\nu$ [Nature Physics 10 (2015) 1038]
- Ongoing LHCb efforts on $D^{*+} \rightarrow D^0\pi^+$, aiming for a number of observables:
 - FFxCKM elements with

$$\frac{d\mathcal{B}(D^0 \to \pi^- \mu^+ \nu)/dq^2}{d\mathcal{B}(D^0 \to K^- \mu^+ \nu)/dq^2} \propto \frac{|V_{cd}|^2}{|V_{cs}|^2} \frac{|f^{D \to \pi}(q^2)|^2}{|f^{D \to K}(q^2)|^2}$$

- CPV/mixing with

$$\frac{\mathcal{P}(D^0 \to K^+ \mu^- \nu_\mu)}{\mathcal{P}(D^0 \to K^- \mu^+ \nu_\mu)} \propto \frac{x^2 + y^2}{4} \left(\frac{t}{\tau}\right)^2 \to \frac{x^2 + y^2}{2}$$

- Lepton universality test
- All could be the best on the market!

LHCb Run2 and Beyond

- Many more Run2 analysis are ongoing, and we are approaching 10-4 precision on A_{Γ}
- Upgrade (2020-2023) will provide 3x larger dataset, very similar to current experiment
 - Analysis strategies will follow what's done in LHCb
- Upgrade (2025-) will be for HL-LHC to collect 300/fb
 - Ambitious but extremely rewarding

31

Summary

- LHCb is a charm factory and has the world's largest sample of charm decays
- High statistics and superb detector performance allow for high precision measurements on $A_{\rm CP}$ parameters and search for rare decays
- Many more charm results in the pipeline using Run 1 and Run 2 data, stay tuned!
- Longer term: LHCb's first upgrade begins at the end of the year
 - Will allow for measurements with 10x larger samples
- Synergy with BESIII important for CPV searches in the charm sector

谢谢!

Charm flavour tagging

- In order to measure mixing and CPV, it is necessary to identify the flavour of the D⁰ meson.
- LHCb exploits two decays:
 - $D^{*+} \rightarrow D^0 \pi^+$ decays

Charm decays at LHCb

Pros

- Huge cross-section O(mb).
- Excellent tracking and particle identification (muonID: ϵ ~97%, 1-3% μ → π misID probability).
- Boosted production \Rightarrow good decay time resolution.

Cons

- Busy environment at hadron collider.
- Asymmetric production of charm and anti-charm ⇒ issue for CP studies.
- Non-trivial triggers \Rightarrow distortion of acceptance.