SHANGHAI JIAO TONG UNIVERSITY

Unification of Flavor SU（3）Analyses of Charmed Hadron Weak Decays

Cooperated with：
Xiao－Gang He，and Wei Wang

Yu－Ji Shi
Shanghai Jiao Tong
University
2018．11．10

## Outline

© Motivation
(2) Two approach of $\mathrm{SU}(3)$ analysis: IRA and TDA $D \rightarrow P P, P V, V V$ decays
Mismatch and equivalence between IRA and TDA
(7) Charm baryon decays
$T_{c} \rightarrow T_{8} P, T_{8} V$ decays
(7) Summary

## Motivation

Weak decays of heavy mesons and baryons carrying a bottom and/or a charm quark are of great interests and have been studied extensively on both experimental and theoretical sides.

Experiment Measurements

## Theory



Quark model
We know little about
Sum rules QCD at low energy pQCD

HQET Not suit for charm quark
SU(3) analysis


Dynamic independent!

## Two SU(3) approach

## TDA: Draw diagrams



IRA: Write amplitudes

$$
A_{6}^{T} D_{i}\left(H_{6}\right)_{k}^{[i j]} P_{j}^{l} P_{l}^{k}+C_{6}^{T} D_{i}\left(H_{6}\right)_{k}^{[j i]} P_{j}^{i} P_{l}^{k}+B_{6}^{T} D_{i}\left(H_{6}\right)_{k}^{[i j]} P_{j}^{k} P_{l}^{l} \ldots \ldots
$$

## $\mathrm{SU}(3)$ analysis for D to PP

$\mathrm{SU}(3)$ representation for hadron states:

$$
\left(D_{i}\right)=\left(D^{0}(c \bar{u}), D^{+}(c \bar{d}), D_{s}^{+}(c \bar{s})\right) \quad \overline{3} \text { representation }
$$



Including octets and singlet

Mixing angle:

$$
\begin{aligned}
\eta & =\cos \theta \eta_{8}+\sin \theta \eta_{1} \\
\eta^{\prime} & =-\sin \theta \eta_{8}+\cos \theta \eta_{1}
\end{aligned}
$$

## SU(3) analysis for D to PP (IRA)

Cabibbo-Allowed operator:


Doubly Cabibbo-Suppressed operator:
It has the same form except the inclusion of Cabibbo angel

$$
\left(H_{6}\right)_{3}^{21}=-\left(H_{6}\right)_{3}^{12}=-\sin ^{2} \theta_{C}, \quad\left(H_{\overline{15}}\right)_{3}^{21}=\left(H_{\overline{15}}\right)_{3}^{12}=-\sin ^{2} \theta_{C}
$$

## SU(3) analysis for D to PP (IRA)

## Cabibbo-Suppressed:

For charm decay the $\overline{3}$ operator vanishes since: $V_{c d} V_{u d}^{*}=-V_{c s} V_{u s}^{*}-V_{c b} V_{u b}^{*} \approx-V_{c s} V_{u s}^{*}$


$$
\begin{gathered}
\left(H_{6}\right)_{3}^{31}=-\left(H_{6}\right)_{3}^{13}=\left(H_{6}\right)_{2}^{12}=-\left(H_{6}\right)_{2}^{21}=\sin \left(\theta_{C}\right) \\
\left(H_{\overline{15}}\right)_{3}^{31}=\left(H_{\overline{15}}\right)_{3}^{13}=-\left(H_{\overline{15}}\right)_{2}^{12}=-\left(H_{\overline{15}}\right)_{2}^{21}=\sin \left(\theta_{C}\right) .
\end{gathered}
$$

## SU(3) analysis for D to PP (IRA)

Irreducible representation tree amplitude:

$$
\begin{gathered}
\mathcal{A}_{u}^{I R A}=A_{6}^{T} D_{i}\left(H_{6}\right)_{k}^{[i j]} P_{j}^{l} P_{l}^{k}+C_{6}^{T} D_{i}\left(H_{6}\right)_{k}^{[j]} P_{j}^{i} P_{l}^{k}+B_{6}^{T} D_{i}\left(H_{6}\right)_{k}^{[i j]} P_{j}^{k} P_{l}^{l} \\
\quad+A_{15}^{T} D_{i}\left(H_{\overline{15}}\right)_{k}^{\{i j\}} P_{j}^{l} P_{l}^{k}+C_{15}^{T} D_{i}\left(H_{\overline{15}}^{\{j j k\}} P_{j}^{i} P_{k}^{l}+B_{15}^{T} D_{i}\left(H_{\overline{15}}^{\{i j j\}} P_{j}^{k} P_{l}^{l}\right.\right. \\
\mathcal{A}=V_{c s / d} V_{u d / s}^{*} \mathcal{A}_{u}^{I R A}
\end{gathered}
$$

Cabibbo-Allowed channels:

| $V_{c s} V_{u d}^{*}$ | IRA |
| :---: | :---: |
| $D^{0} \rightarrow \pi^{+} K^{-}$ | $-A_{6}^{T}+A_{15}^{T}+C_{6}^{T}+C_{15}^{T}$ |
| $D^{0} \rightarrow \pi^{0} \bar{K}^{0}$ | $\left(A_{6}^{T}-A_{15}^{T}-C_{6}^{T}+C_{15}^{T}\right) / \sqrt{2}$ |
| $D^{0} \rightarrow \bar{K}^{0} \eta_{q}$ | $\left(-A_{6}^{T}+A_{15}^{T}-2 B_{6}^{T}+2 B_{15}^{T}-C_{6}^{T}+C_{15}^{T}\right) / \sqrt{2}$ |
| $D^{0} \rightarrow \bar{K}^{0} \eta_{s}$ | $-A_{6}^{T}+A_{15}^{T}-B_{6}^{T}+B_{15}^{T}$ |
| $D^{+} \rightarrow \pi^{+} \bar{K}^{0}$ | $2 C_{15}^{T}$ |
| $D_{s}^{+} \rightarrow \pi^{+} \eta_{q}$ | $\sqrt{2}\left(A_{6}^{T}+A_{15}^{T}+B_{6}^{T}+B_{15}^{T}\right)$ |
| $D_{s}^{+} \rightarrow \pi^{+} \eta_{s}$ | $B_{6}^{T}+B_{15}^{T}+C_{6}^{T}+C_{15}^{T}$ |
| $D_{s}^{+} \rightarrow K^{+} \bar{K}^{0}$ | $A_{6}^{T}+A_{15}^{T}-C_{6}^{T}+C_{15}^{T}$ |

There is one redundant degree of freedom!

$$
\begin{aligned}
& C_{6}^{T \prime}=C_{6}^{T}-A_{6}^{T} \\
& B_{6}^{T \prime}=B_{6}^{T}+A_{6}^{T}
\end{aligned}
$$

## SU(3) analysis for D to PP (TDA)

In some literatures there's 4 topological diagrams:

(a)

(b)


(d)

However, we have 6 IRA amplitudes. One may wonder whether these 4 diagrams are equivalent IRA?
We discovered two missed diagrams:


## Amplitudes for D to PP



| $V_{c d} V_{u s}^{*}$ | IRA | TDA |
| :---: | :---: | :---: |
| $D^{0} \rightarrow \pi^{0} K^{0}$ | $\left(A_{6}^{T}-A_{15}^{T}-C_{6}^{T}+C_{15}^{T}\right) / \sqrt{2}$ | $(\mathrm{C}-\mathrm{E}) / \sqrt{2}$ |
| $D^{0} \rightarrow \pi^{-} K^{+}$ | $-A_{6}^{T}+A_{15}^{T}+C_{6}^{T}+C_{15}^{T}$ | $\mathrm{E}+\mathrm{T}$ |
| $D^{0} \rightarrow K^{0} \eta_{q}$ | $\left(-A_{6}^{T}+A_{15}^{T}-2 B_{6}^{T}+2 B_{15}^{T}-C_{6}^{T}+C_{15}^{T}\right) / \sqrt{2}$ | $\left(\mathrm{C}+2 \mathrm{E}_{S}^{u}+\mathrm{E}\right) / \sqrt{2}$ |
| $D^{0} \rightarrow K^{0} \eta_{s}$ | $-A_{6}^{T}+A_{15}^{T}-B_{6}^{T}+B_{15}^{T}$ | $\mathrm{E}_{S}^{u}+\mathrm{E}$ |
| $D^{+} \rightarrow \pi^{+} K^{0}$ | $A_{6}^{T}+A_{15}^{T}-C_{6}^{T}+C_{15}^{T}$ | $\mathrm{~A}+\mathrm{C}$ |
| $D^{+} \rightarrow \pi^{0} K^{+}$ | $\left(A_{6}^{T}+A_{15}^{T}-C_{6}^{T}-C_{15}^{T}\right) / \sqrt{2}$ | $(\mathrm{~A}-\mathrm{T}) / \sqrt{2}$ |
| $D^{+} \rightarrow K^{+} \eta_{q}$ | $\left(A_{6}^{T}+A_{15}^{T}+2 B_{6}^{T}+2 B_{15}^{T}+C_{6}^{T}+C_{15}^{T}\right) / \sqrt{2}$ | $\left(2 A_{S}^{u}+\mathrm{A}+\mathrm{T}\right) / \sqrt{2}$ |
| $D^{+} \rightarrow K^{+} \eta_{s}$ | $A_{6}^{T}+A_{15}^{T}+B_{6}^{T}+B_{15}^{T}$ | $A_{S}^{u}+\mathrm{A}$ |
| $D_{s}^{+} \rightarrow K^{+} K^{0}$ | $2 C_{15}^{T}$ | $\mathrm{C}+\mathrm{T}$ |

We always find terms like:
$T+E, C-E$,
$T-A=(T+E)-(A+E)$,
$\mathrm{A}+\mathrm{C}=(\mathrm{A}+\mathrm{E})+(\mathrm{C}-\mathrm{E})$

## Equivalence between IRA and TDA

TDA also contain a redundant degree of freedom.
It's coefficients correspond to IRA coefficients one by one:

$$
A_{15}^{T}=\frac{A+E}{2}, \quad B_{15}^{T}=\frac{A_{S}^{u}+E_{S}^{u}}{2}, \quad C_{15}^{T}=\frac{T+C}{2}, B_{6}^{\prime T}=\frac{A_{S}^{u}-E_{S}^{u}+A-E}{2}, \quad C_{6}^{\prime T}=\frac{T-C-A+E}{2}
$$

The inverse relations are what we expected:

$$
\begin{aligned}
T+E & =A_{15}^{T}+C_{6}^{\prime T}+C_{15}^{T}, C-E=-A_{15}^{T}-C_{6}^{\prime T}+C_{15}^{T}, \quad A+E=2 A_{15}^{T}, \\
A_{S}^{u}-E & =-A_{15}^{T}+B_{6}^{\prime T}+B_{15}^{T}, E_{S}^{u}+E=A_{15}^{T}-B_{6}^{\prime T}+B_{15}^{T} .
\end{aligned}
$$

The TDA analysis must be equivalent with the IRA analysis.

## SU(3) analysis for D to VP

It's almost the same as D to PP. The IRA amplitude is doubled:

$$
\begin{aligned}
& \mathcal{A}_{u}^{I R A}=A_{6}^{T 1} D_{i}\left(H_{6}\right){ }_{k}^{[i j]} P_{j}^{l} V_{l}^{k}+A_{6}^{T 2} D_{i}\left(H_{6}\right){ }_{k}^{[i j]} V_{j}^{l} P_{l}^{k}+C_{6}^{T 1} D_{i}\left(H_{6}\right){ }_{k}^{[j]} P_{j}^{i} V_{l}^{k}+C_{6}^{T 2} D_{i}\left(H_{6}\right){ }_{k}^{[j]} V_{j}^{i} P_{l}^{k} \\
& =+B_{6}^{T 1} D_{i}\left(H_{6}\right)_{k}^{[i j]} P_{j}^{k} V_{l}^{l}+B_{6}^{T 2} D_{i}\left(H_{6}\right)_{k}^{[i j]} V_{j}^{k} P_{l}^{l}+A_{15}^{T 1} D_{i}\left(H_{\overline{15}}\right)_{k}^{\{i j\}} P_{j}^{l} V_{l}^{k}+A_{15}^{T 2} D_{i}\left(H_{\overline{15}}\right)_{k}^{\{i j\}} V_{j}^{l} P_{l}^{k} \\
& +C_{15}^{T 1} D_{i}\left(H_{\overline{5}}\right)_{l}^{\{j k\}} P_{j}^{i} V_{k}^{l}+C_{15}^{T 2} D_{i}\left(H_{\overline{15}}\right)_{l}^{\{j k\}} V_{j}^{i} P_{k}^{l}+B_{15}^{T 1} D_{i}\left(H_{\overline{15}}\right)_{k}^{\{i j\}} P_{j}^{k} V_{l}^{l}+B_{15}^{T 2} D_{i}\left(H_{\overline{15}}\right)_{k}^{\{i j\}} V_{j}^{k} P_{l}^{l}
\end{aligned}
$$

While the independent topological diagrams remain the same:


## SU(3) analysis for D to VP

Some useful relations for decay widths:

Cabibblo allowed channels:

$$
\Gamma\left(D_{s}^{+} \rightarrow \rho^{+} \pi^{0}\right)=\Gamma\left(D_{s}^{+} \rightarrow \rho^{0} \pi^{+}\right)
$$

Singly Cabibblo suppressed channels:

$$
\begin{aligned}
& \Gamma\left(D^{0} \rightarrow \rho^{+} \pi^{-}\right)=\Gamma\left(D^{0} \rightarrow K^{*+} K^{-}\right), \quad \Gamma\left(D^{0} \rightarrow \rho^{-} \pi^{+}\right)=\Gamma\left(D^{0} \rightarrow K^{*-} K^{+}\right) \\
& \Gamma\left(D^{+} \rightarrow K^{*+} \bar{K}^{0}\right)=\Gamma\left(D_{s}^{+} \rightarrow \rho^{+} K^{0}\right), \quad \Gamma\left(D^{+} \rightarrow \bar{K}^{* 0} K^{+}\right)=\Gamma\left(D_{s}^{+} \rightarrow K^{* 0} \pi^{+}\right), \\
& \Gamma\left(D^{0} \rightarrow \bar{K}^{* 0} K^{0}\right)=\Gamma\left(D^{0} \rightarrow K^{* 0} \bar{K}^{0}\right)
\end{aligned}
$$

## $\mathrm{SU}(3)$ analysis for Tc to T8 P

Charmed baryons with two light quarks can form an anti-triplet or a sextet. Most members of the sextet except $\Omega_{c}$ can decay via strong interactions or electromagnetic interactions.

Tc:



## SU(3) analysis for Tc to T8 P

We can find 7 topological diagrams:


$\left(\bar{a}_{3}, \bar{a}_{5}, \bar{a}_{9}\right)$

$\left(\bar{a}_{4}, \bar{a}_{6}, \bar{a}_{10}\right)$

$\left(\bar{a}_{7}, \bar{a}_{8}, \bar{a}_{11}\right)$

$\left(\bar{a}_{12}, \bar{a}_{13}, \bar{a}_{14}\right)$

$\left(\bar{a}_{17}, \bar{a}_{18}, \bar{a}_{19}\right)$

There are more than one amplitudes corresponding to one topological diagram. Totally 19 amplitudes.

$$
\left(\bar{T}_{8}\right)_{i j k}
$$

Neither symmetric nor antisymmetric


## SU(3) analysis for Tc to T8 P

However, we have 10 IRA amplitudes:

$$
\begin{aligned}
\mathcal{A}_{u}^{I R A} & =A_{6}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{6}\right)_{j}^{[i k]}\left(\bar{T}_{8}\right)_{k}^{j} P_{l}^{l}+B_{6}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{6}\right)_{j}^{[i k]}\left(\bar{T}_{8}\right)_{k}^{l} P_{l}^{j}+C_{6}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{6}\right)_{j}^{[i k]}\left(\bar{T}_{8}\right)_{l}^{j} P_{k}^{l} \\
& +E_{6}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{6}\right)_{l}^{[j]}\left(\bar{T}_{8}\right)_{j}^{i} P_{k}^{l}+D_{6}^{T}\left(T_{\overline{\overline{3}}}\right)_{i}\left(H_{6}\right)_{l}^{[j k]}\left(\bar{T}_{8}\right)_{j}^{l} P_{k}^{i}+A_{15}^{T}\left(T_{c \bar{c}}\right)_{i}\left(H_{\overline{15}}^{\{i k\}}\left(\bar{T}_{8}\right)_{k}^{j} P_{l}^{l}\right. \\
& +B_{15}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{\overline{15}}\right)_{j}^{\{i k\}}\left(\bar{T}_{8}\right)_{k}^{l} P_{l}^{j}+C_{15}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{\overline{15}}\right)_{j}^{i k\}}\left(\bar{T}_{8}\right)_{l}^{j} P_{k}^{l}+E_{15}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{\overline{15}}\right)_{l}^{i j k\}}\left(\bar{T}_{8}\right)_{j}^{i} P_{k}^{l} \\
& +D_{15}^{T}\left(T_{c \overline{3}}\right)_{i}\left(H_{\overline{15}}\right)_{l}^{\{i k\}}\left(\bar{T}_{8}\right)_{j}^{l} P_{k}^{i} .
\end{aligned}
$$

Also with one redundant degree of freedom:

$$
A_{6}^{T \prime}=A_{6}^{T}+B_{6}^{T}, \quad B_{6}^{T \prime}=B_{6}^{T}-C_{6}^{T}, \quad C_{6}^{T \prime}=C_{6}^{T}-E_{6}^{T}, \quad D_{6}^{T \prime}=C_{6}^{T}+D_{6}^{T}
$$

Equivalent?
TDA with 19 amplitudes

> IRA with
> $10-1=9$ amplitudes

## $\mathrm{SU}(3)$ analysis for Tc to T8 P

TDA must be equivalent with IRA and the relations between them are:

$$
\begin{aligned}
& A_{6}^{T}=\frac{1}{2}\left(\bar{a}_{3}-\bar{a}_{5}-2 \bar{a}_{9}-\bar{a}_{13}+\bar{a}_{14}\right), \quad B_{6}^{T}=\frac{1}{2}\left(\bar{a}_{13}-\bar{a}_{14}-\bar{a}_{17}+\bar{a}_{18}-2 \bar{a}_{19}\right) \\
& C_{6}^{T}=\frac{1}{2}\left(\bar{a}_{4}-\bar{a}_{7}-\bar{a}_{10}+\bar{a}_{11}-2 \bar{a}_{12}\right), \quad D_{6}^{T}=\frac{1}{2}\left(\bar{a}_{6}-\bar{a}_{8}+\bar{a}_{10}-\bar{a}_{11}-\bar{a}_{13}+\bar{a}_{14}\right) \\
& E_{6}^{T}=\frac{1}{2}\left(2 \bar{a}_{1}-2 \bar{a}_{2}-\bar{a}_{6}+\bar{a}_{8}-\bar{a}_{10}+\bar{a}_{11}+\bar{a}_{13}-\bar{a}_{14}+\bar{a}_{15}-\bar{a}_{16}-\bar{a}_{17}+\bar{a}_{18}-2 \bar{a}_{19}\right), \\
& A_{15}^{T}=\frac{1}{2}\left(\bar{a}_{3}+\bar{a}_{5}-\bar{a}_{13}-\bar{a}_{14}\right), \quad B_{15}^{T}=\frac{1}{2}\left(\bar{a}_{13}+\bar{a}_{14}-\bar{a}_{17}-\bar{a}_{18}\right) \\
& C_{15}^{T}=\frac{1}{2}\left(\bar{a}_{4}+\bar{a}_{7}-\bar{a}_{10}-\bar{a}_{11}\right), \quad D_{15}^{T}=\frac{1}{2}\left(\bar{a}_{6}+\bar{a}_{8}+\bar{a}_{10}+\bar{a}_{11}+\bar{a}_{13}+\bar{a}_{14}\right), \\
& E_{15}^{T}=\frac{1}{2}\left(2 \bar{a}_{1}+2 \bar{a}_{2}-\bar{a}_{6}-\bar{a}_{8}-\bar{a}_{10}-\bar{a}_{11}-\bar{a}_{13}-\bar{a}_{14}+\bar{a}_{15}+\bar{a}_{16}+\bar{a}_{17}+\bar{a}_{18}\right)
\end{aligned}
$$

## Compared with experiment

From $\mathrm{SU}(3)$ approach, there is one relation between the different channels:

$$
\Gamma\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{0}\right)=\Gamma\left(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^{+}\right)
$$

This result fits well with the data:

$$
\mathcal{B}\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{0}\right)=1.24 \pm 0.10 \%, \quad \mathcal{B}\left(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^{+}\right)=1.28 \pm 0.07 \%
$$

## Relation with fitting results

In the paper: C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, no. 7, 073006 (2018) a global fit was conducted, We relate our $\mathrm{SU}(3)$ parameters with these fitting values:

$$
\begin{gathered}
-A_{6}^{T}+D_{6}^{T}=h=(0.105 \pm 0.073) \mathrm{GeV}^{3}, \quad-B_{6}^{T}+E_{6}^{T}=a_{1}=(0.244 \pm 0.006) \mathrm{GeV}^{3} \\
-C_{6}^{T}-D_{6}^{T}=a_{2}=(0.115 \pm 0.014) \mathrm{GeV}^{3}, \quad E_{6}^{T}+D_{6}^{T}=a_{3}=(0.088 \pm 0.019) \mathrm{GeV}^{3}
\end{gathered}
$$

$a_{1}, a_{2}, a_{3}, h$ are $\mathrm{SU}(3)$ parameters used in this paper:

$$
\begin{aligned}
& T\left(\mathbf{B}_{c} \rightarrow \mathbf{B}_{n} M\right)=T\left(\mathcal{O}_{6}\right)+T\left(\mathcal{O}_{\overline{15}}\right) \quad \text { Neglected in fitting } \\
& T\left(\mathcal{O}_{6}\right)=a_{1} H_{i j}(6) T^{i k}\left(\mathbf{B}_{n}\right)_{k}^{l}(M)_{l}^{j}+a_{2} H_{i j}(6) T^{i k}(M)_{k}^{l}\left(\mathbf{B}_{n}\right)_{l}^{j} \\
& +a_{3} H_{i j}(6)\left(\mathbf{B}_{n}\right)_{k}^{i}(M)_{l}^{j} T^{k l}+h H_{i j}(6) T^{i k}\left(\mathbf{B}_{n}\right)_{k}^{j}(M)_{l}^{l},
\end{aligned}
$$

## Summary

(®) In some literatures where TDA method is used, some topological diagrams are missed. Furthermore, among these diagrams, a redundant degree of freedom exists.
© We have shown that TDA analysis is actually equal to IRA analysis.
© For charmed baryon decays, although TDA approach seems very intuitive, it suffers the difficulty in providing the independent amplitudes. So IRA approach become more reliable.

* We have obtained a complete list of decay amplitudes in terms of $\mathrm{SU}(3)$ parameters, as well as relations between some of them. Most of them are waiting to be tested by experiments.
- All the analysis mentioned above can also be applied to bottom decays, which are also included in our work.


## Thank you for your attention!

