Angluar Distribution at CEPC

Presented by ¹Pei-Zhu Lai (賴培築)

Supervisor: ²Man-Qi Ruan, ²Gang Li, ²Bo Liu, ¹Chia-Ming Kuo ¹National Central University, Taiwan ²Institute of High Energy Physics, China EW meeting

Sep 04, 2018

- **IER** and JES in energy and $\cos\theta$ phase space. They are studied by $ZZ \rightarrow \nu q\overline{q}$ process.
- The angle distribution for ZZ, WW, and ZH in dijet final state after requiring ISR Pt < 1 GeV.</p>

- Compare the energy of two objects(quark or jet), the energetic one is called "Leading", the other one is called "Sub-leading".
- **q**: The MC true quark which before fragmentation. Only two particles in $WW \rightarrow \mu \nu q \overline{q}$ process.
- Gen jet: The MC true particles which decayed from two quarks. The ISR photon would be included as well.
- Reco jet: Force from all final state particle flow objects (PFOs). The ISR photon and prompt are vetoed but may be not completely.

JER & JES

- The performance is between Reco Jet and Gen Jet. Here only shows the light flavor jets (uds).
- In the left plots, the JER is worse when energy is low and barrel is better than endcaps.
- In the right plots, the JES increase when energy goes higher and endcaps is greater than barrel.

WW $\rightarrow \mu \nu q \overline{q}$

WW $\rightarrow \mu \nu q \overline{q}$

Inner Product	Parton-Gen	Gen-Reco	MCP-Reco
Leading	99.677%	99.577%	99.676%
Sub-leading	99.165%	99.619%	99.802%

WW $\rightarrow \mu \nu q \overline{q}$

- In ideal case, the angular distributions should be consist between three stages. However, some processes do not satisfy our expectations because of ISR effects, the prompt muon effects, etc.
- From my point of view, requiring ISR Pt < 1 GeV is not improve the agreement huge between three simulation stages. The improvement embodies on inner product around 0.1~0.3%. I will try to remove the ISR photon before forcing Gen jet.
- After removing the prompt muon from the Gen jet, it makes Gen jet angular distribution more similar than the others.

- For JER and JES studies, I will divide the cosθ into smaller binning and different flavor.
- Making the angular distribution consist. Try to remove the ISR photon before forcing Gen jet and turn off FSR effect.
- **These are the preparations for jet energy calibration.**
- Need some time to write travel report.

Back up

$ZZ \rightarrow \nu \nu q \overline{q}$

$ZZ \rightarrow \nu \nu q \overline{q}$

Inner Product	Parton-Gen	Gen-Reco	MCP-Reco
Leading	99.718%	99.329%	99.699%
Sub-leading	99.145%	99.508%	99.767%

ZH→vvqq

$ZH \rightarrow \nu \nu q \overline{q}$

Inner Product	Parton-Gen	Gen-Reco	MCP-Reco
Leading	99.886%	99.338%	99.372%
Sub-leading	99.817%	99.716%	99.654%

ZH→vvqq

Inner Product	Parton-Gen	Gen-Reco	MCP-Reco
Leading	47.503%	41.153%	99.161%
Sub-leading	1.48%	5.91%	98.485%

ISR $Z \rightarrow q\overline{q}$

Angle Distribution

