CepC CDR International Review IHEP, Beijing 13-15/09/2018

The IDEA Muon detector

P. Giacomelli INFN Bologna on behalf of the IDEA group

IDEA Muon detector for CepC

In the IDEA detector, the muon detection system is made of 3 (or 4) MPGD stations interleaved in the iron return yoke.

Typical geometry with a central barrel hermetically closed by 2 endcaps.

Muon detector dimensions

- Muon detector with 3 stations in both barrel and endcaps
 - Barrel surface $\sim 850 \times 2$ (layers) = 1700 m²
 - Endcap surface $\sim 900 \times 2$ (layers) = 1800 m²
 - Total muon detector surface 3500 m²
- + μ RWELL detector dimensions 50 x 50 cm²
- Strip pitch ~ 1000 μ m (1 mm)
- Total number of channels ~7 million
- Position resolution ~270-300 μ m per layer in both spatial directions
- Time resolution ~ 5-7 ns
- Detectors mass producible by industry
- Quality control can be performed by collaborating institutes

The μ-RWELL technology

G. Bencivenni et al., 2015_JINST_10_P02008

Collaboration of INFN, CERN, Eltos

Chinese institute USTC-Hefei involved on DLC+Cu resistive layer Techtra company involved on chemical etching

- μ -RWELL guiding principles
 - Retain the same excellent performances of GEM and MicroMegas
 - Improve the resistance to sparks
 - Simplify the components construction and final assembly
- Simpler construction
 - Only 1 kapton foil instead of 3 (GEM)
 - Single amplification layer
 - Simpler etching of the kapton foil
- More robust
 - Resistive DLC layer makes the detector very spark safe
- Simpler final assembly
 - Kapton foil glued to PCB: no stretching needed
- Less components, simpler construction → significant cost reduction
- Technology transfer to industry (Eltos, Techtra) started 2 years ago

(MF) CMS GE1/1 μ -RWELL prototype at H8 test beam

Ar/CO₂/CF₄ VFAT FEE 45/15/40

Gain (a.u.) CepC CDR Int. Review - The IDEA Muon detector - Paolo Giacomelli

ΔΕΛ CMS GE2/1 sector μ-RWELL prototype

H4 test beam with 150 GeV muons:

- Voltage scan (amplification scan)
- Uniformity scan across the surface of the detector at 530 V (~12000 gain, still to be conditioned)

The excellent results obtained demonstrate the great collaboration between INFN-Eltos and Rui de Oliveira's lab

GE2/1 20° sector with 2 M4 µRWells (2 m height, 1.2 m base)

M4 μ -RWELL prototype is a trapezoid of ~55-60x50 cm² Largest μ -RWELL ever built and operated!

CepC CDR Int. Review - The IDEA Muon detector - Paolo Giacomelli

Summary of results with μ -RWELLs

- CMS GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, σ_t <6 ns (about 4.5 ns obtained)
 - Fully efficient for a gain of >3000
 - Tested with a rate up to ~35 kHz/cm² (only limited by beam rate)
- Position resolution
 - + $\mu\text{-RWELL}$ prototypes have obtained position resolution of ~60 μm
- GIF++ ageing (radiation tolerance) test
 - Tested with global irradiation up to 100 kHz/cm² for CMS prototype
 - Gain stability up to 20000
 - No dark current, no discharges
 - $Q_{int} > Q_{int} \sim 32 \text{ mC/cm}^2$
- Technology Transfer with the Eltos and Techtra companies
- Large 50-60x50 cm² μ-RWELL modules built
 - Exposed at the CERN H4 test beam in July 2017
 - Excellent uniformity! Efficiency between 98-99% over the whole surface.

- IDEA Muon detector based on a 3 station configuration in both barrel and endcap regions
- Each station made of two layers of μ RWELL detectors (in the future could use one layer of detectors with bidimensional readout)
- Total surface of the muon detector: ~850 m² (barrel) and ~900 m² endcap
 - ~3500 m² of monodimensional μ RWELL detectors
 - ~1750 m² of bidimensional μ RWELL detectors
- Dimensions of μRWELL detectors 50x50 cm^2
 - 500 channels per detector (monodimensional)
- + Position resolution ~270-300 μm
- Time resolution ~5-7 ns
- Efficiency >97% per station
- Total of ~7 million channels
- Mass production of detectors by industry

Backup

EXAMPLE 1 CMS GE2/1 sector μ -RWELL: HV scan

M4 right side:

- Efficiency = # hits (Tracker 1 & Tracker 2 & M4 right)
- Drift Field = 3.0 kV/cm

hits (Tracker 1 & Tracker 2)

+ $V_{\mu-RWELL} = scan$ <u>Muon</u> 0/0 100 <u>beam</u> Efficiency 90 80 70 Ar/CO₂ 70/30 60 50 40 480 500 520 540 460 $\bm{v}_{\mu\text{-rwell}}$

CepC CDR Int. Review - The IDEA Muon detector - Paolo Giacomelli

Muon detector dimensions, channels, cost

- Muon detector with 3 layers in both barrel and endcaps
 - Barrel surface $\sim 850 \times 2$ (layers) = 1700 m²
 - Endcap surface ~900 x 2 (layers) = 1800 m²
- + μ RWELL Detector dimensions 50 x 50 cm²
- Strip pitch ~ 1000 μ m (1 mm)
- Total number of channels ~7 million
- Position resolution ~300 μm per layer in both spatial directions
- Time resolution ~ 5 ns
- Today's µRWELL cost ~5 keuro/m²
 - Mass production by industry should decrease this cost by at least a factor of 2 \rightarrow 2.5 keuro/m²
 - Cost for the whole muon detector ~8.5 Meuro
 - Cost of electronics ~15-17 Meuro
 - Total cost ~25 Meuro

μ RWELL prototypes exposed inside the GIF++

CepC CDR Int. Review - The IDEA Muon detector - Paolo Giacomelli