CEPC Machine-Detector Interface

Hongbo Zhu (IHEP, Beijing) For the CEPC MDI Working Group

Outline

- Interaction region layout
- Final focusing and compensating magnets
- Beam pipe
- Radiation backgrounds
- LumiCal
- Summary

Interaction Region

• Layout of the interaction region: extremely limited space for several critical components \rightarrow trade-offs, optimizations toward $l^* = 2.2 m$ a more realistic design

Final Focusing Magnets

- QD0 located at 2.2 m from the IP (defining the L*)
- Double aperture design with Cos-Theta quadrupole coils using NbTi Rutherford cables; with (QD0) and without (QF1) iron yoke

Compensating Magnets

- Compensating magnets segmented into 22 sections to minimize the disturbance of the detector solenoid on the beams;
- Peak field (before QD0) ~7.2 T, close to the limit of NbTi-Cu

Beam Pipe

- Central beam pipe (z = ±7 cm) made with Beryllium (thin to minimize material but thick enough to sustain vacuum pressure), forward region with stainless steel or copper; gold coating to prevent SR photons?
- Shortest distance to the IP limited by backgrounds (to be kept away from the kinematic edge formed by pair production)
- Shape in the forward region optmized to avoid extreme high order mode (HOM) heating

Radiation backgrounds

- Important inputs in to detector (+machine) designs, e.g. detector occupancy, radiation tolerance ...
- Have investigated the most important sources of radiation backgrounds, including
 - Synchrotron radiation
 - Beamstrahlung, Pair production
 - Beam lost/off-energy particles (Radiative Bhabha scattering, beamstrahlung, beam-gas interaction, etc.)
 - Extending into other but less critical sources

Synchrotron Radiation

- Beam particles bent by magnets (last bending dipole, focusing quadrupoles) emit SR photons → important at circular machines
- BDSim to transport beam (core + halo) from the last dipole to the interaction region and record the particles hitting the central beryllium beam pipe

Large amount of photons scattered^{0.03} by the beam pipe surface between^{0.02} [1, 2 m] into the central region

Collimators made with high-Z material must be introduced to block those SR photons.

Collimator Design

Collimator shape

With Collimation

• Three masks at 1.51, 1.93 and 4.2 m along the beam pipe to the IP to block SR photons \rightarrow shielding to the central beam pipe

 Number of photons per bunch hitting the central beam pipe from one side dropping from 40, 000 to 80 → consistent with analytical calculation (Acc. CDR)

Pair Production

- Estimated as the most important background at Linear Colliders, not an issue for lower energy/luminosity machines
- Charged particles attracted by the opposite beam emit photons (beamstrahlung), followed by electron-positron pair production (dominate contributions from the incoherent pair production)

Beamstrahlung

Simulated with GUINEAPIG with external field implemented

Most electrons/positrons are produced with low energies and in the very forward region, and can be confined within the beam pipe with a strong detector solenoid;

However, a non-negligible amount of electrons/positrons can hit the detector \rightarrow radiation backgrounds

Hadronic backgrounds much less critical

Radiation Background Levels

- Using hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) to quantify the radiation background levels
- Adopted the calculation method used for the ATLAS background estimation (ATL-GEN-2005-001), safety factor of ×10 applied

Pair Production Bkg.

- Hit density, TID and NIEL levels at different vertex detector layers
- Reminder of bunch spacings: 680 (H)/210 (W)/25 (Z) ns

لم ج ف 10¹³

 $[1 \text{ MeV } n_{eq}/\text{cm}^2 \cdot n_{eq}/\text{cm}^2 \cdot n_{eq}/\text{cm}^2$

 ${\bf F}_{\rm int}$

Pair Production √s= 91 GeV

 \mathbb{A}

160 GeV

MA

√s= 240 GeV

13-15 Sept 2018

Off-Energy Particles

- Beam particles losing energies (radiative Bhabha scattering, beam-gas interaction, beam-gas interaction, etc.) larger than acceptance kicked off their orbit → lost in the interaction region
- Two sets of collimators placed upstream to stop off-energy beam particles, sufficiently away from the beam clearance area (aperture size subject to optimization)

What shape? SuperKEKB Type (PEP-II as reference)

Effectiveness of Collimators

 Suppression of detector backgrounds, close to a factor of 100 in reduction → remaining backgrounds controlled to be smaller than that from pair production

 Collimators subject to further optimization in line with machine design evolution → demonstration of effective design

Combined Backgrounds

- Radiation backgrounds from pair production, radiative Bhabha scattering + beamstrahlung
- Most significant contributions from pair production

· year]

 ${\rm MeV} \ {\rm n_{eq}^{-10}/\, cm^2} \ . \ 10^{11}$

 10^{11} []

NIEL

 $\sim 2 \times 10^{12}$ 1MeV n_{ea}/cm² per year

Rad Bkg, √s=240GeV

Off-Energy

Pair Production

Combined

Different Operation Energies

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10 ¹² 1MeV n _{eq} /cm2·year]	2.1	5.5	6.2

Dominant contributions from pair production

Luminosity Measurement

- Z line-shape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ dominant, $\sigma = 41 \text{ nb}$
- Luminosity best provided by detecting Bhabha elastics scattering, $e^+e^- \rightarrow e^+e^-$
 - pure QED process, theoretical MC to <0.1% precision
 - triggering on a pair of scattered e^+e^-

Ζ,γ

OPAL

Ζ,γ

_ e⁺

LO Bhabha

Precision

• Luminosity by counting Bhabha events in a fiducial θ region $\frac{1}{N}$

13-15 Sept 2018

Boost by the Beam Crossing Angle

- BHlumi theoretical precision < 0.05%
 - LO elastic e+ e- scattering dominant
 - $E(e^+) = E(e^-) = E_{beam}$, Open Angle = π
- CMS(e⁺e⁻) boosted by beam crossing
- e[±] boosted ~16.5 mrad off ring-center

 \rightarrow back-to-back offset \rightarrow e[±] lost into beam-pipe

Boosted Bhabha

BHLUMI colliding e⁺e⁻ back-to-back

Boost CEPC crossing angle of 33 mrad

Boost BHLUMI e⁺, e⁻ to CEPC \rightarrow *E* is larger by ~.01%

Ebeam = 50 GeV \rightarrow boosted E = 50.0068 GeV

- Boosted LO Bhabha (e^+e^- , no γ)
- e⁺ and e⁻ detected in fiducial acceptance of r > 20 mm
- r-φ plotted in bands (every 45 deg in φ)
- Event loss 163 nb \rightarrow 98 nb
 - Loss is SIGNIFICANT
 - LumiCal with a small inner r, in OVAL
 -100-80-60-40-20 0 20 40 60 80 x (mn x)
 Hits on detector x-y planes @z=1m

21

13-15 Sept 2018

Detector Options

- Luminosity precision = e^{\pm} detection in r, at inner radius of fiducial
 - ightarrow Silicon strip is the choice!
 - \rightarrow Alignment CAN NOT reach 1 μm
 - \rightarrow Wide strip (~2mm) CAN NOT reach 10 μm resolution
 - ightarrow A stand-alone LumiCal CAN NOT calibrate its offsets to IP

OPAL Si-W sandwich

Tracking Ring

Silicon-Tungsten

- Detector assembly:
 - first layer: high resolution tracking for electron hit r, ϕ position
 - energy resolution: Si-wafer detector charged particles only; a MIP of Landau ionization charge; EM shower = # of charged particles.
- e^{\pm}/γ Identification:
 - photon no signal on Si-wafer
 - photon fragmentation after ~1 X0
 - photon ID: EM shower with no 1st layer hits
 - photon spatial resolution: Calo segmentation

10cm

Systematic Uncertainties

ΔL/L~10 ⁻³ @ 240 GeV			∆L/L~10 ⁻⁴ @ Z-pole		
Parameter ur	nit limit (Fiducia) limit (LEP style)	Parameter	unit	limit
$\Delta E_{\rm CM}$ M	1eV 120	120	$\Delta E_{\rm CM}$	MeV	4.5
$E_{e^+} - E_{e^-}$ M	1eV 120	240	$E_{e^+} - E_{e^-}$	MeV	11
$\frac{\delta \sigma_{E_{beam}}}{\sigma_{E_{beam}}}$	20%	Effect cancelled	$rac{\delta\sigma_{E_{beam}}}{\sigma_{E_{beam}}}$		Negligible up to at least factor 2
$\Delta x_{\rm IP}$ m	nm 0.1	1	Δx_{IP}	mm	0.5
$\Delta z_{\rm IP}$ m	nm 1.4	10	Δz_{IP}	mm	2
Beam synchronisation p	ps 1	15	Beam synchronisation	ps	3
$\sigma_{x_{IP}}$ m	nm 0.1	1	$\sigma_{x_{ ext{IP}}}$	mm	0.5
$\sigma_{z_{IP}}$ m	nm 1	10	$\sigma_{z_{\text{IP}}}$	mm	7
<i>r_{in}</i> μ	um 13	10	r_{in}	μm	1
σ _{r_{shower} m}	nm 0.15	1	$\sigma_{r_{\text{shower}}}$	mm	0.2
$\Delta d_{\rm IP}$ m	nm 1	1	$\Delta d_{ m LC}$	μm	80
$\Delta \phi_{tilt}$ m	nrad 6	6	$\Delta \phi$	mrad	0.8
v NV −0.002 −0.004 −0.006	Fiducial $\Delta r_{cut} = 1.0 \text{ mm}$ $\Delta r_{cut} = 2.0 \text{ mm}$ $\Delta r_{cut} = 4.0 \text{ mm}$ $\beta_z = 0.0005$	240GeV	$\begin{array}{c} 0.004 \\ 0.002 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.002 \\ 0 \\ 0.002 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	40GeV	
13-15 5	0.000	β _z ₂		Δr _{in} (I	^{mm)} 25

Installation Scheme

 No easy solution to install all the critical components in the interaction region with high precision; inspired by the Remote Vacuum Connection (RVC) developed by SuperKEKB

Summary

- Layout of the interaction region design \rightarrow further optimization
- Design of final focusing magnets and compensating magnets
- Investigated the main radiation backgrounds from pair production and off-energy particles, for Higgs operation
 - Hit density: 2.4 hits/cm² per bunch crossing
 - TID: ~1 MRad per year
 - NIEL: ~2×10¹² 1MeV n_{eq}/cm² per year
- LumiCal design concept, technical options and systematics
- Promising installation scheme based on RVC

Machine Parameters

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs	2					
Beam energy (GeV)	120	80	45.5			
Circumference (km)		100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036			
Crossing angle at IP (mrad)		16.5×2				
Piwinski angle	2.58	7.0	23.8			
Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8.0			
Bunch number	242	1524	12000 (10% gap)			
Bunch spacing (ns)	680	210	25			
Beam current (mA)	17.4	87.9	461.0			
Synchrotron radiation power (MW)	30	30	16.5			
Bending radius (km)	10.7					
Momentum compaction (10 ⁻⁵)	1.11					
β function at IP β_x * / β_y * (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance x/y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP s _x /s _y (μm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.004/0.056	0.004/0.072		
RF voltage V _{RF} (GV)	2.17	0.47	0.10			
RF frequency f _{RF} (MHz)		650				
Harmonic number		216816				
Natural bunch length s _z (mm)	2.72	2.98	2.42			
Bunch length s _z (mm)	3.26	5.9	8.5			
Damping time $t_x/t_y/t_E$ (ms)	46.5/46.5/23.5	156.4/156.4/74.5	849.5/849.5/425.0			
Natural Chromaticity	-493/-1544	-493/-1544	-520/-1544	-520/-3067		
Betatron tune $v_x/v_y/v_s$		363.10/365.22	363.10/365.22/0.065			
HOM power/cavity(2cell) (kw)	0.54	0.75	1.94			
Natural energy spread (%)	0.1	0.066	0.038			
Energy acceptance requirement (%)	1.35	0.40	0.23			
Energy acceptance by RF (%)	2.06	1.47	1.70			
Photon number due to beamstrahlung Lifetime _simulation (min)	0.29 100	0.35	0.55			
Lifetime (hour)	0.67	1.4	4.0	2.1		
F (hour glass)	0.89	0.94	0.99			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1		

13-15 Sept 2018

Detector Solenoid

• Emittance growth caused by the fringe field of solenoids \rightarrow limit the achievable luminosity

Event Generation

- Pair production process simulated with the GuineaPig program and the output fed into Geant4 detector simulation
- Long time for colliding bunches to cross each other (e.g. Higgs operation with bunch length ~3.6 mm)
- Caveat: charged particles travelling over certain distance without seeing the solenoidal field, which unfortunately introduces bias to the hit positions
- → To implement external field in the GuineaPig, feature request sent to the author (to be followed up)

Pair Production @ W/Z

• More prominent at W/Z because of event longer bunch sizes and charged particles traveling over even longer distances

