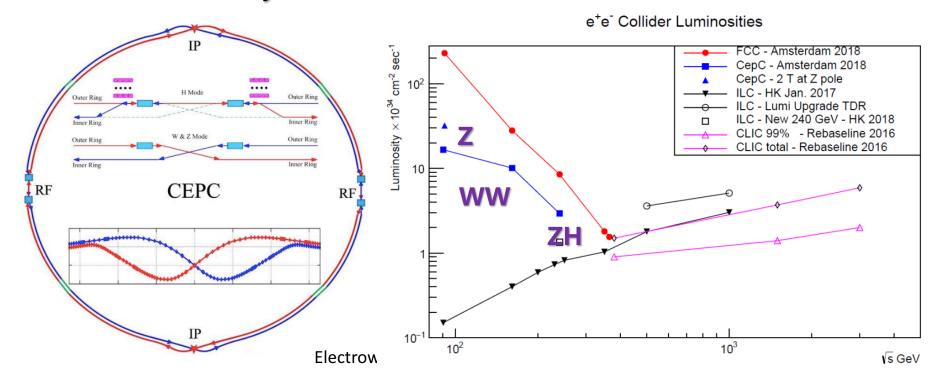


Electroweak Physics at CEPC conceptual design report

Zhijun Liang

Institute of High Energy Physics,
Chinese Academy of Science


Conceptual design report review meeting, Sep 15th 2018

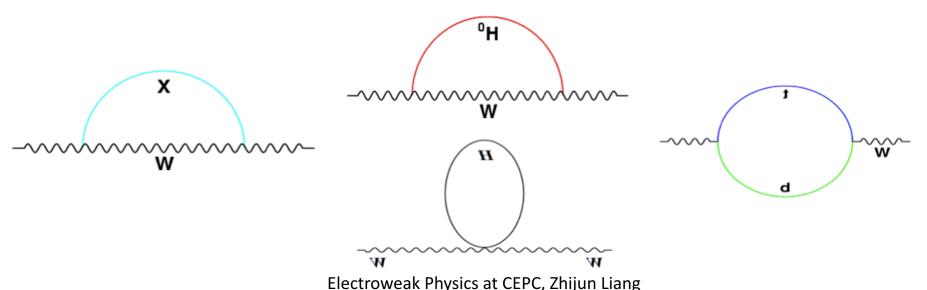
Outline

- Introduction to CEPC
- W physics
- Z pole physics


Introduction to CEPC

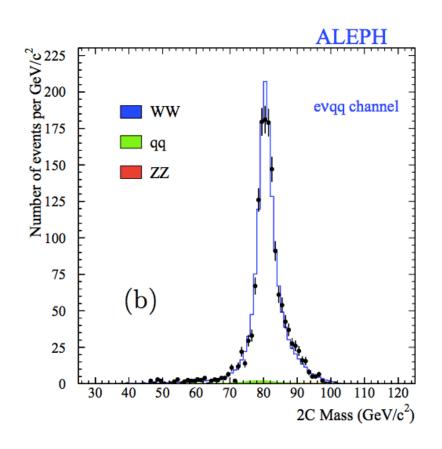
- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory($E_{cms} \sim 91 GeV$), electroweak precision physics at Z pole.
 - **baseline** L= $1.6 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, Solenoid =2T, $3\times 10^{11} \text{ Z boson}$
 - L= 3.2 X 10^{35} cm⁻²s⁻¹ , Solenoid =3T , $6X10^{11}$ Z boson
 - Assuming Z cross section with ISR correction: 32 nb
- WW threshold scan runs (~160GeV) are also expected.
 - Total luminosity 2.5 ab⁻¹, 14M WW events

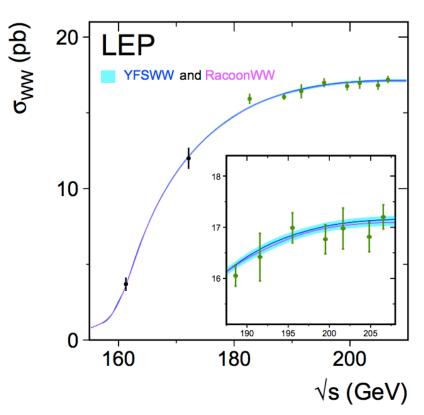
Status of electroweak global fit


- Small tension in top mass and W mass.(2σ)
 - Between direct measurement and EWK fit

Motivation of W mass measurement

- Small tension in W mass in EWK fit may indicate new physics
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

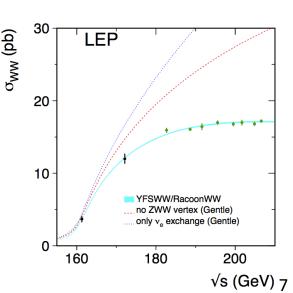

Eur.Phys.J. C78 (2018) no.5, 426



W mass measurement in lepton collider

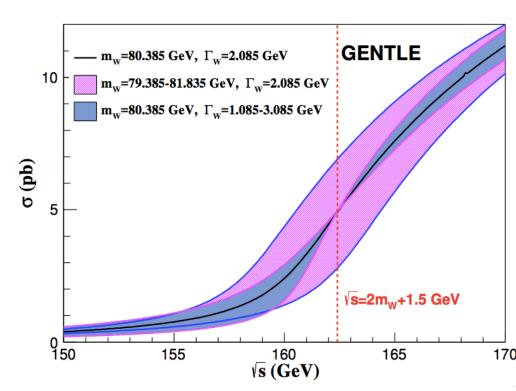
Two approaches to measure W mass at lepton collider:

Direct measurement performed in ZH runs (240GeV) Precision 2~3MeV WW threshold scan
WW threshold runs (157~172GeV)
Expected Precision 1MeV level

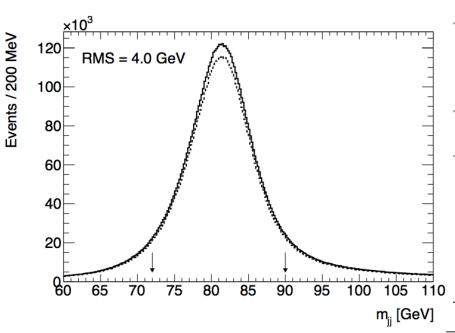


WW threshold scan – CEPC plan

- WW threshold scan running proposal
 - Assuming one year data taking in WW threshold (2.5 ab-1)
 - Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|)
 - 14M WW events in total
 - 400 times larger than LEP2 comparing WW runs

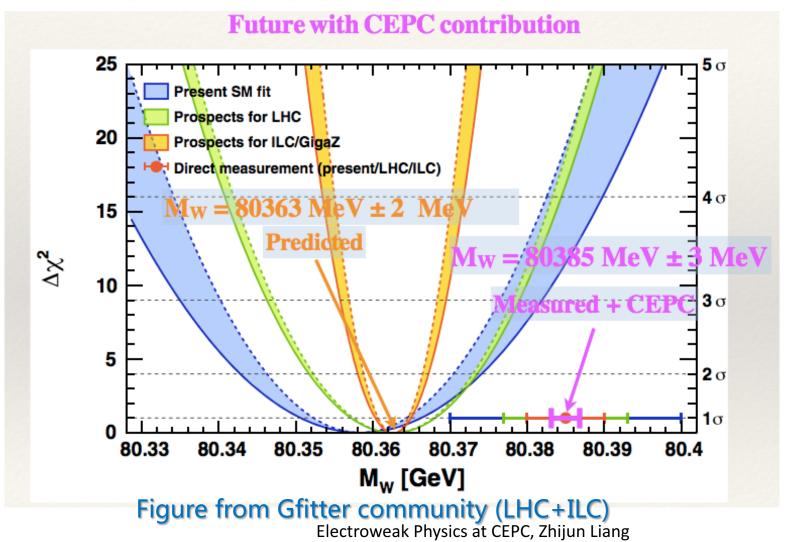

E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)	(hh)
157.5	0.5	1.25	0.6	۲
161.5	0.2	3.89	0.8	
162.5	1.3	5.02	6.5	
172.0	0.5	12.2	6.1	

WW threshold scan-systematics unc.


- Consider the beam spread unc. (EBS), beam energy unc., signal efficiency, cross section unc. and background
- Expected 1MeV precision
 - Dominated by statistics uncertainty: 1MeV
 - Leading syst. (0.5MeV): beam energy syst.

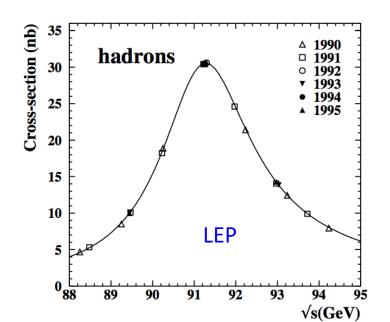
Observable	m_W	Γ_W
Source	Uncertaint	tv (MeV)
	Checitani	ty (IVIC V)
Statistics	0.8	2.7
Beam energy	0.4	0.6
Beam spread	-	0.9
Corr. syst.	0.4	0.2
Total	1.0	2.8

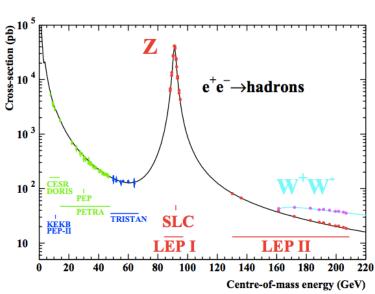
W mass direct measurement


- Reconstruct di-jet mass from WW->lvqq events in ZH run
 - Not affect by beam energy uncertainty
 - Major systematics is Jet energy scale (JES) uncertainty (2~3 MeV)
 - Calibrate JES with Tera-Z (Z->jj)

Collider	LEP	CEPC	
\sqrt{s} (GeV)	180–203	240	
$\int {\cal L} dt$	$2.6~{ m fb^{-1}}$	5.6 ab^{-1}	
Channels	$\ell\nu qq,qqqq$	$\ell u q q$	
Source	Uncertainty (MeV)		
Statistics	25	1.0	
Beam energy	9	1.0	
Hadronization	13	1.5	
Radiative corrections	8	1.0	
Detector effects	10	1.5	
Total	33	3.0	

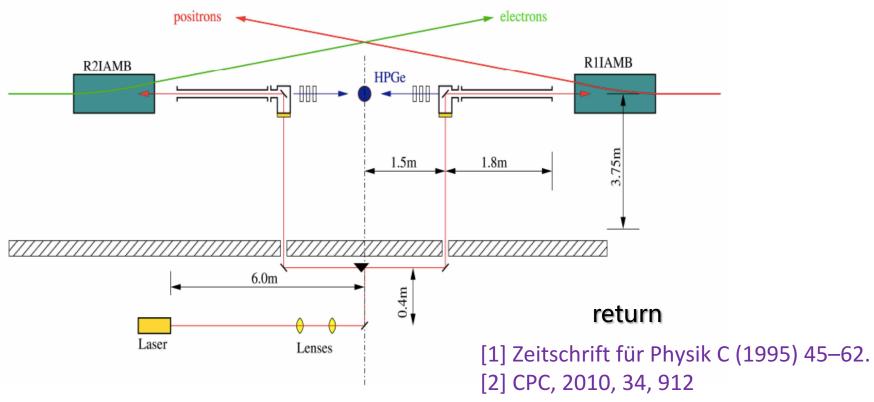
Prospect of CEPC W mass measurement


- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future



- Introduction to CEPC
- W physics
- Z pole physics

Z mass measurement


- LEP measurement: 91.1876±0.0021 GeV
- CEPC possible goal: 0.5 MeV
 - Z threshold scan runs is needed to achieve high precision.
 - Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP → <0.5MeV
 - Luminosity measurement → <0.1~0.2 MeV

Z mass measurement (2)

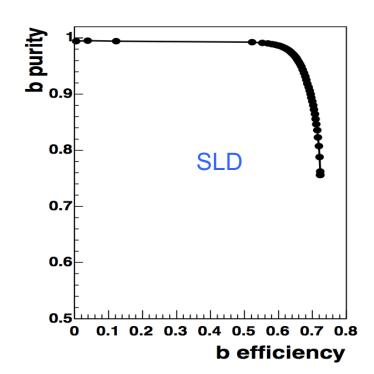
- Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP [1] \rightarrow <0.5MeV
 - Compton backscattering [2]
 → 1~2MeV
 - Radiation return, $Z(\mu\mu)\gamma$ events $\rightarrow 2\sim3$ Me

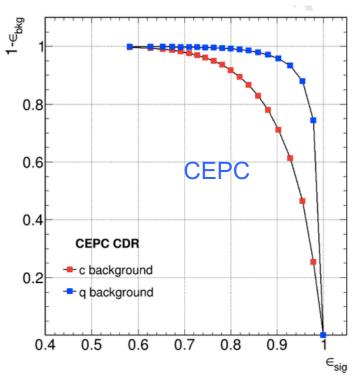
Number of neutrino generation (N_v)

LEP measurement :

$$e^+e^- o
u \bar{
u} \gamma$$

- Indirect measurement (Z line shape method): 2.984+-0.008
- Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)

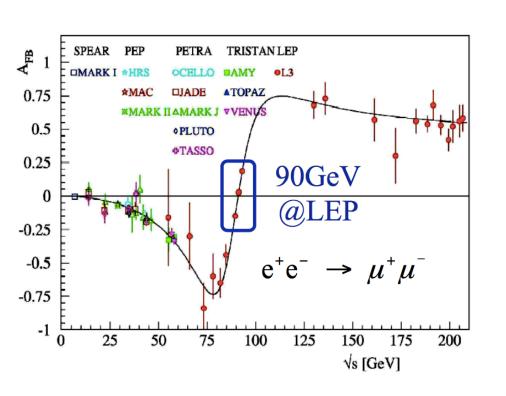

CEPC measurement :

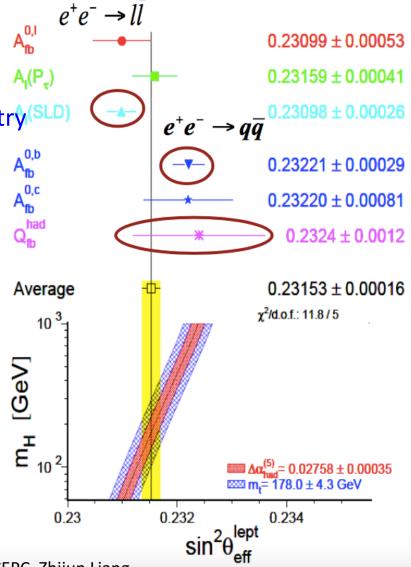

- Focus on direct measurement, Expected Syst error (0.2%)
- High granularity in calorimeter can help photon identification
- Need focus on improving photon energy scale in next step

Systematics source	LEP	CEPC
Photon Trigger efficiency	~0.5%	-
Photon Identification efficiency	~0.5%	<0.1%
Calorimeter energy scale	0.3~0.5%	<0.2%

$\frac{\Gamma(\mathrm{Z} o \mathrm{b}\bar{\mathrm{b}})}{\Gamma(\mathrm{Z} o \mathrm{had})}$ Branching ratio (R^b)

- LEP measurement 0.21594 ±0.00066
 - Syst error : ~0.2%
 - Major systematics is hemisphere tag correlations
- CEPC
 - Expected Syst error (0.02%)
 - hemisphere tag correlations depends on b tagging efficiency
 - Expect 10~15% higher B tagging efficiency than SLD

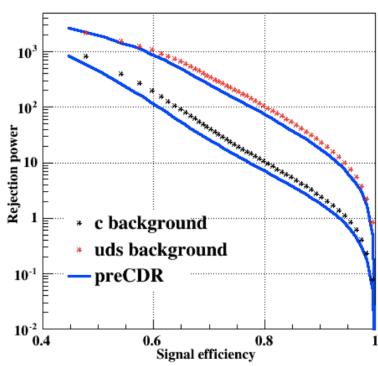




 $C_b = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^2}$

Weak mixing angle

- Some tension between SLD and LEP results (~3σ)
 - Remain a puzzle for ~10 years
- CEPC
 - Aim for 0.002% precision
 - Input from Backward-forward asymmetry (SLD)

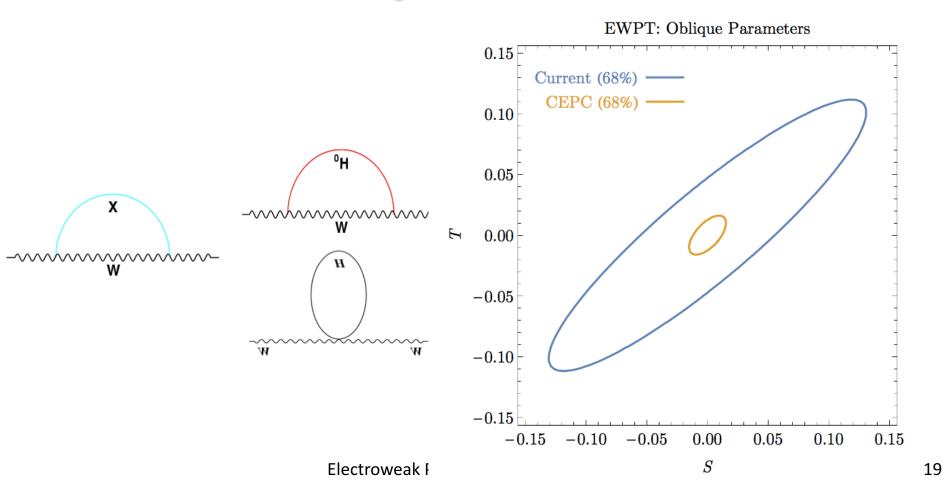


Weak mixing angle with Z->bb

- LEP/SLD measurement: 0.23153 ± 0.00016
 - Stat unc and Systematics Unc. Have similar contribution
- CEPC benefits from latest pixel technique
 - Expected Stat Unc. is neglectable
 - Syst. Unc.: 10 times better than LEP
 - Use 95% purity working points
 - 15% higher efficiency than SLD

		<u></u>
Improvement compared to LEP results	CEPC	Rejection 1
A _{FB} (Z->ee)	30	10-1
A _{FB} (Ζ->μμ)	20-30	10 ⁻²
A_{FB} (Z-> $\tau\tau$)	NA	0.
A _{FB} (Z->bb)	10	
Weak mixing angle	70	:
LIECTIONEAN LIA	ics at CLFC, Li	njun Eld

ang


Prospect of CEPC EWK physics

Expect to have one order of magnitude better than current precision

LEP precision	CEPC precisio	n CEPC runs	CEPC $\int \mathcal{L}dt$
2 MeV	0.5 MeV	Z pole	$8~{ m ab}^{-1}$
1.7%	0.1%	Z pole	$8~{ m ab}^{-1}$
7.7%	0.3%	Z pole	$8~{ m ab}^{-1}$
17%	0.5%	Z pole	$8~{ m ab}^{-1}$
0.07%	0.001%	Z pole	$8~{ m ab}^{-1}$
0.3%	0.02%	Z pole	$8~{ m ab}^{-1}$
0.2%	0.01%	Z pole	$8~{ m ab}^{-1}$
1.7%	0.05%	ZH runs	$5.6 \ ab^{-1}$
33 MeV	2–3 MeV	ZH runs	$5.6 \ ab^{-1}$
33 MeV	1 MeV	WW threshold	2.6 ab ⁻¹
	2 MeV 1.7% 7.7% 17% 0.07% 0.3% 0.2% 1.7% 33 MeV	2 MeV 0.5 MeV 1.7% 0.1% 0.3% 0.5% 0.001% 0.001% 0.002% 0.001% 1.7% 0.05% 33 MeV 2–3 MeV	2 MeV 0.5 MeV Z pole 1.7% 0.1% Z pole 7.7% 0.3% Z pole 17% 0.5% Z pole 0.07% 0.001% Z pole 0.3% 0.02% Z pole 0.2% 0.01% Z pole 1.7% 0.05% ZH runs 33 MeV 2-3 MeV ZH runs

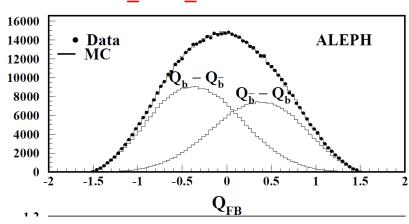
Constraint to new physics

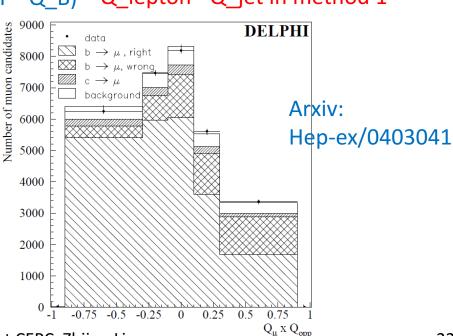
- Oblique parameter S,T,U: corrections to gauge-boson self-energies
 - S and T (U) correspond to dimension 6 (8) operators
- Constraint to Oblique parameter from CEPC EWK measurements will be about one order of magnitude better than current constraint.

Summary

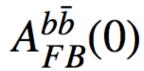
- Potential of electroweak measurement at CEPC
 - Expect 1~2 order of magnitude better than current precision
 - Key issue
 - Beam energy measurement (Z/W mass)
 - Luminosity measurement (Z/W mass)
 - Jet energy scale and resolution (W mass)
 - Impact parameter and b tagging performance
 - Weak mixing angle, R^b
 - Photon energy scale uncertainty
 - Number of neutrino generation, R^{mu}

Acknowledgment


- Thanks for hard work from current team.
 - Editors
 - Maarten Boonekamp (CEA Saclay), Fuivio Piccinini (INFN)
 - PhD Students, and who are practically working:
 - Peixun Shen (Nankai.), Pei-Zhu Lai (NCU), Mengran Li (IHEP),
 Bo Li(Yantai U. U), Bo Liu (IHEP)
 - Supervisors, Conveners, Experts, who are contributing ideas :
 - Chai-Ming Kuo (NCU), Zhijun Liang (IHEP), Gang Li (IHEP), Manqi Ruan (IHEP), Hengne Li (SCNU/UVa), Liantao Wang (Chigago)


Backward-forward asymmetry

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)
 Q_lepton Q_jet in method 1


Arxiv:Hep-ex/0107033

Q_F - Q_B in method 2

Backward-forward asymmetry

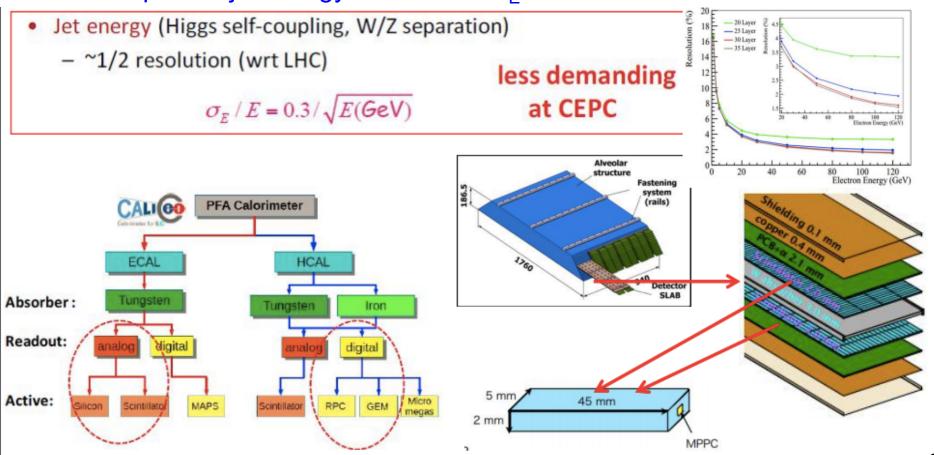


- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, method)
- CEPC
 - Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%):

Uncertainty	LEP	CEPC	Things to improve
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	

Backward-forward asymmetry

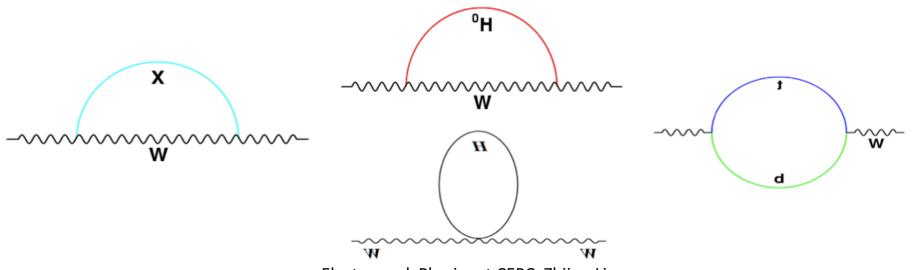
- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics



Error source	$C_{\mathrm{QCD}}^{\mathrm{quark}}$ (%)		$C_{ m QCD}^{ m part,T}$ (%)	
	$bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_Z^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

CEPC detector (2)

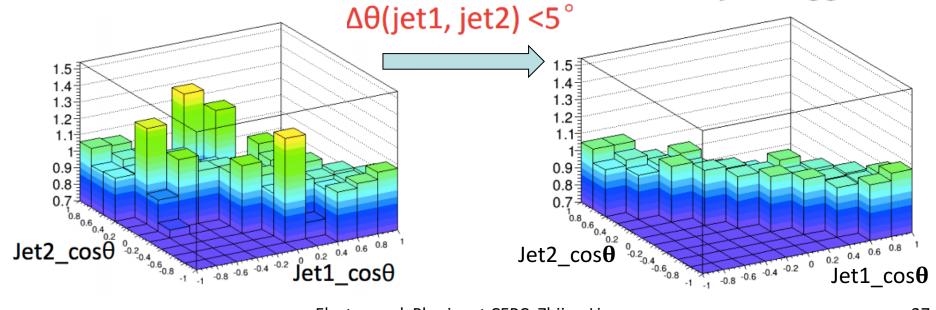
Calorimeters:


- Concept of Particle Flow Algorithm (PFA) based
- − EM calorimeter energy resolution: $\sigma_E/E \sim 0.16/\sqrt{E}$
- − Had calorimeter energy resolution: $\sigma_E/E \sim 0.5/\sqrt{E}$
- Expected jet energy resolution : $\sigma_{E}/E \sim 0.3/\sqrt{E}$

Motivation of W mass measurement

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

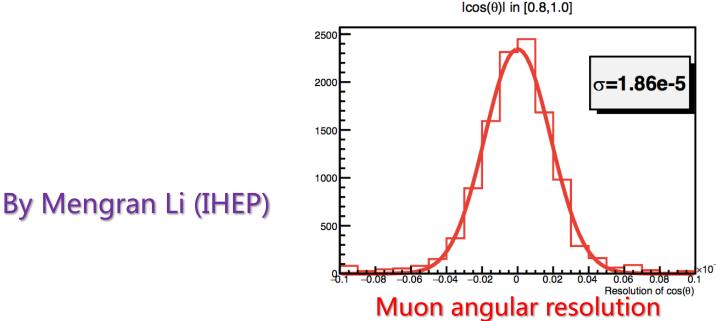
Eur.Phys.J. C78 (2018) no.5, 426



Rb: hemisphere tag correlations

- Study hemisphere b tag correlations systematics with full simulation
- Two ways to reduce correlations factor -> reducing systematics
 - Using tighter cuts to choose Z->bb events
 - Use different B jet tagger (soft muon tag Vs impact parameter)
 - Correlations factors c_b need to be reduced below 0.01%

By Bo Li (Yantai University)


$$C_b = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^2}$$

Backward-forward asymmetry in Z->µµ

LEP measurement : 1.69% +-0.13%(PDG fit)

- CEPC aim to improve it by a factor of 20~30.
 - muon angular resolution and acceptance
 - the precision of beam energy measurement
- Full simulation studies to understand muon angular resolution
 - Muon angular resolution can reach 1e-4 to 1e-5 level

Open issue

- Tools needed:
 - Soft muon b jet tagger is needed for R_b measurement
 - Jet charge reconstruction is need for Afb_b
- Analyses to be covered
 - Afb_b , Afb_e measurements
 - Key input to weak mixing angle measurement
 - W->jj branching ratio and alpha_QCD
 - Z->II off-peak runs design and alpha_QED measurements

WW threshold scan – physics goal

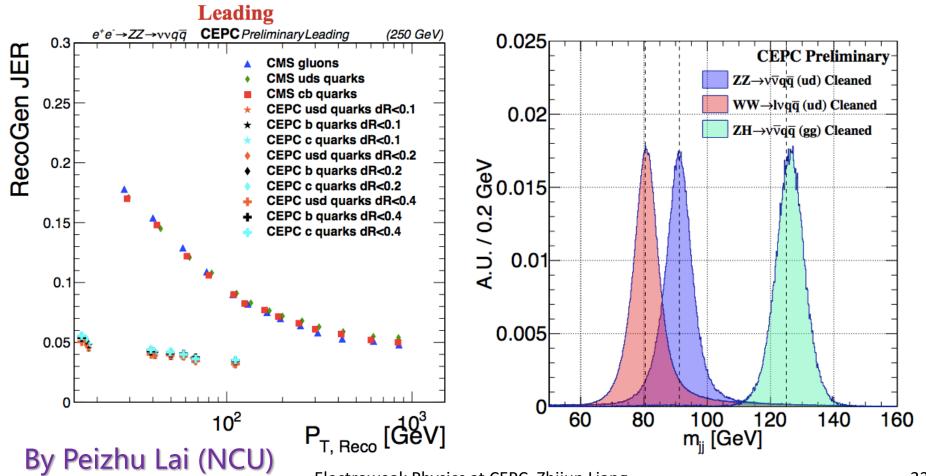
- Statistics is enough for Branching ratio measurement Br (W->had) and αQCD (mW) measurements.
- Statistics uncertainty is one of the limiting factor for W mass and W width measurement with CEPC one year running plan (2.5 fb⁻¹)

Energy (GeV)	Systematics	Statistics uncertainty	limiting factor
W mass	1MeV Beam energy	1.0 MeV	/
W width	1 MeV	3.2 MeV	Statistics
Br (W->had) & α_{QCD} (mW)	10-4	10 ⁻⁴	

Weak mixing angle (2)

- Comparison with Fcc-ee on weaking mixing angle measurement
 - Expect 1~2 order magnitude better than LEP results
 - consistent with FCC-ee prediction

Improvement compared to LEP results	CEPC	FCC-ee (Paolo's talk in CEPC Roma workshop)
A _{FB} (Z->ee)	30	50
A_{FB} (Z-> $\mu\mu$)	20-30	30
A_{FB} (Z-> $\tau\tau$)	NA	15
A _{FB} (Z->bb)	10	5
Weak mixing angle	70	100


Motivation for CEPC electroweak physics

- need more precision in
 - W mass, Top mass and weak mixing angle
- CEPC can provide more precise measurement for
 - W/Z and Higgs mass and weak mixing angle

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$ From PDG201	1×10 ⁻¹⁰	$e^{\pm}g_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{GeV}^{-2}$	1×10 ⁻⁶	μ [±] lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{GeV}$	3×10 ⁻³	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC

W mass direct measurement

- The Z, W, and Higgs bosons can be well separated in CEPC.
- Benefitted from excellent jet energy resolution and PFA based calorimeter
- Possible to measure W mass from direct di-jet mass reconstruction.

