Review of TPC Detector R&D for CEPC CDR

Zhi Deng, Huirong Qi

for TPC tracker detector working group

Institute of High Energy Physics, CAS Tsinghua University 10. Sep., 2018, Main building, IHEP, Beijing

Outline

- Motivation in CEPC CDR
- TPC detector module and prototype
- FEE electronics ASIC chip
- Summary

Motivation in CEPC CDR

TPC requirements for collider concept

TPC could be as one tracker detector option for CEPC, 1M ZH events in 10yrs $E_{cm} \approx 240$ GeV, luminosity $\sim 2 \times 10^{34}$ cm⁻²s⁻¹, can also run at the Z-pole

TPC detector concept:

- Motivated by the H tagging and Z
- ~3 Tesla magnetic field
- ~100 μm position resolution in rφ
 - ~60μm for zero drift, <100μm overall</p>
 - Systematics precision (<20µm internal)
- Large number of 3D points(~220)
- **Distortion by IBF issues**
- $\Box \quad dE/dx \text{ resolution: } <5\%$
- Tracker efficiency: >97% for pT>1GeV
- **2**-hit resolution in rφ : ~2mm
- □ Momentum resolution: ~10⁻⁴/GeV/c
- **TPC material budget**
 - 0.05 X₀ including outer fieldcage in r
 - 0.25 X_0 for readout endcaps in z

Overview of TPC detector concept

TPC with MPGDs as readout /Advantage

- Higher accuracy < 100mm(Overall along the drift)
- Better two track resolution
- Full 3-D track reconstruction
- Precise dE/dX
- High magnetic field (>3T)
- Highly reduced E×B effect
- Large detectors by industrial process
- Easy assembled using the modules
- Minimal material budget
- Much higher Ion feed back suppression
- Drift time gives the longitudinal coordinate

CEPC Detector for CDR

Baseline design parameters

Feasibility & Optimized Parameters

VFeasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV;
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV;

Three key issue questions in CEPC CDR

Simulation

- **Occupancy:** at inner diameter
 - Low occupancy
 - **Overlapping tracks**
 - Background at IP
- Ion Back Flow
 - Continuous beam structure
 - *R Long working time with low discharon possibility Necessary to fully
 - Necessary to fully suppress the space charge Calibration and alignment lation ~100un Complex MDI design produced by ion back flow from the
- - Laser calibration system

TPC as one option for

CPEC YES or NO?

To control IONS?

~100um positron

To reduce distortion

resolution with calibration?

High rate at Z pole

- Voxel occupancy
 - The number of voxels / signal
 - 9 thousand Z to qq events
 - 60 million hits are generated in sample
 - □ 4000-6000 hits/(Z to qq) in TPC volume
 - Average hit density: 6 hits/mm²
 - Peak value of hit density: 6 times
 - Voxel size: $1 \text{mm} \times 6 \text{mm} \times 2 \text{mm}$
 - 1.33×10¹⁴ number of voxels/s
 @DAQ/40MHz
 - □ Average voxel occupancy: 1.33 × 10⁻⁸
 - Voxel occupancy at TPC inner most layer: $\sim 2 \times 10^{-7}$
 - Voxel occupancy at TPC inner inner most layer : ~2×10⁻⁵ @FCCee benchmark luminosity

The voxel occupancy takes its maximal value between 2×10^{-5} to 2×10^{-7} , which is safety for the Z pole operation.

<u>ArXiv: 1704.04401</u> Mingrui, Manqi, Huirong

Hit map on X-Y plan for Z to qq events

Distortion of as a function of electron initial r position -8 -

Technical challenges for TPC

Ion Back Flow and Distortion :

- ~100 μm position resolution in rφ
- Distortions by the primary ions at CEPC are negligible
- More than 10000 discs co-exist and distorted the path of the seed electrons
- The ions have to be cleared during the ~us period continuously
- Continuous device for the ions
- Long working time

Calibration and alignment:

- Systematics precision (<20 µm internal)
- **Geometry and mechanic of chamber**
- Modules and readout pads
- Track distortions due to space charge effects of positive ions

Ions backflow in drift volume for distortion

Evaluation of track distortions

700

r/mm

 10^{-1}

400

500

600

IBF-100%

IBE-0.19

000

Drift Length [mm]

1500

2000

500

Options of technical solution

Continuous IBF module:

- Gating device may be used for Higgs run
- Open and close time of gating device for ions: ~ µs-ms
- No Gating device option for Z-pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Low discharge and spark possibility

Laser calibration system:

- Laser calibration system for Z-pole run
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Calibrated drift velocity, gain uniformity, ions back in chamber
- Calibration of the distortion
- Nd:YAG laser device@266nm

Continuous IBF prototype and IBF \times Gain

TPC prototype integrated with laser system - 10 -

Ions backflow reduced

TPC detector module R&D

- Combination detector
- Discharge for IBF

Test of the new module

Test with GEM-MM module

- New assembled module
- Active area: 100mm × 100mm
- **A** X-tube ray and 55Fe source
- **Bulk-Micromegas from Saclay**
- Standard GEM from CERN
- Additional UV light device
- **Δ** Avalanche gap of MM:128μm
- □ Transfer gap: 2mm
- Drift length:2mm~200mm
- Mesh: 400LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

GEM+MM@CEPC R&D

e+e- machine Primary N_{eff} is small: ~30 Pad size:1mm×6mm Photo peak and escape peak are clear! Good electron transmission. Good energy resolution.

Gain of the hybrid structure detector

Discharge and working time

□ Test with Fe-55 X-ray radiation source

- Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
- Discharge possibility of hybrid detector could be used at Gain~10000
- **•** To reduce the discharge probability more obvious than standard Micromegas
- At higher gain, the module could keep the longer working time in stable

Electrometer/High Resistance Meter

Keithley 6517B

Electrometer/High Resistance Meter, 100aA - 20mA, 10μV - 200V, 100Ω - 10PΩ

Brand:	Keithley
Model No:	6517B

Product Features:

- Measures resistances up to 10180
- 10aA (10×10-18A) current measurement resolution
- Less than 3fA input bias current
- · 6 1/2-digit high accuracy measurement mode
- Less than 20µV burden voltage on the lowest current ranges
- Voltage measurements up to 200V with >200TO input impedance
- Built-in +/-1000V voltage source
- · Unique alternating polarity voltage sourcing and measurement method for high resistance measurements
- Built-in test sequences for four different device characterization tests, surface and volume resistivity, surface insulation resistance, and voltage sweeping
- Optional plug-in scanner cards for testing up to 10 devices or material samples with one test setup

Measuremnt of GEM-MM module

Test with GEM-MM module

- Keithley Electrometers for Ultra-Low Current Measurements: pA~mA
- Keithley: 6517B
- Test of cathode of the module
- Test of readout anode of the module
- Labview interface of the low current to make the record file automatically

$$IBF = \frac{I_C - I_P}{I_A}$$

1273	175.084M
STOP	c#
Range 200 pA	2004 204 24 2004 294 204 204 204 204 2004 20
None +0019.1045-12NADC 15:47:52:00.10-Jun- 2016.+00439RDN/S# 10 Current 11 1.9104E-11	成形面布 曲紙 0 本 30g- 25g- 干炸酒
	量 20p- 16.2836

Labview interface of the current with Keithley

Key IBF factor: IBF×Gain

Preliminary results in 2018

Space charge effect for IBF

Green, T2K, Et=200V/cm, Ed=200V/cm, V_mesh=400V, V_Gem:30~300V Yellow, Ar/iso(95/5), Et=200V/cm, Ed=200V/cm, V_mesh=400V, V_Gem:30~300V

Calibration (Drift velocity/Uniformity/Distortion)

TPC detector prototype R&D

- Signal of the 266nm laser beam @MPGD
- Stability of the position@100um resolution
- Stability of the energy @ASIC FEE

Motivation of the TPC prototype

- Study and estimation of the distortion from the IBF and primary ions with the laser calibration system
- Main parameters
 - □ Drift length: ~510mm, Readout active area: 200mm×200mm
 - □ Integrated the laser calibration with 266nm
 - **GEMs/Micromegas as the readout**
 - Matched to assembled in the 1.0T PCMAG

Diagram of the TPC prototype with the laser calibration system - 24 -

Collimator for the laser beam $@\Phi 1 \sim \Phi 12mm$

- \Box Laser beam with expander mirror: 5mm \times 3
- □ Primary laser power: 170uJ
- **Gain:~3000/5000**

Area of laser beam in detector

Stability of the laser beam energy

Diffuser; Pulse Widt

GOOD !

- **Duration of measurement time: 20mins**
- Average of the energy: $24.79 \text{mJ}/\Phi5 \text{mm}$
- □ Stability of the laser beam energy: 3.84%

-	24.66mJ	21.11mJ 28.36mJ Std.Dex Overrange 952.0uJ 0 Prequency Missing Pulses 20.0Hz 0	24.79mJ Total Paises 24467	Time Frame Merge Split 5 00:20:00 😂 🖡 💷
	A: PE50-DIF-C [mJ]			ml ~
tons O	30.00 25.00 20.00	and a state of the	1949 - 1949 -	
ions D	10.00 25.00 20.00 15.00 10.00		terilarid astitus, medato nyanyatina pelingan	

- Duration of measurement time: 20mins
- Average of the energy: $46.53 \mu J / \Phi 5 mm$
- □ Stability of the laser beam energy: 3.3%

11.5105		7804		
· · · · ·	Frequency Missing Pulses 6.4Hz 0	/894	Time Frame 00:20:00	Merge Split R
A: PESO-DIF-C [w]			ut v	•
	ر بر بر ماماسالسان مرابع مرابع مرابع الم			
30.00 -				
20.00 -				
10.00 -				
	A: PESO-DIF-C [U]	A: PESO-DIF-C [W] 60.00 40.00 40.00 50.00 10.00 10.00	A: PESO-DIF-C [U] 60.00 40.00 40.00 50.0	

Distortion by UV+Laser

- To mimic the bunch structure & the ions distortion with UV light and laser split beam
- In the case of CEPC-TPC

Low power consumption ASIC FEE chip R&D

- 65 nm CMOS process
- 5mW/ch with ADC

ASIC FEE ASIC chips

Current TPC readout ASICs

	PASA/ALTRO	AFTER	Super-ALTRO	SAMPA
TPC	ALICE	T2K	ILC	ALICE upgrade
Pad size	4x7.5 mm ²	6.9x9.7 mm ²	1x6 mm ²	4x7.5 mm ²
Pad channels	5.7 x 10 ⁵	1.25 x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
Readout Chamber	MWPC	MicroMegas	GEM/MicroMegas	GEM
Analog Front-end				
Gain	12mV/fC	18 mV/fC	12-27 mV/fC	20/30 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ²	CR-(RC) ⁴	CR-(RC) ⁴
Peaking time	200 ns	100 ns	30-120 ns	80/160 ns
ENC	385 e	1000 e	520 e	482 e @ 180ns
Waveform Sampler				
Method	ADC	SCA	ADC	ADC
Sampling frequency	10MSPS	25MSPS	40MSPS	20MSPS
Dynamic range	10bit	10bit	10bit	10bit
Power consumption	32mW/ch	6.2-7.5mW/ch	47.3mW/ch	8mW/ch
CMOS Process	250 nm	350 nm	130 nm	130nm

ASIC FEE requirements

- Requirement for the front-end electronics
 - Analog front-end, including preamplifier and shaper
 - Waveform sampling ADC in 10b and 20-40MSPS
 - Continuous working, no power pulsing —

Low power consumption

Total number of channels		~1 Million per endcap
AFE	ENC	500 e
	Gain	10 mV/fC
	Peaking time	160 ns
ADC	Sampling rate	20-40 MSPS
	Resolution	10 bit
Buffer latency		~50 μs
Data readout rate		20 Gb per event w.o. zero compression
Power consumption		<10 mW per channel
Area		< 6 mm ² per channel, incl. cooling

ASIC FEE R&D

- Develop a low power and highly integration front-end ASIC in 65 nm CMOS
- Each channel consists of the analog front-end (AFE) and a SAR ADC in 10b and up to 40 MSPS
- Less than 5 mW per channel

- 32 -

Preliminary of ASIC FEE R&D

AFE test summary

	Specifications	Test Results
Gain	10mV/fC	10.5mV/fC
Dynamic Range	120fC	>120fC
INL	<1%	0.41%
Power consumption	2.50mW/ch	2.18mW/ch
ENC	500e @ 10pF	448e @ 10pF
Xtalk	<1%	<0.36%

SAR ADC test summary

	Specifications	Test Results
Sampling rate	40 MSPS	50 MSPS
Resolution	10 bit	10 bit
INL	<0.65 LBS	<0.5 LSB
DNL	<0.6 LSB	<0.5 LSB
ENOB	>9 bit	9.18 bit
Power consumption	<2.5 mW/ch	1 mW/ch

- Test setup
 - TSW1400EVM

Manpower and future plan

- **TPC** detector module and prototype **R&D** *a***IHEP**
 - Huirong Qi
 - Haiyun Wang(PhD,IHEP), Zhiyang Yuan(PhD,IHEP), Ling Liu (Master,IHEP)
 - Prof. Ouyang Qun, Prof. Jin Li
 - **•** Funding from MOST and NSFC
- **FEE Electronics R&D & Tsinghua**
 - Zhi Deng
 - Yiming Cai(PhD,THU), Zhao Mingrui (Master, THU) and three PhDs in electronics lab
 - **Prof. Yuanning Gao, Prof. Yulan Li**
 - **•** Funding from NSFC

Summary

TPC detector module and prototype R&D

- No Gating device options used for Higgs/Z pole run
- Continuous Ion Back Flow due to the continuous beam structure (Developed in IHEP)
- Preliminary results: Key factor of IBF×Gain=5
- **Low discharge and spark possibility**
- **TPC prototype with the laser calibration sytem**

Low power front-end ASICs have been developed to meet the stringent requirements of CEPC TPC readout by

- □ Using advanced 65 nm CMOS process
- Adopting circuit structure with minimized analog circuits such CR-RC shaper and SAR ADC

Thanks.